白 樺,李 祥,聶 晶,韓衛(wèi)東,孟元光
解放軍總醫(yī)院,北京 1008531婦產(chǎn)科;2基礎(chǔ)醫(yī)學(xué)所分子生物室
低劑量地西他濱增強(qiáng)T細(xì)胞對宮頸癌細(xì)胞殺傷活性研究
白 樺1,李 祥2,聶 晶2,韓衛(wèi)東2,孟元光1
解放軍總醫(yī)院,北京 1008531婦產(chǎn)科;2基礎(chǔ)醫(yī)學(xué)所分子生物室
目的研究低劑量地西他濱是否可增強(qiáng)T細(xì)胞對宮頸癌細(xì)胞殺傷活性,并探討其可能的作用機(jī)制。方法CCK-8檢測低劑量地西他濱對宮頸癌細(xì)胞增殖的影響,流式細(xì)胞儀檢測低劑量地西他濱處理后宮頸癌細(xì)胞凋亡及周期的變化;CCK-8檢測T細(xì)胞對低劑量地西他濱處理后宮頸癌細(xì)胞的殺傷作用,實(shí)時(shí)定量PCR法檢測地西他濱處理后宮頸癌細(xì)胞癌/睪丸抗原(cancer testis antigen,CTA)及FasL的mRNA表達(dá)的變化。結(jié)果10 nmol/L地西他濱對宮頸癌細(xì)胞增殖、凋亡沒有顯著影響,100 nmol/L地西他濱一定程度上抑制細(xì)胞增殖。10 nmol/L地西他濱雖不直接抑制細(xì)胞增長,但使宮頸癌細(xì)胞對T細(xì)胞的殺傷效應(yīng)更為敏感,以效靶比為10∶1時(shí)最顯著。10 nmol/L地西他濱處理后宮頸癌細(xì)胞BORIS、NY-ESO-1、MAGE-A1/ A3/A4等CTA及FasL的mRNA水平顯著上調(diào)(P<0.05)。結(jié)論低劑量地西他濱可抑制Hela及SiHa細(xì)胞的生長及存活,增強(qiáng)T細(xì)胞對Hela及SiHa細(xì)胞的殺傷能力,是一個(gè)潛在的免疫治療輔助藥物。
地西他濱;宮頸癌;癌睪丸抗原;免疫治療
地西他濱(decitabine,DAC)是一種2′-脫氧胞苷類似物,是特異的DNA甲基化轉(zhuǎn)移酶抑制劑[1],具有去甲基化的作用,能激活某些沉默基因表達(dá)[2]。研究表明,低劑量DAC具有長期的表觀修飾“記憶”效應(yīng),通過該效應(yīng)可直接抑制腫瘤細(xì)胞的生長[3]。DAC于2006年經(jīng)美國FDA批準(zhǔn)進(jìn)入臨床應(yīng)用,主要用于治療血液系統(tǒng)疾病骨髓增生異常綜合征[4]。研究結(jié)果顯示,DAC在實(shí)體瘤中有廣泛的應(yīng)用前景,如在肝癌、肺癌、結(jié)腸癌、卵巢癌中有化療增敏作用[5-8]。宮頸癌的發(fā)生、發(fā)展與多個(gè)基因啟動(dòng)子區(qū)異常甲基化所導(dǎo)致的基因沉默有關(guān)[9],包括許多調(diào)控免疫相關(guān)的基因。而DNA甲基化在調(diào)控免疫相關(guān)基因如癌/睪丸抗原(cancer/ testis antigen,CTA)基因的表達(dá)中起著重要作用[10],而CTA的表達(dá)有助于提高腫瘤細(xì)胞的免疫原性[11],增強(qiáng)T細(xì)胞對腫瘤細(xì)胞的識(shí)別殺傷能力,為特異性免疫治療提供可能。本實(shí)驗(yàn)通過研究低劑量地西他濱對宮頸癌細(xì)胞Hela及SiHa的凋亡、增殖及周期的影響,T細(xì)胞對地西他濱處理后Hela及SiHa細(xì)胞的殺傷作用以及Hela及SiHa細(xì)胞相關(guān)CTA表達(dá)的變化,探討地西他濱促進(jìn)T細(xì)胞殺傷Hela及SiHa細(xì)胞的作用機(jī)制,為地西他濱用于臨床宮頸癌的免疫治療提供實(shí)驗(yàn)依據(jù)。
1材料 人宮頸癌細(xì)胞株Hela及SiHa(本實(shí)驗(yàn)室保存);胎牛血清(Gibco)、1640培養(yǎng)液(Invitrogen)、MEM培養(yǎng)液(Invitrogen)、GT-T551培養(yǎng)液(Invitrogen);青鏈霉素(Gibco);CCK-8試劑盒(Dojindo);細(xì)胞凋亡檢測試劑盒(BD);細(xì)胞周期檢測試劑盒(BD);Trizol(Invitrogen);反轉(zhuǎn)錄試劑盒(TOYOBO);SYBR Green Master Mix (TOYOBO);地西他濱(中國西安楊森),淋巴細(xì)胞分離液(Ficoll),rIL-2、CD3(本實(shí)驗(yàn)室免疫室)。
