国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

近紅外熒光探針及其在免疫分析中的應(yīng)用

2015-04-06 07:56:03謝雪欽楊向瑩康西西王小晉許美玲
關(guān)鍵詞:層析染料探針

謝雪欽, 楊向瑩, 高 靜, 梁 爽, 康西西,張 巖, 王小晉, 許美玲, 王 靜, 張 捷*

(1.廈門(mén)市產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)院,福建 廈門(mén)361004;2.北京出入境檢驗(yàn)檢疫局,北京100026;3.長(zhǎng)春理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,吉林 長(zhǎng)春130123;4.河北省食品檢驗(yàn)研究院,河北 石家莊050091;5.淮安出入境檢驗(yàn)檢疫局,江蘇 淮安223001;6.臨沂出入境檢驗(yàn)檢疫局,山東 臨沂276034;7.威海出入境檢驗(yàn)檢疫局,山東 威海264205)

近紅外熒光探針及其在免疫分析中的應(yīng)用

謝雪欽1, 楊向瑩2, 高 靜1, 梁 爽3, 康西西2,張 巖4, 王小晉5, 許美玲6, 王 靜7, 張 捷*2

(1.廈門(mén)市產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)院,福建 廈門(mén)361004;2.北京出入境檢驗(yàn)檢疫局,北京100026;3.長(zhǎng)春理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,吉林 長(zhǎng)春130123;4.河北省食品檢驗(yàn)研究院,河北 石家莊050091;5.淮安出入境檢驗(yàn)檢疫局,江蘇 淮安223001;6.臨沂出入境檢驗(yàn)檢疫局,山東 臨沂276034;7.威海出入境檢驗(yàn)檢疫局,山東 威海264205)

綜合歸納了有機(jī)熒光分子、量子點(diǎn)、稀土配合物及單壁碳納米管共4類重要近紅外熒光標(biāo)記探針的性質(zhì)、特征,及其在光學(xué)性能改進(jìn)、信號(hào)增強(qiáng)等方面的最新發(fā)展,分析評(píng)述了其在環(huán)境污染物及臨床診斷標(biāo)志分子免疫分析中的應(yīng)用,展望了基于該類探針的免疫層析法在食源性致病菌快速檢測(cè)中的應(yīng)用潛能。相對(duì)于發(fā)射光光譜位于紫外及可見(jiàn)光區(qū)的信號(hào)分子,近紅外熒光探針因其具有信噪比高、組織穿透力強(qiáng)、對(duì)基體損傷小等突出的優(yōu)勢(shì),而在生物分析領(lǐng)域備受矚目。隨著化學(xué)合成技術(shù)的不斷發(fā)展及新型熒光材料的持續(xù)發(fā)掘,近年來(lái)近紅外熒光探針日益豐富,并在無(wú)損分析、免疫檢測(cè)和生物造影等領(lǐng)域被廣泛應(yīng)用。

近紅外熒光探針;有機(jī)熒光分子;量子點(diǎn);稀土配合物;單壁碳納米管;環(huán)境污染物;臨床診斷標(biāo)志分子;免疫分析

由于膠體金、酶等基于顏色信號(hào)的標(biāo)記探針檢測(cè)靈敏度有限,而電化學(xué)信號(hào)生成型探針則價(jià)格昂貴、操作繁瑣,且難以真正實(shí)現(xiàn)一步法檢測(cè),熒光探針已成為當(dāng)前最流行的信號(hào)分子,在生物分析各領(lǐng)域得到廣泛應(yīng)用[1]。相對(duì)于熒光光譜位于紫外及可見(jiàn)光區(qū)的標(biāo)記探針,發(fā)射光譜位于近紅外區(qū)(波長(zhǎng)為650~1 100 nm)的近紅外熒光探針(Near Infrared Fluorescent Probes,NIFPs),因其高信噪比及由此保障的理想檢測(cè)靈敏度[2]而在分析領(lǐng)域備受矚目。首先,生物基體極少在近紅外光譜區(qū)自發(fā)熒光,使得基于NIFPs標(biāo)記的分析檢測(cè)免受背景熒光干擾;其次,因散射光強(qiáng)度與波長(zhǎng)的四次方成反比,發(fā)射光位于長(zhǎng)波區(qū)的NIFPs受其干擾小。對(duì)生物組織穿透力強(qiáng)且損傷小是NIFPs的又一大優(yōu)勢(shì),使其在無(wú)損檢測(cè)[3]及生物造影[4]諸方面得到廣泛應(yīng)用。

1 近紅外熒光探針

近年來(lái),隨著探針合成研究的不斷推進(jìn)及新型熒光材料的持續(xù)發(fā)掘,NIFPs種類日益豐富,根據(jù)其性質(zhì)可分為有機(jī)染料、量子點(diǎn)、稀土配合物及單壁碳納米管4大類[5]。

