?
熱應(yīng)激影響奶牛乳腺酪蛋白合成的機(jī)制
馬 露1,2卜登攀1,2,3?高勝濤1,2郭 江1,2權(quán)素玉1,2
(1.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)國家重點實驗室,北京100193;
2.中國農(nóng)業(yè)科學(xué)院與世界農(nóng)用林業(yè)中心農(nóng)用林業(yè)與可持續(xù)畜牧業(yè)聯(lián)合實驗室,北京100193;
3.東北農(nóng)業(yè)大學(xué)食品安全與營養(yǎng)協(xié)同創(chuàng)新中心,哈爾濱150030)
E?mail:malu.nmg@163.com
摘 要:熱應(yīng)激不僅影響奶牛健康,同時影響奶牛泌乳性能和牛奶品質(zhì)。乳蛋白作為影響牛奶品質(zhì)的主要成分,其含量和產(chǎn)量受到基因、環(huán)境、內(nèi)分泌激素等因素綜合作用的影響。而現(xiàn)有關(guān)于熱應(yīng)激對奶牛乳蛋白含量及產(chǎn)量的影響的研究報道結(jié)果不相一致。因此,本文從熱應(yīng)激引起奶牛內(nèi)分泌激素變化導(dǎo)致營養(yǎng)重分配的基因網(wǎng)絡(luò)、乳蛋白合成的應(yīng)答與轉(zhuǎn)錄調(diào)控機(jī)制改變層面,綜述了其對奶牛乳腺酪蛋白合成的影響,為進(jìn)一步的機(jī)理研究提供一些思路。
關(guān)鍵詞:奶牛;熱應(yīng)激;乳蛋白;激素;miRNA
乳蛋白的含量是構(gòu)成牛奶重要營養(yǎng)品質(zhì)的主要物質(zhì)基礎(chǔ)之一。大量研究表明,乳成分(乳脂肪、乳蛋白和乳糖)的合成是基因、環(huán)境、內(nèi)分泌激素等因素綜合作用的結(jié)果,其中乳脂肪的含量和組成最容易受飼糧營養(yǎng)的影響,而乳蛋白的含量和組成相對比較穩(wěn)定[1-2]。熱應(yīng)激是影響乳蛋白合成重要環(huán)境因素。近期的研究表明,牛奶的合成對于高熱環(huán)境非常敏感[3],熱應(yīng)激不僅會影響奶牛泌乳性能、牛奶品質(zhì)和奶牛健康,降低產(chǎn)奶量和乳蛋白含量,同時增加了生產(chǎn)成本[4-9]。
目前各國奶業(yè)科研人員研究已經(jīng)建立了關(guān)于緩解奶牛熱應(yīng)激的各類控制技術(shù)。我國學(xué)者在調(diào)查分析我國不同地區(qū)奶牛熱應(yīng)激類型的基礎(chǔ)上[10-11],系統(tǒng)研究了熱應(yīng)激環(huán)境下奶牛瘤胃發(fā)酵、氣血酸堿平衡、機(jī)體能量平衡、乳腺功能變化,確立了通過飼糧飽和脂肪酸、過瘤胃淀粉、陰陽離子平衡和有機(jī)微量元素為核心緩解奶牛熱應(yīng)激的營養(yǎng)調(diào)控技術(shù)途徑[12-16],開發(fā)了《牧場緩解熱應(yīng)激自動控制系統(tǒng)》軟件,對降低奶牛熱應(yīng)激帶來的損失起到了一定的作用,在熱應(yīng)激奶牛營養(yǎng)代謝理論及其緩解技術(shù)方面取得了新進(jìn)展。