趙新宇 王薇茜 蘆澤蘭 黃雷 趙克溫
摘要:為研究KLF5的相互作用蛋白從而深入探索其生物功能,構(gòu)建了C端帶有FLAG、HA、6xHis三標(biāo)簽的pOZ-KLF5真核表達(dá)逆轉(zhuǎn)錄病毒栽體。pOZ-KLF5栽體可通過一次轉(zhuǎn)錄得到雙順反子轉(zhuǎn)錄單位,即一個(gè)轉(zhuǎn)錄物能表達(dá)兩種獨(dú)立存在的蛋白質(zhì):三標(biāo)簽融合蛋白KLF5-3xTag和篩選標(biāo)記——白細(xì)胞介素-2受體a(IL-2Ra)。通過偶聯(lián)IL-2Ra抗體的磁珠成功篩選出KLF5-3xTag表達(dá)陽性的293T細(xì)胞,經(jīng)Western-blot檢測(cè)細(xì)胞內(nèi)KLF5-3xTag表達(dá)情況及其對(duì)293T細(xì)胞增殖及周期的影響,發(fā)現(xiàn)KLF5-3xTag能夠促進(jìn)細(xì)胞克隆的形成并使S期細(xì)胞增多,且可被已知E3泛素連接酶WWP1降解,與已有報(bào)道一致。進(jìn)一步通過免疫沉淀實(shí)驗(yàn)證明了與KLF5融合的標(biāo)簽的免疫反應(yīng)性。該質(zhì)粒的成功構(gòu)建為研究KLF5相互作用蛋白及深入探索其生物功能奠定了基礎(chǔ)。關(guān)鍵詞:KLF5;雙順反子轉(zhuǎn)錄;真核表達(dá);三標(biāo)簽融合蛋白中圖分類號(hào):Q812 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-7847(2015)02-0124-07Construction and Characterizations of pOZ-KLF5 Retroviral PlasmidZHAO Xin-yu, WANG Wei-xi, LU Ze-lan, HUANG Lei, ZHAO Ke-wen*(Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China)Abstract: To analyze KLF5 interacting proteins and explore the biological functions of KLF5, the eukaryotic expression retroviral plasmid pOZ-KLF5, with the FLAG, HA, 6xHis triple tags at C-terminal, was con?structed. Plasmid pOZ-KLF5 can get a bicistronic transcription unit after once transcription and express two independent proteins: triple-tagged fusion protein KLF5-3xTag and selection marker interleukin-2 receptor a (IL-2Ra). 293T cells expressing KLF5-3xTag were successfully selected by the magnetic beads coupling IL-2Ra antibody, and the expression of KLF5-3xTag was detected by Western-blot. Then, the proliferation and cell cycle of 293T were tested, and the results indicated that KLF5-3xTag promotes the proliferation of cell colonies and the Gl/S transition.In addition, co-expression of WWP1, a known E3 ligase of KLF5, can decrease KLF5-3xTag protein level, which is consistent with previous reports. Furthermore, immunoprecipi- tation experiment was applied to prove the immunoreaction of the tags. The successful construction of pOZ- KLF5 provides a powerful tool to study the interacting proteins of KLF5 and to explore the biological func?tions of KLF5.Key words: KLF5; bicistronic transcription; eukaryotic expression; triple-tagged fusion protein(Life Science Research, 2015, 19(2): 124?130)KLF5蛋白是類KtlippeKKriippel-likefactors,KLF)轉(zhuǎn)錄因子家族的一員,屬于基礎(chǔ)轉(zhuǎn)錄因子。到冃前為止該家族巳經(jīng)有17個(gè)成員被鑒定出來。KLF5又名BETB2(basictranscriptionelement-bindingprotein2)和IKLF(intestine-enrichedKriippel-likefactor),在胚胎發(fā)育、細(xì)胞周期、細(xì)胞生長(zhǎng)與分化、維持細(xì)胞干性等生物過程中發(fā)揮作用。