1.1 近紅外熒光染料

盡管形式多樣的新型NIFPs被不斷合成,傳統(tǒng)有機(jī)熒光染料仍是當(dāng)前近紅外熒光探針的主流。諸如五甲川等菁類、羅丹明等呫噸類、耐爾藍(lán)等噻嗪類有機(jī)染料,它們被廣泛開(kāi)發(fā)為近紅外熒光探針,其中以菁染料因良好的生物相容性而最受青睞[6]。近期,Zhao和Carreira[7]還合成了一類具有優(yōu)越光物理性狀的新型近紅外熒光染料氮雜氟硼二吡咯(aza-BODIPY),此后Lee等[8]使用一種被稱為DOFLA (diversity-oriented fluorescence library approach)的方法對(duì)其進(jìn)行進(jìn)一步的改進(jìn)和衍生,獲得了40余種物化性狀優(yōu)良的NIFPs,其中AZA396較BodipyFl的光穩(wěn)定性提高了60倍。

除了不斷致力于新型近紅外有機(jī)探針的合成,研究者還關(guān)注傳統(tǒng)近紅外熒光染料水溶性、量子產(chǎn)率、化學(xué)及光穩(wěn)定性、生物相容性等關(guān)鍵性狀的改進(jìn),使其更好地應(yīng)用于生物分析[9]。如染料或染料結(jié)合物的聚集會(huì)導(dǎo)致熒光嚴(yán)重猝滅[10],許多研究圍繞改良染料水溶性而展開(kāi)。自1993年首次被Waggoner等[11]發(fā)現(xiàn)并報(bào)道,在芳香環(huán)上連接磺酸鹽基團(tuán)可有效增加NIFPs水溶性,此結(jié)論亦被Cheng等[12]證實(shí)。當(dāng)前Amersham生物科學(xué)公司出品的知名商品化近紅外有機(jī)分子Cy5.5和Cy7均為磺酸鹽吲哚菁染料結(jié)構(gòu)。此外有研究表明,理想的水溶性也可通過(guò)將疏水染料包被于脂質(zhì)體表面親水磷脂單層而實(shí)現(xiàn)[13]。為了有效提高染料的熒光強(qiáng)度以測(cè)定痕量靶標(biāo)分析物,研究者還不斷發(fā)掘高效信號(hào)擴(kuò)增策略。如將大量熒光染料裹入納米顆粒,以形成更高熒光強(qiáng)度的近紅外納米微粒探針,這已被廣泛證實(shí)可有效提高檢測(cè)信號(hào)強(qiáng)度,同時(shí)改進(jìn)標(biāo)記分子的化學(xué)和光穩(wěn)定性[13-14]。另外,基于金屬納米結(jié)構(gòu)的表面等離子體共振,亦可顯著提高近紅外熒光染料的熒光強(qiáng)度。如研究表明,通過(guò)使用銀島膜(silverisland films)[15]或金納米外殼[16]等粗糙金屬表面,可分別提高吲哚菁綠的信號(hào)強(qiáng)度達(dá)20和50倍。此外,以多聚體材料包被近紅外熒光染料,形成納米微球,被證實(shí)可提高染料的生物相容性。如Kim等[17]通過(guò)將Cy5.5包裹于一種親水性多聚體中,從而有效改善染料與細(xì)胞的相容性,此新型NIFP可用于實(shí)時(shí)監(jiān)控細(xì)胞凋亡早期細(xì)胞結(jié)構(gòu)的影像學(xué)變化。

1.2 近紅外熒光量子點(diǎn)

量子點(diǎn)(quantum dots,QDs)又稱半導(dǎo)體納米微晶粒,作為一類新興的熒光探針,因其卓越的光學(xué)特性近年來(lái)在生物分析及醫(yī)療診斷等領(lǐng)域被廣泛應(yīng)用[18]。該類探針隨粒徑大小和組成變化可調(diào)的熒光發(fā)射光譜,保障了其作為近紅外標(biāo)記探針的可行性。相對(duì)于傳統(tǒng)有機(jī)熒光染料,QDs具有量子產(chǎn)率高、抗光漂白能力強(qiáng)、發(fā)射光譜集中且可調(diào)等無(wú)以比擬的優(yōu)越性。上述優(yōu)勢(shì)加上近紅外區(qū)熒光的低背景干擾、高穿透力等特性,使得近紅外熒光QDs(NIF-QDs)當(dāng)前在分析領(lǐng)域,尤其是體內(nèi)成像及診療應(yīng)用方面大放異彩[19]。

然而,QDs對(duì)活體系統(tǒng)的潛在毒性嚴(yán)重限制了該類探針,尤其是主要用于體內(nèi)生物影像分析的NIF-QDs的應(yīng)用。研究表明,在QDs表面覆以一層具有良好生物相容性的外殼,可有效防止毒性金屬離子泄露,從而一定程度降低QDs的潛在毒性[20]。以無(wú)毒材料替代常規(guī)半導(dǎo)體元素,用于近紅外熒光量子點(diǎn)的制造,則為解決QDs的毒性問(wèn)題提供了一套更徹底的方案。如Li等[21]即用CulnS2/ZnS核/殼結(jié)構(gòu)合成了一種具有理想熒光強(qiáng)度、發(fā)射光譜在700~900 nm間、可調(diào)的無(wú)Cd型NIF-QDs,用于體內(nèi)醫(yī)學(xué)造影。