目前國際上對于有關(guān)熱應(yīng)激對奶牛乳蛋白含量及產(chǎn)量的研究結(jié)果不相一致,Bernabucci等[17]的研究結(jié)果顯示,在夏季熱應(yīng)激條件下,奶牛合成乳酪蛋白的含量降低進(jìn)而導(dǎo)致乳蛋白含量降低,但通過環(huán)控倉設(shè)定熱應(yīng)激環(huán)境的研究結(jié)果顯示,乳蛋白含量不受熱應(yīng)激影響,但由于熱應(yīng)激導(dǎo)致乳產(chǎn)量下降,使得乳蛋白的產(chǎn)量下降[8,18-21],因此,本文從熱應(yīng)激引起奶牛內(nèi)分泌激素變化導(dǎo)致營養(yǎng)重分配的基因網(wǎng)絡(luò)、乳蛋白合成的應(yīng)答與轉(zhuǎn)錄調(diào)控機(jī)制改變層面,綜述了其對奶牛乳腺酪蛋白合成的影響,為進(jìn)一步研究熱應(yīng)激對乳蛋白合成影響機(jī)制的研究提供研究思路。
1.1 營養(yǎng)和內(nèi)分泌是調(diào)控乳蛋白合成的重要因素
酪蛋白占乳蛋白含量的80%,其中90%以上是在乳腺中由氨基酸(AA)從頭合成。在過去40多年關(guān)于消化道層次和組織代謝層次研究證明,進(jìn)入乳腺的AA水平是制約乳蛋白合成的主要營養(yǎng)制約因素,其中賴氨酸(Lys)和蛋氨酸(Met)是乳蛋白合成的限制性氨基酸[2,22-25],但近期的一些研究表明,飼糧能量水平在調(diào)控乳蛋白的合成能力方面比AA更敏感[26]。調(diào)控奶牛飼糧能量水平不僅能為乳蛋白合成提供能量物質(zhì)[三磷酸腺苷(ATP)、三磷酸鳥苷(GTP)、煙酰胺腺嘌呤二核苷酸(NADH)和還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)],同時通過增加胰島素的分泌還可促進(jìn)乳蛋白的合成[27-29]。內(nèi)分泌一方面可以通過改變?nèi)橄俚难髁亢桶被岬霓D(zhuǎn)運(yùn)能力來影響乳腺對氨基酸的吸收和利用[30],另一方面可以通過其受體激活調(diào)控乳蛋白生成的信號轉(zhuǎn)導(dǎo)通路,完成對乳蛋白合成的調(diào)控[31]。經(jīng)證實,促乳素、生長激素、甲狀腺激素、糖皮質(zhì)激素等在乳蛋白合成發(fā)中揮直接作用,而胰島素發(fā)揮間接作用[32]。催乳素通過與靶細(xì)胞膜表面的催乳素受體結(jié)合,啟動Ja?nus激酶2(JAK2)/信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化蛋白5(STAT5)信號轉(zhuǎn)導(dǎo)途徑,最終激活反式作用因子STAT5,使其作用于乳蛋白基因啟動子區(qū)的靶序列,啟動或增強(qiáng)以乳蛋白基因啟動子為作用元件的靶基因表達(dá)。生長激素可提高乳蛋白的合成,改善乳腺組織氨基酸的利用[33],對乳蛋白合成的調(diào)控點主要是在轉(zhuǎn)錄和轉(zhuǎn)錄后[34]。糖皮質(zhì)激素在體內(nèi)能夠影響乳腺的功能,β-酪蛋白基因轉(zhuǎn)錄水平的表達(dá)主要通過催乳素和糖皮質(zhì)激素的調(diào)節(jié)[35-36]。盡管胰島素對乳蛋白的調(diào)節(jié)并未受到重視,但是近期的研究表明,胰島素不僅參與乳蛋白基因表達(dá),而且在轉(zhuǎn)錄、轉(zhuǎn)錄后調(diào)控和AA攝取與利用方面對乳蛋白合成發(fā)揮重要調(diào)節(jié)作用[29,37]。
1.2 營養(yǎng)和內(nèi)分泌參與調(diào)控乳蛋白合成的基因網(wǎng)絡(luò)