2細(xì)胞培養(yǎng)及藥物處理 宮頸癌Hela及SiHa細(xì)胞分別使用含10%胎牛血清(fetal bovine serum,F(xiàn)BS)及1%的100 U/ml青鏈霉素的1640、MEM培養(yǎng)液,于37℃、5% CO2條件下培養(yǎng)。選取對數(shù)生長期的細(xì)胞,接種于6孔板中,待貼壁后,用濃度分別為0 nmol/L、10 nmol/L、100 nmol/L的地西他濱處理72 h。T細(xì)胞的培養(yǎng):取健康人外周血10 ml,用淋巴細(xì)胞分離液按常規(guī)方法分離外周血中單個(gè)核細(xì)胞,置于CD3抗體包被的培養(yǎng)瓶中,4 d后按0.1%加入rIL-2,隔天補(bǔ)加。
3CCK-8檢測Hela及SiHa細(xì)胞的增殖 按前述方法藥物處理72 h后,將細(xì)胞按照0.5×104/孔鋪于96孔板中,每組3個(gè)平行孔,每天進(jìn)行檢測,將培養(yǎng)液去除,每孔加入100 μl含10% CCK-8的無血清培養(yǎng)基,在37℃、5% CO2條件下培養(yǎng)1.5 h,在酶聯(lián)免疫檢測儀上450 nm下測各孔吸光度(optical density,OD)值。
4流式細(xì)胞儀檢測Hela及SiHa細(xì)胞的凋亡按Annexin V-PI凋亡試劑盒說明書操作。以適量無EDTA胰酶消化、分別收集地西他濱處理72 h后的Hela及SiHa細(xì)胞,磷酸鹽緩沖液(phosphate buffer solution,PBS)洗滌、重懸細(xì)胞,收集(1 ~ 5)× 105個(gè)細(xì)胞,2 000 r/min 5 min離心沉淀,加入500μl Binding buffer重懸細(xì)胞,向重懸液中加入5μl Annexin V-FITC染色,隨后加入5μl碘化乙錠(propidium iodide,PI)染色,室溫下避光孵育15 min,流式細(xì)胞儀檢測凋亡率。
5流式細(xì)胞技術(shù)(PI、FITC雙染法)檢測Hela及SiHa細(xì)胞周期 分別胰酶消化、收集地西他濱處理72 h后的Hela及SiHa細(xì)胞.2 000 r/min離心5 min,并用PBS洗滌細(xì)胞,之后加入預(yù)冷70%乙醇于4℃固定過夜,第2天離心收集細(xì)胞,以1 ml的PBS洗細(xì)胞1次,加入500μl PBS(含50μg/ml碘化乙錠(PI),100μg/ml RNaseA),4℃避光孵育30 min后離心棄上清,最后在流式管中以標(biāo)準(zhǔn)程序于BD FACS Calibur流式細(xì)胞儀上檢測。
6T細(xì)胞殺傷活性檢測 按前述方法藥物處理72 h后,將細(xì)胞按照0.5×104/孔鋪于96孔板中,每組取3個(gè)平行孔,貼壁后將T細(xì)胞分別按不同效靶比1∶1、10∶1、50∶1加入,共培養(yǎng)24 h。將培養(yǎng)液去除,用PBS輕輕震蕩洗去懸浮狀態(tài)的T細(xì)胞,每孔加入100μl含10% CCK-8的無血清培養(yǎng)基,在37℃、5% CO2條件下培養(yǎng)2 h,在酶聯(lián)免疫檢測儀上450 nm下測各孔吸光度值。
7實(shí)時(shí)定量PCR檢測Hela及SiHa細(xì)胞相關(guān)CTA的表達(dá) Trizol抽提各個(gè)細(xì)胞總RNA。所提取RNA用紫外分光度計(jì)測得A260和A280,取1μg RNA用逆轉(zhuǎn)錄酶M-MLV和oligo-dT引物合成cDNA。采用SYBR qPCR Mix試劑進(jìn)行實(shí)時(shí)定量PCR檢測,相關(guān)引物序列見表1。
8統(tǒng)計(jì)學(xué)分析 所有實(shí)驗(yàn)均重復(fù)3次,結(jié)果采用SPSS18.0進(jìn)行統(tǒng)計(jì),組間比較采用t-test,結(jié)果以±s表示,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