1.3 近紅外熒光稀土配合物

發(fā)射光譜位于近紅外區(qū)的含Nd3+、Er3+、Yb3+及Tm3+等[22-25]稀土元素(鑭系元素)的配合物近年來(lái)被廣泛開(kāi)發(fā)。相對(duì)于有機(jī)染料和半導(dǎo)體納米晶粒等NIFPs,近紅外熒光稀土配合物具有諸如斯托克位移大、熒光壽命長(zhǎng)、不發(fā)生光漂白等獨(dú)特優(yōu)勢(shì)[26]。

游離型鑭系元素的使用常受阻于因消光系數(shù)低而需要一個(gè)光子轉(zhuǎn)換器來(lái)處理-OH、-NH及-CH等引發(fā)的振動(dòng)泛頻光譜[27]。為了攻克上述技術(shù)瓶頸,許多研究者致力于NIF鑭系元素的進(jìn)一步優(yōu)化。如Foucault-Collet等[28]開(kāi)發(fā)了一種獨(dú)特的NIF稀土金屬-有機(jī)物框架結(jié)構(gòu) (metal-organic frameworks, MOFs),將大量的NIF發(fā)射型Yb3+離子與致敏劑phenylenevinylene dicarboxylate(PVDC)包裹于一個(gè)小體積內(nèi)。該結(jié)構(gòu)不僅為鑭系元素的敏化和保護(hù)提供了一條新途徑,同時(shí)也因其單位體積內(nèi)攜帶探針數(shù)的增加而大大提高了檢測(cè)靈敏度。此外,將稀土元素?fù)饺爰す獠牧蟍29]或納米晶體[30]中亦被證實(shí)能有效改進(jìn)其光學(xué)性能。

1.4 單壁碳納米管

作為一種新型碳材料,單壁碳納米管 (singlewalled carbon nanotubes,SWCNTs)因具有特殊的納米結(jié)構(gòu)和優(yōu)異的光學(xué)、力學(xué)、電學(xué)和磁學(xué)性能而在生物醫(yī)學(xué)領(lǐng)域顯示巨大的應(yīng)用潛力,引起越來(lái)越多研究者的關(guān)注[31-32]。SWCNTs可光致發(fā)光,其發(fā)射光譜位于1 000 nm以外,是一種理想的近紅外熒光材料。其相對(duì)于其他探針?lè)肿泳哂腥缦聝?yōu)勢(shì):首先,因SWCNTs在1 000~1 400 nm的近紅外區(qū)有強(qiáng)發(fā)射光且斯托克位移大,其相對(duì)于其他熒光探針受自發(fā)熒光的干擾顯著降低[33];其次,SWCNTs極短的熒光壽命(t<2 ns)可有效消除非輻射失活,從而使得該類熒光探針具有高熒光量子產(chǎn)率;此外,SWCNTs發(fā)射的熒光還對(duì)光漂白高度耐受,穩(wěn)定性好[34]。

鑒于其量子產(chǎn)率高、背景干擾小、光穩(wěn)定性好等特性,SWCNTs近年來(lái)作為理想的NIFPs已被廣泛用于體內(nèi)[35]、體外[36]生物造影,及具重要診療意義標(biāo)志分子的免疫檢測(cè)[37]。

2 NIFPs在免疫分析中的應(yīng)用

低背景干擾、強(qiáng)穿透力等特性使NIFPs成為生物分析的理想示蹤材料,在諸多應(yīng)用中基于NIFPs的近紅外熒光免疫測(cè)定 (near infrared fluorescence immunoassays,NIFIAs)日益受到關(guān)注。自Boyer等[38]1992年首次將NIFIAs用于人免疫球蛋白的定量分析以來(lái),該技術(shù)目前在環(huán)境監(jiān)測(cè)、醫(yī)療診斷等領(lǐng)域被廣泛用于多種靶標(biāo)物的定性或定量免疫檢測(cè)。

2.1 環(huán)境污染物分析

有機(jī)溴除草劑除草啶和擬除蟲(chóng)菊酯類殺蟲(chóng)劑氰戊菊酯被廣泛用于害蟲(chóng)及雜草防治,但其殘留時(shí)間長(zhǎng)且遷移力強(qiáng),嚴(yán)重污染土壤和地下水系統(tǒng)[39-40]。上述兩種農(nóng)藥環(huán)境殘留的檢測(cè)多依賴儀器法,需要繁雜的提取程序、昂貴的儀器及專業(yè)分析人員,難以實(shí)現(xiàn)現(xiàn)場(chǎng)快捷檢測(cè)。為了克服上述缺陷,Wengatz等[41]開(kāi)發(fā)了一種簡(jiǎn)便的基于近紅外熒光菁染料標(biāo)記的免疫測(cè)定法,用于其定量分析。該法的靈敏度與ELISA相當(dāng),為農(nóng)藥殘留的環(huán)境監(jiān)測(cè)提供了一個(gè)理想的分析工具。