研究發(fā)現(xiàn)KLF5在人和小鼠的小腸、結(jié)腸、胃、胰腺、胎盤、睪丸、骨骼肌、肺、膀胱和子宮等組織中廣泛表達(dá)[1-3]。KLF5能與多個(gè)基因的GCbox區(qū)域結(jié)合從而調(diào)控其轉(zhuǎn)錄。KLF5蛋白C端含有KLFs家族特征性的、可以結(jié)合基因組DNA的3個(gè)串聯(lián)重復(fù)的鋅指(zincfinger,ZF)結(jié)構(gòu)域,在ZF結(jié)構(gòu)域前含有富含脯氨酸的轉(zhuǎn)錄激活結(jié)構(gòu)域。值得關(guān)注的是,KLF5在不同的細(xì)胞類型中發(fā)揮的作用不同,已有的研究提示這可能與KLF5的翻譯后修飾有關(guān)。KLF5蛋白有不同的翻譯后修飾,包括磷酸化、乙?;?、泛素化和SUMO化修飾,經(jīng)過翻譯后修飾的KLF5可以與不同的蛋白相互作用從而發(fā)揮不同甚至完全相反的功能[4.5]。為了研究KLF5在真核生物不同生理及病理?xiàng)l件下的相互作用蛋A從而深入研究其生物學(xué)功能,我們構(gòu)建了逆轉(zhuǎn)錄病毒真核表達(dá)載體P0Z-KLF5,通過磁珠篩選出陽性克隆,在檢測(cè)KLF5生物功能的同時(shí),驗(yàn)證了與目的蛋白KLF5融合的標(biāo)簽的免疫反應(yīng)性。1材料與方法1.1材料大腸桿菌DH5a感受態(tài)(Invitrogen,美國),pOZ-C載體[6](簡(jiǎn)稱pOZ,C端帶有FLAG和HA標(biāo)簽,Addgene,美國),質(zhì)粒提取試劑盒(QIAGEN,美國),凝膠回收試劑盒、PCR純化試劑盒(Tian-gen,中國),XhoⅠ、NotI核酸內(nèi)切酶、T4DNA連接酶(Takara,日本),LB培養(yǎng)基(Oxoid,英國),X-tremeGENE9轉(zhuǎn)染試劑(Roche,美國),MG132(Sig-ma,美國),抗FLAG-M2親和凝膠、抗HA親和凝膠(Sigma,美國),抗IL-2Ra抗體(Upstate,美國),Ni-NTA瓊脂糖(QIAGEN,美國),DynabeadsM450(Invitrogen,美國),抗KLF5抗體(Protein-Tecli,美國)c1.2pOZ-KLF5表達(dá)載體的構(gòu)建根據(jù)逆轉(zhuǎn)錄病毒載體pOZ的多克隆位點(diǎn),設(shè)計(jì)帶有XhoI和NotI酶切位點(diǎn)(見斜體)的KLF5擴(kuò)增引物,在C端PCR引物中引人了6xHis標(biāo)簽(見下劃線)。引物序列Forward:5(-GGGCrCGAGTGCCACCATGGCTACAAGGG-TGCTGAGC-3, Reverse5-CCCGCGGCGGCQI-GGTGGTGGTGGTGGTGGTTCTGGTGCCTCTTCA-TATG-3'。以人KLF5的CDNA為模板,PCR擴(kuò)增C末端帶有6xHis標(biāo)簽的KLF5基因命名為ALF5-6xHis。PCR條件如下:94℃變性3min,94°C 30s,55℃30s,72℃1min,30個(gè)循環(huán),72℃;延伸10min,4℃保存。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳,利用凝膠回收試劑盒回收PCR產(chǎn)物,然后分別用XhoI和I酶切PCR產(chǎn)物和P0Z-C載體,用膠回收試劑盒回收酶切后的AXF5片段與載體,用T4DNA連接酶將KLF5-6xHis與pOZ載體連接,轉(zhuǎn)化感受態(tài)DH5a,挑選陽性克隆于3mL的LB培養(yǎng)基小量擴(kuò)增,并用質(zhì)粒提取試劑盒提取所構(gòu)建的質(zhì)粒。經(jīng)XhoI和NotⅠ酶切確定目的片段的插入,測(cè)序證實(shí)插入載體目的片段的正確性,質(zhì)粒被命名為P0Z-KLF5。1.3穩(wěn)定表達(dá)pOZ-KLF5質(zhì)粒的細(xì)胞系篩選采用Roc.he公司的X-tremeGENE9試劑將逆轉(zhuǎn)錄病毒載體P0Z-KLF5連同病毒包裝輔助質(zhì)粒gag-Pol、VSV-g—起轉(zhuǎn)染包裝細(xì)胞,48h后收集具有感染能力的逆轉(zhuǎn)錄病毒感染293T細(xì)胞,由于P0Z-KLF5質(zhì)??梢酝瑫r(shí)轉(zhuǎn)錄并表達(dá)兩種蛋白質(zhì):目的蛋白KLF5和篩選標(biāo)記白細(xì)胞介素-2受體a(IL-2Ra),因此可以通過偶聯(lián)IL-2Ra抗體的DynabeadsM450磁珠篩選pOZ-KI,F(xiàn)5病毒感染的293T細(xì)胞,從而得到穩(wěn)定表達(dá)三標(biāo)簽融合的目的蛋白KLF5(簡(jiǎn)稱KLF5-3xTag)的293T細(xì)胞系。1.4pOZ-KLF5質(zhì)粒在真核細(xì)胞表達(dá)的鑒定收集1.3中獲得的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞的總蛋白,WestemBlot方法檢測(cè)目的蛋白KLF5-3xTag的表達(dá)情況。1.5細(xì)胞水平檢測(cè)KLF5的生物學(xué)功能使用1.3中獲得的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞進(jìn)行克隆形成實(shí)驗(yàn)和細(xì)胞周期分析實(shí)驗(yàn),檢測(cè)KLF5-3xTag蛋白的表達(dá)對(duì)細(xì)胞增殖及細(xì)胞周期的影響。