乳蛋白合成調(diào)控是一個協(xié)同過程,涉及AA的水平、胰島素水平、葡萄糖水平及下游各信號轉(zhuǎn)導(dǎo)途徑,這些因素之間的網(wǎng)絡(luò)關(guān)系對于乳蛋白的合成發(fā)揮關(guān)鍵作用。已經(jīng)證實很多信號通路在調(diào)控乳生成過程中發(fā)揮作用[38-40]。隨著牛全基因組測序工作的完成和營養(yǎng)基因組學(xué)在畜禽營養(yǎng)生理研究中的不斷應(yīng)用,在mRNA或蛋白質(zhì)水平上研究與乳蛋白合成相關(guān)的功能基因表達(dá)和基因調(diào)控網(wǎng)絡(luò)研究結(jié)果陸續(xù)得以報道[41]。營養(yǎng)素(如AA)可通過整合應(yīng)激反應(yīng)(ISR)和雷帕霉素靶點(mTOR)參與調(diào)節(jié)乳蛋白基因的表達(dá)和蛋白質(zhì)的翻譯[42]。目前,Bionaz等[43]利用活體取樣,驗證了在AA轉(zhuǎn)運(yùn)、葡萄糖轉(zhuǎn)運(yùn)、胰島素通路、mTOR途徑、JAK2/STAT5信號通路和蛋白合成基因相關(guān)的44個基因的表達(dá),初步構(gòu)建了奶牛泌乳期乳蛋白合成基因網(wǎng)絡(luò),暗示了AA的攝取、葡萄糖的轉(zhuǎn)運(yùn)以及胰島素信號通過mTOR途徑對酪蛋白合成的重要性。但是熱應(yīng)激這一環(huán)境因素具體通過何種信號轉(zhuǎn)導(dǎo)通路上調(diào)或下調(diào)某些基因的表達(dá),而這些基因表達(dá)的變化最終又如何影響乳蛋白的合成仍不清晰。
1.3 熱應(yīng)激改變奶牛營養(yǎng)分配與內(nèi)分泌平衡
泌乳早期奶牛因營養(yǎng)攝入不足,生長激素增加,抑制了胰島素介導(dǎo)的脂肪合成和葡萄糖利用,促進(jìn)脂肪組織釋放非酯化脂肪酸(NEFA),增加了飼糧和體組織來源的養(yǎng)分向乳腺組織分配[44];同時降低胰島素的敏感性伴隨著血液胰島素水平的降低,從而使脂肪組織分解和NEFA的動員[45-47],奶牛處于能量負(fù)平衡狀態(tài)。普遍認(rèn)為,熱應(yīng)激條件下,因奶牛干物質(zhì)采食量不足導(dǎo)致奶牛處于能量負(fù)平衡而引起牛奶合成降低[7,48-50],改變了奶牛體內(nèi)參與養(yǎng)分合成與分解代謝的激素水平[3,51-52],激活相應(yīng)的細(xì)胞信號轉(zhuǎn)導(dǎo)通路,引起乳蛋白合成相關(guān)基因的表達(dá),從而調(diào)控乳蛋白合成代謝。但近期的研究表明,熱應(yīng)激奶牛干物質(zhì)采食量下降僅能解釋牛奶合成降低的35%~50%[8,18,21]。近期的研究提示,與泌乳早期不同,奶牛在熱激條件下卻增高了胰島素水平[52]。奶牛在正常生產(chǎn)條件下,機(jī)體胰島素水平升高會增加乳蛋白的含量,但是目前關(guān)于熱應(yīng)激條件下胰島素水平升高與乳蛋白含量降低之間的矛盾仍沒有得到科學(xué)的解釋,是否與熱應(yīng)激條件下乳蛋白合成所需前體物質(zhì)的重分配改變有直接關(guān)系尚需進(jìn)一步研究探明。
2.1 熱應(yīng)激影響乳腺上皮細(xì)胞的合成能力