2.2 醫(yī)療診斷標(biāo)志分子檢測(cè)

與NIFIAs在環(huán)境污染物監(jiān)測(cè)的少數(shù)報(bào)道相比,該法更多地被應(yīng)用于診療學(xué)上重要標(biāo)志分子的免疫檢測(cè)。到目前為止,NIFPs已被成功開(kāi)發(fā)用于免疫微量滴定板[38]、光纖免疫傳感器[42]、毛細(xì)管印跡[43-44]、毛細(xì)管電泳免疫分析[45]及免疫層析試紙條[46]等多種不同免疫分析模式,以檢測(cè)醫(yī)療診斷關(guān)鍵蛋白質(zhì)。

在20世紀(jì)90年代初期,NIFPs首次被應(yīng)用于免疫檢測(cè),在包被抗原的聚乙烯微孔滴定板中通過(guò)加入過(guò)量的經(jīng)NIR染料標(biāo)記的抗體及此后的熒光檢測(cè),實(shí)現(xiàn)了人免疫球蛋白的定量測(cè)定[38]。而后Daneshvar等[47]設(shè)計(jì)并開(kāi)發(fā)了一種熒光光纖免疫傳感器(fluorescent fiber-optic immunosenseor,F(xiàn)FOI),用于人源IgG的近紅外標(biāo)記檢測(cè)。在此法中抗體被固定于FFOI的感應(yīng)端,用于痕量特異性抗原的識(shí)別和捕獲,其免疫模式為三明治型,可在10~15 min內(nèi)完成,檢測(cè)限達(dá)10 ng/mL。在后續(xù)研究中,以一種水溶性更好的NIR染料替代上述研究中所用的Dye1,F(xiàn)FOI體系被進(jìn)一步證實(shí)可高效定量檢測(cè)人IgG并有效增敏1個(gè)數(shù)量級(jí),同時(shí)FFOI亦可用于嗜肺軍團(tuán)菌血清組1的檢測(cè)[42]。FFOI系統(tǒng)的檢測(cè)靈敏度可與ELISA技術(shù)相媲美,且具有操作時(shí)間短、檢測(cè)成本低及適用于現(xiàn)場(chǎng)檢測(cè)等ELISA無(wú)以比擬的優(yōu)勢(shì)。此外,Silva等[48]開(kāi)發(fā)了基于近紅外染料Cy5的光學(xué)免疫傳感器,用于綿羊Brucella sp.疾病感染的測(cè)定,該體系可實(shí)現(xiàn)患病綿羊血清中Brucella sp.抗體(0.005~0.11 mg/mL)的定量分析。根據(jù)抗原抗體復(fù)合物與游離的抗原、抗體在電泳行為上的差異,Cy5還被用于人唾液中分泌的IgA的毛細(xì)管電泳免疫檢測(cè)[45]。

1997年,Williams等[49]首次嘗試在硝酸纖維素膜上進(jìn)行NIFIAs,開(kāi)啟了NIFPs用于固相免疫測(cè)定的先河。此舉有效簡(jiǎn)化了檢測(cè)程序,但其實(shí)際應(yīng)用仍受阻于膜基質(zhì)發(fā)射的散射光干擾大、膜致非特異性結(jié)合、難以與微量滴定板免疫測(cè)定法相契合等缺陷。在后續(xù)研究中,通過(guò)使用水溶性更好、因帶有負(fù)電荷磺酸鹽基團(tuán)而有效減少同樣帶負(fù)電荷膜基質(zhì)對(duì)染料-抗體復(fù)合物的非特異性結(jié)合的七甲川花菁染料NN382,上述困擾得到了有效解決,促進(jìn)了固相NIFIAs的發(fā)展。此后,Zhao等[43]開(kāi)發(fā)了一種稱為毛細(xì)管印跡的固相近紅外免疫熒光檢測(cè)技術(shù),可用于復(fù)雜生物流體基質(zhì)中多肽的免分離直接檢測(cè)。與商品化的雜交板相比,此法有效降低了印跡面積,提高靶標(biāo)分析物強(qiáng)啡肽的檢測(cè)靈敏度達(dá)1 000倍。