克隆形成實(shí)驗(yàn)分別將100個(gè)1.3篩選的對(duì)照組和KLF5-3xTag表達(dá)組293T細(xì)胞接種到六孔板中培養(yǎng)10d,吸去上清液,用PBS洗兩遍,冰甲醇固定細(xì)胞后結(jié)晶紫染色,晾干后拍照,并對(duì)直徑超過100μm的克隆進(jìn)行統(tǒng)計(jì)分析。使用同樣的對(duì)照組與KLF5-3xTag表達(dá)組293T細(xì)胞檢測(cè)細(xì)胞周期:分別離心收集lxlO6個(gè)細(xì)胞,用PBS洗兩遍后,加入預(yù)冷70%乙醇于-20°C固定過夜,第二天用PBS洗兩遍,加入PI染料和RNaseA于37℃避光孵育30min,最后用流式細(xì)胞儀檢測(cè)周期。1.6Western-blot檢測(cè)WWP1對(duì)KLF5-3xTag蛋白的降解在1.3中獲得的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞內(nèi)共轉(zhuǎn)染W(wǎng)WP1質(zhì)粒(美國Emory大學(xué)DrnigJT教授惠贈(zèng))或者對(duì)照載體,收集細(xì)胞前4h加入20μmol/LMG132處理,收集細(xì)胞總蛋白Westem-blot檢測(cè)細(xì)胞中KLF5蛋白的含量變化,β-actin作為內(nèi)參。1.7pOZ-KLF5質(zhì)粒所帶標(biāo)簽的免疫反應(yīng)性將1.3中獲得的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞與對(duì)照組細(xì)胞收集蛋白后分別選用抗FLAG-M2親和凝膠、抗HA親和凝膠、Ni-NTA瓊脂糖進(jìn)行免疫沉淀(IP)實(shí)驗(yàn),然后通過Westernblot實(shí)驗(yàn)來驗(yàn)證KLF5-3xTag蛋白所帶標(biāo)簽的免疫反應(yīng)性。2結(jié)果2.1pOZ-KLF5表達(dá)載體的構(gòu)建與鑒定根據(jù)pOZ載體的多克隆位點(diǎn),選擇XhoI和NotI兩個(gè)限制性內(nèi)切酶位點(diǎn)分別加入KLF5上游和下游PCR引物中;考慮到相互作用蛋白研究需要純化出大量且高純度的蛋白,我們?cè)贑端PCR引物中引入了6xHis標(biāo)簽,為以后的多步驟純化提供多種選擇。以人的KLF5cDNA為模板,PCR擴(kuò)增KLF5基因編碼區(qū),獲得1392bp(l374bp的編碼區(qū)+18bp的6xHis標(biāo)簽)目的片段KLF5-6xHiso將經(jīng)過XhoI和NotI限制性核酸內(nèi)切酶酶切的KLF5-6xhis與pOZ載體加入T4-DNA連接酶經(jīng)過16T連接過夜,轉(zhuǎn)化DH5a感受態(tài)涂板,然后隨機(jī)挑取4個(gè)克隆于3mL的LB培養(yǎng)基中振蕩培養(yǎng)過夜,抽取質(zhì)粒后經(jīng)瓊脂糖凝膠電泳鑒定全部為陽性。將陽性克隆搖菌抽提后所得的質(zhì)粒命名為P0Z-KLF5(詳見材料方法1.2)。POZ-KLF5質(zhì)粒用XhoI和NotI雙酶切后瓊脂糖凝膠電泳再次確定目的片段的插入。pOZ-KLF5質(zhì)粒雙酶切后在1392bp處出現(xiàn)目的條帶,與KLF5-6xHis基因大小一致(如圖1箭頭所示)。P0Z-KLF5質(zhì)粒經(jīng)DNA測(cè)序后與基因庫中的序列完全一致,且6xHis標(biāo)簽序列也準(zhǔn)確地插入目的片段KLF5的C末端。2.2穩(wěn)定表達(dá)KLF5-3xTag細(xì)胞系篩選和檢測(cè)將陰性對(duì)照pOZ與P0Z-KLF5分別1f病毒包裝輔助質(zhì)粒一起轉(zhuǎn)染包裝細(xì)胞,然后收集pOZ、P0Z-KLF5逆轉(zhuǎn)錄病毒并分別感染293T細(xì)胞。病毒感染48h后經(jīng)偶聯(lián)IL-2Rα抗體的DynabeadsM450磁珠篩選出穩(wěn)定表達(dá)KLF5-3XTag蛋白的陽性細(xì)胞(見材料與方法1.3),感染pOZ逆轉(zhuǎn)錄病毒的293T細(xì)胞作為對(duì)照組細(xì)胞。收取細(xì)胞總蛋白Western-blot分析KLF5-3xTag蛋白表達(dá)情況,抗KLF5的抗體可以檢測(cè)到KLF5-3xTag蛋白的高效表達(dá)(KLF5-3xTag條帶;Endo.KLF5為內(nèi)源性KLF5蛋白),如圖2所示。2.3KLF5-3xTag生物學(xué)功能及蛋白降解檢測(cè)為驗(yàn)證所構(gòu)質(zhì)粒表達(dá)產(chǎn)物KLF5-3xTag的功 能Q已知的KLF5生物功能一致,我們將2.2得到的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞進(jìn)行克隆形成實(shí)驗(yàn)以及細(xì)胞周期分析(見材料與方法1.5)??寺⌒纬蓪?shí)驗(yàn)結(jié)果顯示,盡管總的細(xì)胞克隆數(shù)并沒有太大變化,KLF5-3xTag表達(dá)的293T細(xì)胞與對(duì)照組比較其形成的細(xì)胞克隆更大。對(duì)直徑達(dá)到100μm的細(xì)胞克隆數(shù)目進(jìn)行統(tǒng)計(jì)后發(fā)現(xiàn)KLF5-3xTag表達(dá)組比對(duì)照組形成100以上大克隆的數(shù)目明顯增多(p=0.0131)(圖3)。