乳的質(zhì)量取決于乳腺上皮細(xì)胞的數(shù)量和分泌能力,而這些因素會受到不同的環(huán)境和管理措施的影響[53]。利用表達(dá)譜芯片分析熱應(yīng)激誘導(dǎo)的奶牛乳腺上皮細(xì)胞應(yīng)激響應(yīng),發(fā)現(xiàn)熱應(yīng)激會下調(diào)參與乳腺上皮細(xì)胞生物合成、代謝和形態(tài)相關(guān)基因表達(dá)[51,54]。研究證明,奶牛乳腺上皮細(xì)胞在高溫42℃處理的初期(3 h),乳腺上皮細(xì)胞產(chǎn)生了快速應(yīng)答,細(xì)胞凋亡數(shù)量增加,凋亡標(biāo)志性基因B淋巴細(xì)胞瘤-2(Bcl?2)顯著上調(diào),而促凋亡基因Bax表達(dá)顯著下調(diào),熱休克因子(hsf)1、hsf27、hsf70和hsf90 mRNA轉(zhuǎn)錄水平顯著上調(diào);隨應(yīng)激時間的延長(5~24 h),細(xì)胞產(chǎn)生熱耐受[55-56];而在整個高溫條件下,不同程度抑制了αs1-酪蛋白和β酪蛋白基因表達(dá),以及嗜乳脂蛋白(BTN)基因的表達(dá)[56]。當(dāng)奶牛機(jī)體代謝異常時不僅牛奶品質(zhì)降低,而且會影響乳腺細(xì)胞合成乳成分的正常功能,甚至引起細(xì)胞發(fā)生“重編程”[57],但目前關(guān)于熱應(yīng)激影響乳腺上皮細(xì)胞酪蛋白合成的應(yīng)答機(jī)制仍不清楚。
2.2 表觀遺傳修飾的改變影響乳蛋白的生成
表觀遺傳學(xué)是指由于DNA或其周圍染色體化學(xué)修飾改變而非DNA序列變化所造成的基因組功能改變。DNA甲基化是最廣泛研究的表觀調(diào)節(jié)因素[58]。奶牛生產(chǎn)環(huán)境和不同的飼養(yǎng)管理措施均能誘導(dǎo)乳蛋白合成基因DNA甲基化從而影響乳蛋白的生成。嚙齒類動物研究表明,泌乳過程中αs1-酪蛋白、κ-酪蛋白、β-酪蛋白和γ-酪蛋白基因均能發(fā)生甲基化[59-61]。已經(jīng)有多項針對不同生理時期和疾病發(fā)生時奶牛乳腺中酪蛋白基因的甲基化和表達(dá)情況的研究,結(jié)果表明奶牛αs1-酪蛋白基因在泌乳期低甲基化[60],Vanselow等[62]更深一步證實STAT5結(jié)合泌乳增強(qiáng)子附近DNA甲基化和染色體結(jié)構(gòu)存在關(guān)聯(lián),主要發(fā)生在αs1-酪蛋白編碼基因的大概10 kb位置,該區(qū)域的DNA處于低甲基化狀態(tài)。而當(dāng)奶牛乳腺受到感染時,αs1-酪蛋白基因甲基化水平也會發(fā)生改變,甲基化水平提高31%~45%[63]。當(dāng)奶牛受大腸桿菌或鏈球菌感染發(fā)生乳房炎時,αs1-酪蛋白基因甲基化發(fā)生在轉(zhuǎn)錄激活子和增強(qiáng)子區(qū)域,這一區(qū)域的甲基化程度與αs1-酪蛋白mRNA和蛋白質(zhì)水平呈負(fù)相關(guān),與正常健康奶牛相比,關(guān)閉了αs1-酪蛋白基因的合成,使mRNA水平和乳蛋白含量降低[62,64]。另有研究表明,奶牛擠奶后24~36 h,催乳素/STAT5信號通路基因和乳蛋白基因表達(dá)均發(fā)生了甲基化[65-66]。雖然至今沒有關(guān)于酪蛋白基因是否對熱應(yīng)激產(chǎn)生應(yīng)答而發(fā)生甲基化,但是甲基化這一最普遍的表觀遺傳修飾,可能會在奶牛泌乳過程中發(fā)揮作用。
2.3 miRNA對乳成分的合成發(fā)揮重要的調(diào)控作用