表1 實(shí)時(shí)定量PCR相關(guān)引物序列Tab. 1 Primers used to perform qRT-PCR of CTA and FasL
1低劑量地西他濱抑制Hela及SiHa的增殖 與對照組相比,10 nmol/L及100 nmol/L DAC處理后的Hela及SiHa細(xì)胞增殖受到不同程度的抑制,選取對細(xì)胞毒性最小的10 nmol/L作為使用劑量。見圖1。
2低劑量地西他濱促進(jìn)Hela及SiHa細(xì)胞凋亡與對照組相比,DAC處理72 h后對宮頸癌Hela及SiHa細(xì)胞凋亡的影響無明顯差異。見圖2。
3低劑量地西他濱導(dǎo)致Hela及SiHa細(xì)胞G1/S期阻滯 與對照組相比,DAC處理72 h后,Hela及SiHa細(xì)胞G0/G1期比例增加,S期和G2/M期比例下降。見圖3。
4低劑量地西他濱增強(qiáng)T細(xì)胞對Hela及SiHa細(xì)胞的殺傷活性 與對照組相比,DAC處理后的Hela及SiHa細(xì)胞被T細(xì)胞殺傷更顯著,并隨著效靶比增加作用逐漸增強(qiáng)。Hela細(xì)胞在效靶比為10∶1時(shí)差異最為顯著,SiHa細(xì)胞隨著效靶比增加差異逐漸明顯。差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見圖4。
5低劑量地西他濱上調(diào)Hela及SiHa細(xì)胞相關(guān)CTA及FasL的mRNA的表達(dá) DAC處理72 h后,Hela及SiHa細(xì)胞中的BORIS、NY-ESO-1、MAGE-A1/A3/A4及FasL的mRNA的表達(dá)水平明顯升高(P<0.05)。見圖5。
圖 1 地西他濱抑制宮頸癌Hela,SiHa細(xì)胞增殖Fig. 1 DAC inhibiting the proliferation of Hela and SiHa cells (aP<0.05, vs blank)
圖 2 地西他濱增加宮頸癌Hela,SiHa細(xì)胞凋亡Fig. 2 DAC increasing Hela and SiHa cells apoptosis (aP<0.05, vs blank)
腫瘤的發(fā)生、發(fā)展是免疫系統(tǒng)與癌細(xì)胞相互作用的動(dòng)態(tài)過程,包括清除、平衡和逃逸3個(gè)階段。免疫逃逸狀態(tài)解除、細(xì)胞恢復(fù)免疫原性是腫瘤免疫治療中的一個(gè)重大問題[12]。CTA是已知的幾乎僅受到甲基化調(diào)控的腫瘤抗原[13-14]。恢復(fù)CTA的表達(dá),可有效達(dá)到這個(gè)目的。目前,用于臨床疫苗試驗(yàn)的癌睪丸抗原主要有針對NY-ESO-1及MAGEA3的免疫疫苗[15-16]。
圖 3 地西他濱造成宮頸癌Hela,SiHa細(xì)胞G1/S期阻滯Fig. 3 DAC promoting Hela and SiHa cells G1/S cycle arrest
圖 4 地西他濱增強(qiáng)T細(xì)胞對宮頸癌Hela, SiHa細(xì)胞殺傷活性Fig. 4 DAC enhancing T cell killing ability to Hela and SiHa cells (aP<0.05, vs blank)
圖 5 地西他濱增強(qiáng)宮頸癌細(xì)胞中的BORIS、NY-ESO-1、MAGEA1、 MAGEA3、 MAGEA4 及FasL 的mRNA的表達(dá)Fig. 5 DAC increasing the expression levels of BORIS, NY-ESO-1, MAGEA1, MAGEA3, MAGEA4 and FasL mRNAs of Hela and SiHa cells (aP<0.05, vs blank)