流式細(xì)胞儀對(duì)其細(xì)胞周期的分析結(jié)果顯示:KLF5-3xTag表達(dá)組處于G0/G1期的細(xì)胞比例均值為61.43%,與對(duì)照組的62.025%并無太大差別,但KLF5-3xTag的表達(dá)使處于S期的細(xì)胞比例達(dá)到18.82%,比對(duì)照組(14.28%)增加約35%;同時(shí),KLF5-3xTag表達(dá)組處于G2/M期的細(xì)胞比例為20.26%,比對(duì)照組(24.1%)下降了約17%(圖4),并且實(shí)驗(yàn)結(jié)果可重復(fù)。以上結(jié)果表明KLF5-3xTag的表達(dá)促進(jìn)了細(xì)胞的增殖:使處于S期的293T細(xì)胞比例增多,促使單個(gè)細(xì)胞形成的克隆體積更大,與以前的報(bào)道一致[7、8]。已有文獻(xiàn)報(bào)道,KLF5屬于半衰期較短的不穩(wěn)定蛋白,可以被多種E3泛素連接酶修飾而經(jīng)蛋白酶體途徑降解,并且N端加入標(biāo)簽可以影響KLK5蛋白的降解[9、10],因此我們將融合標(biāo)簽加入到KLF5蛋白的C端,為了驗(yàn)證C端標(biāo)簽的插入并不影響KlT5-3xTag蛋白的降解,我們?cè)诜€(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞中轉(zhuǎn)染KLF5已知的E3泛素連接酶WWP1(見材料與方法1.6),結(jié)果如圖5所示,KLF5-3xTag與內(nèi)源KLF5—樣能夠被WWP1所降解,而加入蛋白酶體抑制劑MG132可以穩(wěn)定KLF5-3xTag蛋白。由此驗(yàn)證了C端標(biāo)簽的加入并未對(duì)KLF5蛋白降解產(chǎn)生影響。2.4pOZ-KLF5質(zhì)粒所帶標(biāo)簽的免疫反應(yīng)性驗(yàn)證裂解2.2得到的穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞,收取總蛋白后分別用抗HA親和凝膠、Ni-NTA瓊脂糖、抗FLAG-M2親和凝膠進(jìn)行免疫沉淀實(shí)驗(yàn),Western-blot分析KLF5_3xTag所帶標(biāo)簽是否可以有效沉淀KLF5_3xTag。Ni-NTA瓊脂糖、抗HA親和凝膠、抗FLAG-M2親和凝膠均可以通過與KLF5融合的6xHis、HA(圖6A)、FLAG(圖6B)標(biāo)簽有效結(jié)合而免疫沉淀KLF5蛋白。同時(shí)為了檢測(cè)標(biāo)簽免疫沉淀的效果,在穩(wěn)定表達(dá)KLF5-3xTag的293T細(xì)胞中共轉(zhuǎn)染了KLF5已知的相互作用蛋白WWP1,經(jīng)MG132處理后用抗FLAG-M2親和凝膠沉淀下KLF5蛋白的同時(shí)也可以在免疫沉淀復(fù)合物中檢測(cè)到WWP1蛋白(圖6B)。由此可見,KLF5所帶標(biāo)簽均具有良好的免疫反應(yīng)性且未互相影響,并且標(biāo)簽可以有效免疫沉淀KLF5的相互作用蛋白。因此KLF5-3xTag可以作為尋找KLF5在特定生理、病理?xiàng)l件下的相互作用蛋內(nèi)從而深入探索KLF5功能的有力工具。3討論KLF5作為轉(zhuǎn)錄因子通過調(diào)控許多下游基因的表達(dá)在胚胎發(fā)育、炎癥反應(yīng)、心血管發(fā)生、腫瘤生長(zhǎng)等過程中發(fā)揮重要生物學(xué)功能。已有研究表明,在不同細(xì)胞環(huán)境下,KLF5可以發(fā)揮截然不同的作用[11];在上皮細(xì)胞的分化過程,表皮基底細(xì)胞和培養(yǎng)的非腫瘤上皮細(xì)胞中,KLF5刺激細(xì)胞增殖在多種腫瘤細(xì)胞系和TGFβ信號(hào)通路活化的非腫瘤上皮細(xì)胞中抑制細(xì)胞增殖[12-15]。與其在細(xì)胞增殖方面的雙重功能一致的是,KLF5在腫瘤形成過程中可以發(fā)揮癌基因[19]和腫瘤抑制雙重功能:很多報(bào)道顯示KLF5在多種癌癥中表達(dá)上升并與乳腺癌病人的低生存率有關(guān)[20、21],表明KLF5發(fā)揮癌基因的作用;另有研究表明在乳腺癌和前列腺癌中KLF5基因失活[22-24]。在胃癌中KLF5表達(dá)是良性特征并與病人的高生存率有關(guān)表明KLF5是潛在的腫瘤抑制因子。KLF5存在多種翻譯后修飾,翻譯后修飾可以調(diào)控KLF5蛋內(nèi)的穩(wěn)定性或改變其相互作用的蛋白從而影響甚至逆轉(zhuǎn)KLF5的功能:比如FBW7、WWP1、EFP、SMAD等可以通過影響KLF5的泛素化而影響其蛋白的穩(wěn)定性1%271;PKC、MEK/ERK、P38、GSK3β[28、29]等信號(hào)通路通過影響KLF5的磷酸化而改變KLF5的轉(zhuǎn)錄活性或者蛋白穩(wěn)定性[30、31];p300、SET、HDAC等通過改變KLF5的乙?;绊慘LF5的生物功能[32、33]。由于轉(zhuǎn)錄因子在染色體DNA上可以通過與服務(wù)于不同轉(zhuǎn)錄機(jī)制的多種蛋白形成轉(zhuǎn)錄因子復(fù)合物調(diào)控相關(guān)基因表達(dá),在不同環(huán)境刺激因子作用下,KLF5發(fā)生不同的翻譯后修飾改變了其蛋白構(gòu)象從而改變其轉(zhuǎn)錄因子復(fù)合物的組成,使KLF5可以對(duì)同樣的一組靶基因產(chǎn)生完全不同的調(diào)控作用或者調(diào)控功能相反的靶基因轉(zhuǎn)錄。因此研究這些可以與KLF5相互作用的蛋白具有非常重要的意義。