近年來(lái),有機(jī)熒光染料外的新型NIFPs亦被引入NIFIAs系統(tǒng)。如Deng等[50]通過(guò)將低廉的近紅外熒光染料亞甲藍(lán)包裹于疏水的硅膠外殼中,制備了一種新型核/殼結(jié)構(gòu)NIF納米顆粒,經(jīng)免疫凝集反應(yīng)測(cè)定全血樣本中的甲胎蛋白質(zhì)。該特殊結(jié)構(gòu)較常規(guī)的覆染料硅納米粒子呈現(xiàn)更高的熒光強(qiáng)度及更好的穩(wěn)定性,從而免受染料泄露及外源猝滅因子干擾。此外,基于雙重穩(wěn)定劑修飾的CdTe[51]、CdTe/CdS核(薄)/殼(厚)[52]和以巰基丙酸為穩(wěn)定劑的CdTe[53]及CdSeTe/CdS/ZnS[54]量子點(diǎn)的近紅外電致化學(xué)發(fā)光免疫傳感器也被開(kāi)發(fā),分別用于胎蛋白抗原、人IgG和癌胚抗原的檢測(cè)。上述體系利用近紅外熒光共振能量轉(zhuǎn)移系統(tǒng),通過(guò)測(cè)定近紅外量子點(diǎn)標(biāo)記蛋白質(zhì)與另一探針(如金顆粒等)標(biāo)記蛋白質(zhì)間因免疫反應(yīng)而產(chǎn)生的距離效應(yīng),根據(jù)引起的能量傳遞所致熒光強(qiáng)度變化,實(shí)現(xiàn)靶標(biāo)分析物的高敏定量檢測(cè)。除NIR-QDs外,新興的NIR熒光材料SWCNTs也被Iizumi等[37]用于IgG的免疫測(cè)定。通過(guò)檢測(cè)結(jié)合IgG的SWCNTs與連接蛋白質(zhì)G的免疫磁珠間的免疫共沉淀,該體系可測(cè)定濃度低至600 pmol/L的靶標(biāo)分析物。

盡管高度靈敏,但NIFPs在上述免疫測(cè)定中的應(yīng)用仍缺乏簡(jiǎn)便性,因此其用戶友好性有待進(jìn)一步改進(jìn)。為了克服此缺陷,Swanson和D’Andrea[46]開(kāi)發(fā)了一種基于近紅外熒光探針的定量免疫層析試紙條,用于白細(xì)胞介素-6和C-反應(yīng)蛋白質(zhì)的單重及多重同步檢測(cè)。NIFPs的高信噪比使得該試紙條的檢測(cè)限低至pg/mL級(jí),與ELISA相當(dāng)。綜上,近紅外標(biāo)記免疫層析試紙條,為即時(shí)檢驗(yàn)環(huán)境下生物標(biāo)記蛋白質(zhì)的評(píng)價(jià)提供了一個(gè)有力的工具。

3 展望

鑒于背景干擾小、組織穿透力強(qiáng)等突出的優(yōu)點(diǎn),近年來(lái)NIFPs引起越來(lái)越多的關(guān)注。盡管當(dāng)前體外及體內(nèi)生物造影仍是NIFPs的主要應(yīng)用領(lǐng)域[55-56],其在免疫分析中的應(yīng)用自Boyer等[38]于1992年首開(kāi)先河后多年來(lái)從未停止。隨著新型NIFPs的持續(xù)發(fā)掘及免疫分析技術(shù)的不斷發(fā)展,二者的結(jié)合應(yīng)用在多個(gè)分析領(lǐng)域日益流行。免疫層析試紙條因操作簡(jiǎn)單且可便攜而成為即時(shí)檢驗(yàn)的最有力免疫分析工具,NIFPs在層析試紙條中的應(yīng)用在不久的將來(lái)無(wú)疑能為現(xiàn)場(chǎng)、高敏型生物分析提供一個(gè)有價(jià)值的平臺(tái)。然而,據(jù)作者所知,當(dāng)前僅有一個(gè)使用近紅外熒光染料800CW進(jìn)行免疫層析試紙條標(biāo)記的報(bào)道[46]。

食源性病原微生物是當(dāng)前全世界范圍內(nèi)食品中毒事件的最主要威脅因子之一。然而,傳統(tǒng)的基于微生物培養(yǎng)的檢測(cè)方法費(fèi)時(shí)費(fèi)力,無(wú)法提供及時(shí)的數(shù)據(jù)以有效降低食源性疾病的發(fā)生率。因此,當(dāng)前無(wú)論是從食品企業(yè)控制產(chǎn)品質(zhì)量,或是政府有效監(jiān)管食品安全,從而保障公眾健康的角度,均亟需一種更快速、獨(dú)立的食源性致病微生物檢測(cè)方法。盡管當(dāng)前基于膠體金的層析試紙仍是病原微生物現(xiàn)場(chǎng)快速檢測(cè)的金標(biāo)準(zhǔn),但該標(biāo)記技術(shù)仍受限于其較低的靈敏度及無(wú)法精確定量等缺陷。

綜合考慮上述因素,作者所在團(tuán)隊(duì)正致力于靶向于沙門(mén)氏菌、副溶血性弧菌及單增李斯特菌等重要食源性致病菌檢測(cè)的近紅外熒光染料標(biāo)記免疫層析試紙條的開(kāi)發(fā)。高敏型近紅外標(biāo)記探針與便攜、簡(jiǎn)便的免疫層析試紙條的結(jié)合,將為食源性致病菌的靈敏、快速檢測(cè)提供一個(gè)全新的平臺(tái)。

[1]Pyo D J,Yoo J S.New trends in fluorescence immunochromatography[J].Journal of Immunoassay&Immunochemistry,2012,33(2):203-222.