本研究顯示,10 nmol/L地西他濱對宮頸癌細(xì)胞增殖和凋亡沒有顯著影響,100 nmol/L地西他濱一定程度上抑制細(xì)胞增殖。而10 nmol/L地西他濱雖不直接抑制細(xì)胞增長,但使宮頸癌細(xì)胞對T細(xì)胞的殺傷效應(yīng)更為敏感,以效靶比為10∶1時(shí)最顯著。為探討地西他濱增強(qiáng)T細(xì)胞殺傷作用的可能機(jī)制,我們篩選發(fā)現(xiàn),DAC不同程度地上調(diào)了癌睪丸抗原中BORIS、NY-ESO-1、MAGE-A1/A3/ A4的mRNA的表達(dá),并且增強(qiáng)了細(xì)胞凋亡通路中FasL的表達(dá)[16],表明DAC處理后可能通過激活FasL通路促進(jìn)細(xì)胞的凋亡,但是,DAC處理后上調(diào)的CTA之間有無互相促進(jìn)表達(dá)升高的機(jī)制[17],DAC是否僅通過增加FasL的表達(dá)來調(diào)控宮頸癌的發(fā)生、發(fā)展[18],還有哪些通路參與其中都有待于進(jìn)一步實(shí)驗(yàn)驗(yàn)證。
因此,通過系統(tǒng)合理地應(yīng)用去甲基化藥物DAC,提高CTA表達(dá)率,有助于提高腫瘤細(xì)胞的免疫原性,促進(jìn)以T細(xì)胞對腫瘤細(xì)胞的識(shí)別和殺傷為主的生物免疫治療。本研究為地西他濱用于臨床宮頸癌的免疫治療提供實(shí)驗(yàn)依據(jù)。
1 Shin DY, Sung Kang H, Kim GY, et al. Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells[J]. Biomed Pharmacother, 2013, 67(4):305-311.
2 Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy[J]. Clin Epigenetics, 2013, 5(1):3.
3 Lemaire M, Chabot GG, Raynal NJ, et al. Importance of doseschedule of 5-aza-2’-deoxycytidine for epigenetic therapy of cancer[J]. BMC Cancer, 2008, 8:128.
4 Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study[J]. Cancer, 2006, 106(8):1794-1803.
5 Juergens RA, Wrangle J, Vendetti FP, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer[J]. Cancer Discov, 2011, 1(7): 598-607.
6 Yang D, Torres CM, Bardhan K, et al. Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis in vitro and tumor suppression in vivo[J]. J Immunol,2012, 188(9): 4441-4449.
7 Fang F, Balch C, Schilder J, et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer[J]. Cancer, 2010, 116(17):4043-4053.
8 Matei D, Fang F, Shen C, et al. Epigenetic resensitization to platinum in ovarian cancer[J]. Cancer Res, 2012, 72(9):2197-2205.
9 Sova P, Feng Q, Geiss G, et al. Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis[J]. Cancer Epidemiol Biomarkers Prev, 2006,15(1): 114-123.
10 Risinger JI, Chandramouli GV, Maxwell GL, et al. Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression[J]. Clin Cancer Res, 2007, 13(6):1713-1719.