為了研究KLF5的相互作用蛋白從而深入探索KLF5的生物學(xué)功能,構(gòu)建了真核表達(dá)的逆轉(zhuǎn)錄病毒質(zhì)粒pOZ-KLF5。通過此質(zhì)粒的構(gòu)建,能夠?yàn)閷硌芯颗cKLF5相互作用的蛋白、從而為進(jìn)一步研究KLF5的翻譯后修飾及其對(duì)KLF5生物學(xué)功能的影響提供了新的工具。pOZ載體是逆轉(zhuǎn)錄病毒載體,可以通過感染獲得目的蛋白的高效表達(dá)。pOZ載體自身帶有FLAG和HA標(biāo)簽,根據(jù)標(biāo)簽與目的基因融合的位置不同,分為pOZ-N(標(biāo)簽在目的蛋白N末端)與pOZ-C(標(biāo)簽在目的蛋白C末端)兩種。已有報(bào)道顯示,N端的氨基酸序列對(duì)KLF5功能非常重要,并且N端融合標(biāo)簽的加入可能影響KLF5的穩(wěn)定性[34、35]。因此選擇了pOZ-C載體構(gòu)建P0Z-KLF5質(zhì)粒。由于相互作用蛋白的分析通常聯(lián)合蛋白質(zhì)譜的鑒定,因此需要純化出大量的目的蛋白化合物,為了降低實(shí)驗(yàn)成本,在KLF5編碼區(qū)C端加入了6xHis標(biāo)簽,這樣可以通過成本較經(jīng)濟(jì)的Ni-NTA瓊脂糖進(jìn)行后續(xù)實(shí)驗(yàn)。同時(shí),相互作用蛋白的分析通常需要進(jìn)行多步驟親和層析從而減少非特異性的相互作用蛋白并降低假陽性的產(chǎn)生,pOZ-KLF5質(zhì)粒通過3種標(biāo)簽蛋白(6xHis,F(xiàn)LAG,HA)的表達(dá),為以后鑒定KLF5相互作用蛋白提供了多種標(biāo)簽的選擇,并且這些標(biāo)簽全部位于C未端,避免了對(duì)KLF5本身可能造成的結(jié)構(gòu)、功能上的影響pOZ-KLF5質(zhì)??梢酝瑫r(shí)表達(dá)冃的蛋白KLF5-3xTag和篩選標(biāo)記IL-2Ra,通過偶聯(lián)lL-2Ra抗體的DynabeadsM450磁珠進(jìn)行篩選得到穩(wěn)定表達(dá)Kl.F5-3xTiig蛋白的陽性細(xì)胞。這種篩選方法避免了抗生素篩選對(duì)細(xì)胞的損傷并提高廣篩選的效率,然后通過Western-hlot實(shí)驗(yàn)證明KLF5-3xTag的表達(dá),如圖2所示,此外,可以通過3個(gè)融合標(biāo)簽經(jīng)多步驟的親和層析分離純化出與KLF5特異性相互作用的蛋白,從而為深入研究KLF5的生物學(xué)功能打下基礎(chǔ)。將獲得的P0Z-KLF5表達(dá)陽性細(xì)胞進(jìn)行流式細(xì)胞分析和克隆形成實(shí)驗(yàn),對(duì)KLF5-3xTag表達(dá)的293T的細(xì)胞周期和細(xì)胞增殖情況進(jìn)行了檢測(cè);結(jié)果顯示,KLF5-3xTag表達(dá)的293T細(xì)胞使處于細(xì)胞周期S期的細(xì)胞比例明顯增加(14.28%vs.18.82%),而S期增多是細(xì)胞處于旺盛分裂期的標(biāo)志。此外,克隆形成實(shí)驗(yàn)結(jié)果顯示,雖然形成的克降數(shù)目無明顯改變,但是KLF5-3xTag表達(dá)的細(xì)胞形成的克降直徑更大,說明KLF5-3xTag表達(dá)使單個(gè)細(xì)胞的增殖能力增強(qiáng)。通過CCK8分析檢測(cè)細(xì)胞生長(zhǎng)曲線,并沒有觀察到KLF5-3xTag表達(dá)對(duì)生長(zhǎng)產(chǎn)生明顯影響,可能是由于293T是永生化的作惡性轉(zhuǎn)化的細(xì)胞,與報(bào)道的惡性增殖的腫瘤細(xì)胞存在細(xì)胞背景及信號(hào)通路等差異[36-38],但KLF5確實(shí)對(duì)293T細(xì)胞的增殖有一定的促進(jìn)作用KLF5屬于半衰期較短的不穩(wěn)定蛋白,在體內(nèi)主要被多種E3泛素連接酶泛素化并通過蛋白酶體途徑降解,WWP1是最先被報(bào)道的可以降解KLF5蛋白的E3泛素連接酶[39]。報(bào)道顯示,WWP1能通過與KLF5的PY結(jié)構(gòu)相互作用從而泛素化并降解KLF5蛋白[40],之前報(bào)道在KLF5蛋白N端插入標(biāo)簽會(huì)影響WWP1對(duì)KLF5的降解,所以我們構(gòu)建的P0Z-KLF5質(zhì)粒所帶標(biāo)簽都位于KLF5蛋白的C端,并且通過實(shí)驗(yàn)證明標(biāo)簽不影響WWP1對(duì)KLF5蛋白的降解(圖5)。為了驗(yàn)證KLF5所帶標(biāo)簽的免疫反應(yīng)性,用KLF5-3xTag蛋白所帶3種不同的標(biāo)簽分別進(jìn)行免疫沉淀實(shí)驗(yàn),驗(yàn)證了KLF5所帶的標(biāo)簽均可以成功免疫沉淀KLF5蛋白,并且在免疫沉淀的復(fù)合物中我們還成功檢測(cè)到了已知與KLF5相互作用的蛋白WWP1(圖6),證明了P0Z-KLF5質(zhì)粒所帶標(biāo)簽均具有很好的免疫反應(yīng)性,可以作為研究KLF5相互作用蛋白進(jìn)而深入研究KLF5功能的有力工具。通過一系列的實(shí)驗(yàn),證明了pOZ-KLF5質(zhì)粒C末端所帶的3個(gè)標(biāo)簽?zāi)軌蚍謩e發(fā)揮效應(yīng),成功地免疫沉淀KLF5蛋內(nèi),并可以檢測(cè)到已知的KLF5相互作用蛋白。生物學(xué)功能的檢測(cè)也發(fā)現(xiàn)KLF5-3xTag的功能與之前報(bào)道一致,且C末端所帶標(biāo)簽對(duì)KLF5的降解并無影響:因此,該質(zhì)粒的構(gòu)建能夠更加方便在特定的病理生理?xiàng)l件下分析KLF5的相互作用蛋白,為深入研究KLF5的生物功能奠定基礎(chǔ)。