[2]Heise H M.Application of near-infrared spectroscopy in medical sciences[M].Siesler H W,Ozaki Y,Kawata S,et al.Near-Infrared Spectroscopy:Principles,Instruments,Applications.Leipzig:WILEY-VCH Verlag GmbH,2002:289-333.

[3]Alander J T,Bochko V,Martinkauppi B,et al.A review of optical nondestructive visual and near-infrared methods for food quality and safety[J].International Journal of Spectroscopy,2013,20:1-36.

[4]Guo Z Q,Park S,Yoon J Y,et al.Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J].Chemical Society Reviews,2014,43(1):16-29.

[5]Amiot C L,Xu S P,Liang S,et al.Near-infrared fluorescent materials for sensing of biological targets[J].Sensors,2008,8(5):3082-3105.

[6]Stoyanov S.Probes:Dyes fluorescing in the NIR region[M].Raghavachari R.Near-Infrared Applications in Biotechnology.Boca Raton:CRC Press,2000:35-93.

[7]Zhao W L,Carreira E M.Conformationally restricted aza-BODIPY:Highly fluorescent,stable near-infrared absorbing dyes[J]. Chemistry-A European Journal,2006,12(27):7254-7263.

[8]Lee S C,Zhai D T,Mukherjee P,et al.The Development of novel near-infrared(NIR)tetraarylazadipyrromethene fluorescent dyes[J].Materials,2013,6(5):1779-1788.

[9]傅妮娜,王紅,張華山.近紅外熒光探針及其在生物分析中的應(yīng)用進(jìn)展[J].分析科學(xué)學(xué)報(bào),2008,24(2):233-239.

FU Nina,WANG Hong,ZHANG Huashan.Progress in near-infrared fluorescent probe and its bioanalytical application[J]. Journal of Analytical Science,2008,24(2):233-239.(in Chinese)

[10]Gruber H J,Hahn C D,Kada G,et al.Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to proteins and noncovalent binding to avidin[J].Bioconjugate Chemistry,2000,11(5):696-704.

[11]Waggoner A S,Ernst L A,Mujumdar R B.Method for labeling and detecting materials employing arylsulfonate cyanate dyes:US Patent 5268486[P].1993-01-01.

[12]Cheng Z,Wu Z,Xiong Z,et al.Near-Infrared fluorescent RGD peptides for optical imaging of integrin avb3 expression in living mice[J].Bioconjugate Chemistry,2005,16(6):1433-1441.

[13]Chen J,Corbin I R,Li H,et al.Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo[J].Journal of the American Chemical Society,2007,129(18):5798-5799.

[14]Christian N A,Milone M C,Ranka S S,et al.Tat-Functionalized Near-Infrared emissive polymersomes for dendritic cell labeling [J].Bioconjugate Chemistry,2007,18(1):31-40.

[15]Malicka J,Gryczynski I,Geddes C D,et al.Metal-enhanced emission from indocyanine green:a new approach to in vivo imaging [J].Journal of Biomedical Optics,2003,8(3):472-478.

[16]Tam F,Goodrich G P,Johnson B R,et al.Plasmonic enhancement of molecular fluorescence[J].Nano Letters,2007,7(2):496-501.

[17]Kim K,Lee M,Park H,et al.Cell-Permeable and biocompatible polymeric nanoparticles for apoptosis imaging[J].Journal of the American Chemical Society,2006,128(11):3490-3491.

[18]Kairdolf B A,Smith A M,Stokes T H,et al.Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry,2013,6(1):143-162.

[19]van Veggel F C J M.Near-Infrared quantum dots and their delicate synthesis,challenging characterization,and exciting potential applications[J].Chemistry of Materials,2014,26(1):111-122.

[20]Ma Q,Su X G.Near-Infrared quantum dots:synthesis,functionalization and analytical applications[J].Analyst,2010,135(8):1867-1877.

[21]Li L,Daou J,Texier I,et al.Highly luminescent CulnS2/ZnS core/shell nanocrystals:Cadmium-Free quantum dots for in vivo imaging[J].Chemistry of Materials,2009,21(12):2422-2429.

[22]Aita K,Temma T,Shimizu Y,et al.Synthesis of a new NIR fluorescent Nd complex labeling agent[J].Journal of Fluorescence,2010,20(1):225-234.

[23]Yu C,Zhang J,Wen L,et al.New transparent Er3+-doped oxyfluoride tellurite glass ceramic with improved near infrared and upconversion fluorescence properties[J].Materials Letters,2007,61(17):3644-3646.

[24]Korovin Y V,Rusakova N V,Popkov Y A,et al.Luminescence of ytterbium and neodymium in complexes with bis-macrocyclic ligands[J].Journal of Applied Spectroscopy,2002,69(6):841-844.