11 Kang Y, Hong JA, Chen GA, et al. Dynamic transcriptional regulatory complexes including BORIS, CTCF and Sp1 modulate NYESO-1 expression in lung cancer cells[J]. Oncogene, 2007, 26(30):4394-4403.
12 Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance[J]. J Clin Oncol,2004, 22(6): 1136-1151.
13 許濤,張小靜,謝小薰.DNA甲基化對癌睪丸抗原基因表達(dá)的調(diào)控及其意義[J].生命的化學(xué),2005,25(4):324-326.
14 Konkankit VV, Kim W, Koya RC, et al. Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway[J]. J Transl Med, 2011, 9:192.
15 江華,姜永強(qiáng).腫瘤-睪丸抗原研究進(jìn)展[J].軍事醫(yī)學(xué)科學(xué)院院刊,2007,31(4):387-390.
16 Doumba PP, Nikolopoulou M, Gomatos IP, et al. Co-culture of primary human tumor hepatocytes from patients with hepatocellular carcinoma with autologous peripheral blood mononuclear cells: study of their in vitro immunological interactions[J]. BMC Gastroenterol,2013, 13:17.
17 Bhan S, Negi SS, Shao C, et al. BORIS binding to the promoters of cancer testis antigens, MAGEA2, MAGEA3, and MAGEA4, is associated with their transcriptional activation in lung cancer[J]. Clin Cancer Res, 2011, 17(13):4267-4276.
18 Siegel RM, Chan FK, Chun HJ, et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity[J]. Nat Immunol, 2000, 1(6): 469-474.
Effect of T cell killing ability on low-dose decitabine treated cervical cancer cells
BAI Hua1, LI Xiang2, NIE Jing2, HAN Weidong2, MENG Yuanguang
1Department of Obstetrics and Gynecology;21Department of Molecular Biology, Institute of Basic Medicine Chinese PLA General Hospital, Beijing 100853, China
MENG Yuanguang. Email: meng6512@vip.sina.com
ObjectiveTo study the effect of T cell killing ability on low-dose decitabine (DAC) treated cervical cancer cells and explore its possible mechanism.MethodsCCK-8 was used to test the proliferation of low-dose DAC treated cervical cancer cells. Flow cytometry assay was used to test the apoptosis and cell cycle of low-dose DAC treated cervical cancer cells. CCK-8 was also used to test T cell killing ability of low-dose DAC treated cervical cancer cells. Real-Time PCR was used to test the expression of BORIS, NYESO-1, MAGEA1, MAGEA3, MAGEA4 and FasL on low-dose DAC treated cervical cancer cells.Results10 nmol/L of DAC showed no significant difference in the proliferation and apoptosis of cervical cancer cells, while 100 nmol/L of DAC inhibited the proliferation of cervical cancer cells. Though 10 nmol/L of DAC did not inhibit the proliferation of cervical cancer cells directly, it enhanced T cell killing ability to cervical cancer cells most significantly with the efficient targeting ratio of 10∶1. Also 10 nmol/L of DAC showed significant up-regulation in the mRNA expression of CTAs such as BORIS, NYESO-1, MAGEA1, MAGEA3 and MAGEA4, as well as FasL.ConclusionThese results suggest that low-dose DAC may work as a potential biological immunotherapy drug to inhibit cell viability and enhance T cell killing ability in cervical cancer cells.
decitabine; cervical cancer; cancer testis antigen; immunotherapy
R 737.33
A
2095-5227(2015)05-0497-05
10.3969/j.issn.2095-5227.2015.05.023< class="emphasis_bold">網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2015-02-16 09:48網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150216.0948.002.html
2014-11-13
國家自然科學(xué)基金項(xiàng)目(81472838;81272867)
Supported by the National Natural Science Foundation of China(81472838; 81272867)
白樺,女,在讀碩士,醫(yī)師。研究方向:婦科腫瘤。Email: baihua.353@163.com
孟元光,男,主任醫(yī)師,教授,博士生導(dǎo)師。Email: me ng6512@vip.sina.com
解放軍醫(yī)學(xué)院學(xué)報(bào)2015年5期