參考文獻(xiàn)(References):[1]DONG J T, CHEN C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases [J]. Cellular and Molecular Life Sciences, 2009,66(16): 2691-2706.[2]TETREAULT M P, YANG Y, KATZ J P. Knippel-like factors in cancer[J]. Nature Reviews Cancer, 2013, 13(10): 701-713.[3]SHINODA Y, OGATA N, HIGASHIKAWA A, et al. Kruppel-like factor 5 causes cartilage degradation through transactiva— tion of matrix metalloproteinase 9[J]. The Journal of Biological Chemistry,2008,283(36):24682-24689.[4]ZHANG Z, TENG C T. Phosphorylation of Kruppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function [J]. Nucleic Acids Research, 2003, 31(8):2196-2208.[5]GUO P, ZHAO K W, DONG X Y, et ad. Acetylation of KLF5 alters the assembly of pl5 transcription factors in transforming growth factor—beta-mediated induction in epithelial cells [J].The Journalof Biological Chemistry.2009,284 (27):18184-18193.[6]NAKATANI Y, OGRYZKO V. Immunoaffinity purification of mammalian protein complexes[J]. Methods in Enzymology,2003, 370:430-444.[7]BATEMAN N W, TAN D, PESTELL R G, et d. Intestinal tumor progression is associated with altered function of KLF5[J]. The Journal of Biological Chemistry. 2004,279(13):12093- 12101.[8]CHEN C, BENJAMIN M S, SUN X, et al. KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Prl human bladder cancer cell line[J]. International Journal of Cancer, 2006, 118(6): 1346-1355.[9]CHEN C, SUN X, GUO P, et d. Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells [J]. The Journal of Biological Chemistry,2005,280(50): 41553-41561.[10]CHEN C, SUN X, RAN Q, et al. Ubiquitin -proteasome degradation of KLF5 transcription factor in cancer and un-transformed epithelial cells[J]. Oncogene, 2005, 24(20): 3319-3327.[11]DIAKIW S M, D'ANDREA R J, BROWN A L. The double life of KLF5: Opposing roles in regulation of gene-expression, cel- [28] lular function, and transformation[J]. IUBMB Life, 2013, 65(12): 999-1011.[12]LEE S J, NO Y R, DANG D T, et al. Regulation of hypoxia-inducible factor 1 alpha (HIF-1 alpha) by lysophosphatidic acid is dependent on interplay between p53 and Kruppel-like factor 5[J]. The Journal of Biological Chemistry, 2013, 288(35): 25244-25253.[13]YANG Y, TETREAULT M P, YERMOLINA Y A, et d. Kruppel—like factor 5 controls keratinocyte migration via the inte—grin-linked kinase[J]. The Journal of Biological Chemistry, 2008,283(27): 18812-18820.