[25]Zhang J,Petoud S.Azulene-Moiety-Based ligand for the efficient sensitization of four near-infrared luminescent lanthanide cations:Nd3+,Er3+,Tm3+,and Yb3+[J].Chemistry,2008,14(4):1264-1272.

[26]Comby S,Bünzli J-C G.Chapter 235 Lanthanide near-infrared luminescence in moleclular probes and devices[M].Gschneidner K A,Bünzli J-C G,Pecharsky V K.Handbook on the physics and chemistry of rare earths.North Holland:[s.n.],2007:217-470.

[27]Eliseeva S V,Bünzli J-C G.Lanthanide luminescence for functional materials and bio-sciences[J].Chemical Society Reviews,2010,39(1):189-227.

[28]Foucault-Collet A,Gogick K A,White K A,et al.Lanthanide near infrared imaging in living cells with Yb3+nano metal organic frameworks[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(43):17199-17204.

[29]Duan Z C,Zhang J J,He D B,et al.Effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+codoped oxyfluoride silicate glasses[J].Materials Chemistry&Physics,2006,100(2-3):400-403.

[30]Wei Y,Lu F Q,Zhang X R,et al.Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanaocrystal reporter[J].Journal of Alloys&Compounds,2007,427:333-340.

[31]Ajayan P M,Zhou O Z.Application of carbon nanotubes[J].Topics in Applied Physics,2001,80:391-425.

[32]Endo M,Strano M S,Ajayan P M.Potential applications of carbon nanotubes[J].Topics in Applied Physics,2008,111:13-61.

[33]O’Connell M J,Bachilo S M,Huffman C B,et al.Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297(5581):593-596.

[34]Heller D A,Baik S,Eurell T E,et al.Single-walled carbon nanotube spectroscopy in live cells:towards long-term labels and optical sensors[J].Advanced Materials,2005,17(23):2793-2799.

[35]Tao H Q,Yang K,Ma Z,et al.In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J].Small,2012,8(2):281-290.

[36]Welsher K,Liu Z,Daranciang D,et al.Selective probing and imaging of cells with single walled carbon nanotubes as nearinfrared fluorescent molecules[J].Nano Letters,2008,8(2):586-590.

[37]Iizumi Y,Okazaki T,Ikehara Y,et al.Immunoassay with single-walled carbon nanotubes as near-infrared fluorescent labels[J]. Applied Material&Interfaces,2013,5(16):7665-7670.

[38]Boyer A E,Lipowska M,Zen J-M,et al.Evaluation of near infrared dyes as labels for immunoassays utilizing laser diodedetection:Development of near infrared dye immunoassay(NIRDIA)[J].Analytical Letters,1992,25(3):415-428.

[39]Zhu Y,Li Q X.Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields[J].Chemosphere,2002,49(6):669-674.

[40]Liess M,Schulz R.Linking insecticide contamination and population response in an agricultural stream [J].Environmental Toxicology and Chemistry,1999,18(9):1948-1955.

[41]Wengatz I,Szurdoki F,Swamy A R,et al.Immunoassays for pesticide monitoring[M].Lakowicz J R.Advances in fluorescence sensing technology II.Bellingham:Proc SPIE,SIPE-the international society of optical engineering,1995:408-416.

[42]Daneshvar M I,Peralta J M,Casay G A,et al.Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor[J].Journal of Immunological Methods,1999,226(1-2):119-128.

[43]Zhao X Y,Kottegoda S,Shippy S A.Solid-phase immunoassay detection of peptides from complex matrices without a separation [J].Analyst,2003,128(4):357-362.

[44]Zhao X Y,Shippy S A.Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection[J].Analytical Chemistry,2004,76(7):1871-1876.

[45]Liu C M,Tung K H,Chang T H,et al.Analysis of secretory immunoglobulin A in human saliva by laser-induced fluorescence capillary electrophoresis[J].Journal of Chromatography B-Analytical Technologies in the Biomedical&Life Sciences,2003,791(1-2):315-321.

[46]Swanson C,D’Andrea A.Lateral flow assay with near-infrared dye for multiplex detection[J].Clinical Chemistry,2013,59(4):641-648.

[47]Daneshvar M I,Casay G A,Patonay G,et al.Design and development of a fiber-optic immunosensor utilizing near-infrared fluorophores[J].Journal of Fluorescence,1996,6(2):69-74.

[48]Silva M,Cruz H ,Rossetti O,et al.Development of an optical immunosensor based on the fluorescence of Cyanine-5 for veterinarian diagnostics[J].Biotechnology Letters,2004,26(12):993-997.

[49]Williams R J,Peralta J M,Tsang V C W,et al.Near-infrared heptamethine cyanine dyes:A new tracer for solid phase immunoassays[J].Applied Spectroscopy,1997,51(6):836-843.

[50]Deng T,Li J S,Jiang J H,et al.Preparation of near-IR fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood[J].Advanced Functional Materials,2006,16(16):2147-2155.

[51]Liang G D,Liu S F,Zou G Z,et al.Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals[J].Analytical Chemistry,2012,84(24):10645-10649.