[14] MCCONNELL B B, KIM S S, YU K, et al. Kruppel-like factor 5 is important for maintenance of crypt architecture and barner function in mouse intestine[J]. Gastroenterology, 2011, 141(4): 1302-1313, 1313 el301-1306.[15]CHEN C,ZHOU Y, ZHOU Z,et al. Regulation of KLF5 involves the Spl transcription factor in human epithelial cells[J].Gene, 2004, 330: 133-142.[16]YANG Y, NAKAGAWA H, TETREAULT M P, et al. Loss of transcription factor KLF5 in the context of p53 ablation drives invasive progression of human squamous cell cancer[J]. Cancer Research, 2011, 71(20): 6475-6484.[17]GUO P, DONG X Y, ZHANG X, et al. Pro-proliferative factor KLF5 becomes anti -proliferative in epithelial homeostasis up?on signaling—mediated modification[J]. The Journal of Biologi?cal Chemistry, 2009,284(10): 6071-6078.[l8] GUO P, DONG X Y, ZHAO K, et al. Opposing effects of KLF5 on the transcription of MYC in epithelial proliferation in the context of transforming growth factor beta[J]. The Journal of Biological Chemistry, 2009,284(41): 28243-28252.[19] NANDAN M O, MCCONNELL B B, GHALEB A M, et al. Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis[J]. Gastroen-terology, 2008, 134(1): 120-130. [20]ZHI X, ZHAO D, ZHOU Z, et al. YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor [J]. American Journal of Pathology,2012,180(6): 2452-2461.[21]CHEN C, BHALALA H V, QIAO H, et al. A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer[J]. Oncogene, 2002, 21(43): 6567-6572.[22]TONG D, CZERWENKA K, HEINZE G, et al. Expression of KLF5 is a prognostic factor for disease-free survival and over all survival in patients with breast cancer [J]. Clinical Cancer Research,2006, 12(8): 2442-2448.[23]ZHAO K W,SIKNWAL D, DONG X, et al. Oestrogen causes degradation of KLF5 by inducing the E3 ubiquitin ligase EFP in ER—positive breast cancer cells[J]. Biochemical Journal, 2011, [40] 437(2):323-333.[24]CHEN C, BHALALA H V,VESSELLA R L,et cd. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate canceifj]. Prostate, 2003, 55(2): 81—88.[25]KWAK M K, LEE H J, HUR K, et al. Expression of Kruppel- like factor 5 in human gastric carcinomas[J]. Journal of Cancer Research and Clinical Oncology, 2008, 134(2): 163-167.[26]DU J X,HAGOS E G, NANDAN M 0,et al. The E3 ubiquitin ligase SMAD ubiquitination regulatory factor 2 negatively regulates Kruppel-like factor 5 protein [J]. The Journal of Biolog?ical Chemistry, 2011, 286(46): 40354-40364.[27]ZHAO D, ZHI X, ZHOU Z, et al. TAZ antagonizes the WWP1—mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis[J]. Carcinogenesis, 2012, 33(1): 59-67.