[52]Wang J,Han H,Jiang X,et al.Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticlegraphene nanosheet hybrids and silica nanospheres double-assisted signal amplification[J].Analytical Chemistry,2012,84(11):4893-4899.

[53]Liang G X,Pan H C,Li Y,et al.Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods[J].Biosensors and Bioelectronics,2009,24(12):3693-3697.

[54]Li L L,Chen Y,Lu Q,et al.Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using nearinfrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods[J].Scientific Reports,2013(3):15-29.

[55]Escobedo J O,Rusin O,Lim S,et al.NIR dyes for bioimaging applications[J].Current Opinion in Chemical Biology,2010,14(1):64.

[56]Li Y,Li Z,Wang X H,et al.In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates[J].Theranostics,2012,2(8):769-776.

Near Infrared Fluorescent Probes and Their Applications in Immunoassay

XIE Xueqin1, YANG Xiangying2, GAO Jing1, LIANG Shuang3, KANG Xixi2,ZHANG Yan4, WANG Xiaojin5, XU Meiling6, WANG Jing7, ZHANG Jie*2
(1.Xiamen Products Quality Supervision&Inspection Institute,Xiamen 361004,China;2.Beijing Enter-Exit Inspection and Quarantine Bureau,Beijing 100026,China;3.School of Chemical and Engineering,Changchun University of Science and Technology,Changchun 1300123,China;4.Hebei Food Inspection and Research Institute,Shijiazhuang 050091,China;5.Huaian Enter-Exit Inspection and Quarantine Bureau,Huaian 223001,China;6.Linyi Enter-Exit Inspection and Quarantine Bureau,Linyi 276034,China;7.Weihai Enter-Exit Inspection and Quarantine Bureau,Weihai 264205,China)

Owing to the distinguished superiority of lower background noises,deeper penetrating capacity and less destructiveness to biomatrix over UV and visible fluorophores,near-infraredfluorescent probes(NIFPs)have gaining more and more attentions for analytical applications to date. With continuous research efforts in chemical synthesis and exploration of novel fluorescent materials,the number of NIFPs applicable for biological systems has grown substantially and widely applied in fields such as non-destructive detection,immunoassay and bioimaging in recent years.In this review,the properties,characterization and recent progresses in improvements of optical properties and signal intensity of 4 types of vital NIFPs(i.e.organic fluorophores,quantum dots,rare earth compounds and single-walled carbon nanotubes)were summarized.The applications of such important NIFPs in immunological analysis of environmental contaminants and clinically important biomarkers were also elaborated.Moreover,the potential of NIFPs-based immunochromatography technique adaptable for rapid detection of foodborne pathogens was also forecasted.

near infrared fluorescent probes,organic fluorophores,quantum dots,rare earth compounds,single-walled carbon nanotubes,environmental contaminants,clinically diagnostic biomarkers,immunoassay

R 122.12;X 502;TS 207.5

A

1673—1689(2015)03—0225—07

2014-09-10

國(guó)家質(zhì)檢總局科技項(xiàng)目 (2013IK144);國(guó)家質(zhì)檢總局公益性行業(yè)科研專項(xiàng) (201410049);福建省自然科學(xué)基金項(xiàng)目(2014J01118)。

謝雪欽(1982—),女,福建莆田人,理學(xué)博士,工程師,主要從事食品微生物分子生物學(xué)及轉(zhuǎn)基因檢測(cè)研究。

E-mail:cherryxie36@163.com

*通信作者:張 捷(1965—),男,北京人,理學(xué)博士,高級(jí)工程師,主要從事食品檢測(cè)與食品安全評(píng)估研究。E-mail:zhangjie@bjciq.gov.cn

猜你喜歡
層析染料探針
新染料可提高電動(dòng)汽車安全性
中國(guó)染料作物栽培史
犬細(xì)小病毒量子點(diǎn)免疫層析試紙條的研制
染料、油和水
多通道Taqman-探針熒光定量PCR鑒定MRSA方法的建立
BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
新型含1,2,3-三氮唑的染料木素糖綴合物的合成
A族鏈球菌膠體金免疫層析試紙條的制備及應(yīng)用
透射電子顯微鏡中的掃描探針裝置
新型B族鏈球菌膠體金免疫層析試紙條的臨床應(yīng)用評(píng)價(jià)
商都县| 刚察县| 梧州市| 义马市| 韶关市| 辉县市| 垦利县| 九龙坡区| 阿拉善右旗| 海宁市| 精河县| 万年县| 达日县| 霍州市| 高青县| 丰城市| 梓潼县| 曲靖市| 嘉峪关市| 新竹市| 昌黎县| 绥棱县| 尤溪县| 霍林郭勒市| 霞浦县| 穆棱市| 东乡县| 荣成市| 容城县| 肃北| 九龙县| 宜阳县| 西和县| 含山县| 弥勒县| 富锦市| 大田县| 白城市| 黄骅市| 大方县| 万州区|