[28]ZHAO D, ZHENG H Q, ZHOU Z, et al. The Fhw7 tumor suppressor targets KLF5 for ubiquitin -mediated degradation and suppresses breast cell proliferation[J]. Cancer Research, 2010, 70(11): 4728-4738.[29]LIU N, LI H, LI S, et al. The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifsfj]. The Journal of Biological Chemistry, 2010, 285(24): 18858-18867.[30]LIU Y, WEN J K, DONG L H, et d. Kruppel-like factor (KLF) 5 mediates oyclin D1 expression and cell proliferation via interaction with c-Jun in Ang II-induced VSMCs [J]. Acta Pharmacologica Sinica, 2010,31(1): 10-18.[31]ZHANG X H, ZHENG B, HAN M, et al. Synthetic retinoid Am80 inhibits interaction of KLF5 with RAR alpha through inducing KLF5 dephosphoryladon mediated by the PT3K/Akt signaling in vascular smooth muscle cells[J]. FEBS Letters, 2009, 583(8): 1231-1236.[32]ZHENG B, HAN M, BEMIER M, et al. Ki-uppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha—mediatd, phosphatidylinositol 3 -kinase and ERK signaling in vascular smooth muscle cells [J]. The Journal of Biological Chemistry, 2009,284(34): 22773-22785.[33]MENG F, HAN M, ZHENG B, et al. All —transretinoie acid increases KLF4 acetylation by inducing HDAC2 phosphoryia- tion and its dissociation from KLF4 in vascular smooth mus—clecells[J]. Biochemical and Biophysical Research Communications, 2009, 387(1): 13-18.[34]CHEN C, ZHOU Z, GUO P, et al. Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent path way [J]. FEBS Letters, 2007, 581(6): 1124-1130.[35]CHEN C. Regulation of Krupple-like factor 5 by targeted protein degradation[J]. Methods in Molecular Biology, 2010, 647: 267-277.[36]GE F, CHEN W, YANG R, et d. WWOX suppresses KLF5 expression and breast cancer cell growth [J]. Chinese Journal of Cancer Research, 2014, 26(5): 511-516.[37]LI Q, DONG Z, ZHOU F, et al. Kruppel—Like Factor 5 promotes lung tumorigenesis through upregulation of Sox4[J]. Cel?lular Physiology and Biochemistry, 2014,33(1): 1-10.[38]DONG Z, YANG L, LAI D. KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin ex- pression[J]. Cell Proliferation, 2013, 46(4): 425-435. [39]CONKRIGHT M D, WANI M A, LINGREL J B. Lung Kruppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 u biquitin ligase [J]. The Journal of Biological Chemistry, 2001, 276(31): 29299-29306.[40]ZHI X,CHEN C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases[J]. Cell and Molecular Life Science, 2012, 69(9): 1425-1434.