研究證實,miRNA主要是通過與脂類代謝相關(guān)基因靶位點的結(jié)合參與調(diào)節(jié)脂類代謝[67-68],而關(guān)于miRNA調(diào)節(jié)乳蛋白的研究鮮有報道。已有的研究證據(jù)表明miRNA能夠通過靶向激素受體或編碼乳成分的基因,參與乳蛋白生成的調(diào)控,例如bta?miR?15a抑制奶牛乳腺上皮中酪蛋白的表達(dá),同時抑制乳腺上皮細(xì)胞的活力和生長激素受體(GHR)mRNA和蛋白質(zhì)的表達(dá)[69],而miR?126?3p能夠直接以孕酮受體(PGR)為靶基因,影響乳腺上皮細(xì)胞的增殖、β-酪蛋白的生成從而在小鼠乳腺發(fā)育和泌乳過程中發(fā)揮重要作用[70]。小鼠體內(nèi)的研究證實,熱應(yīng)激能夠改變miRNA的表達(dá),使小腸mRNA和miRNA的表達(dá)均受到顯著影響[71];熱應(yīng)激不僅能夠誘導(dǎo)miRNA的表達(dá)變化,生成新的內(nèi)源性miRNA[72],而且對細(xì)胞應(yīng)激應(yīng)答過程發(fā)揮作用[73],但目前還沒有針對奶牛的相關(guān)研究。隨著RNA測序(RNA?seq)技術(shù)的在轉(zhuǎn)錄調(diào)控研究中的不斷應(yīng)用,將為揭示熱應(yīng)激條件下miRNA的表達(dá)和可能的調(diào)控途徑提供依據(jù)。
乳蛋白的合成是基因、營養(yǎng)和環(huán)境共同作用的結(jié)果。奶牛在熱應(yīng)激條件下通過降低干物質(zhì)采食量和驅(qū)動機(jī)體內(nèi)分泌激素的平衡以適應(yīng)熱應(yīng)激狀態(tài)。但乳蛋白合成的基因調(diào)控網(wǎng)絡(luò)研究剛剛起步,乳蛋白合成對各種激素和中間代謝產(chǎn)物的信號轉(zhuǎn)導(dǎo)途徑、關(guān)鍵調(diào)控因子及其相互作用模式仍不了解,尤其針對熱應(yīng)激條件下奶牛泌乳的轉(zhuǎn)錄調(diào)控機(jī)制尚屬空白。因此,根據(jù)生產(chǎn)實踐中奶牛熱應(yīng)激條件建立奶牛熱應(yīng)激模型,通過分析血液代謝產(chǎn)物、激素和牛奶成分,結(jié)合實時定量PCR、RNA?seq和DNA甲基化分析等方法,在篩選獲得差異表達(dá)mRNA、miRNA以及驗證以關(guān)鍵信號分子為靶基因相關(guān)miRNA作用的基礎(chǔ)上,構(gòu)建奶牛乳腺應(yīng)答熱應(yīng)激的酪蛋白合成關(guān)鍵基因調(diào)控網(wǎng)絡(luò),進(jìn)一步探索熱應(yīng)激條件下乳蛋白合成的表觀遺傳調(diào)控機(jī)制,將會為緩解奶牛熱應(yīng)激和提高奶牛合成乳蛋白的效率提供新的研究思路和方法。
參考文獻(xiàn):
[1]卜登攀,王加啟.日糧不飽和脂肪酸對乳脂CLA合成的影響研究進(jìn)展[J].中國農(nóng)學(xué)通報,2006,22(4):15-21.
[2]JENKINS T C,MCGUIRE M A.Major advances in nutrition:impact on milk composition[J].Journal of Dairy Science,2006,89(4):1302-1310.
[3]BERNABUCCI U,LACETERA N,BAUMGARD L H,et al.Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J].Animal,2010,4(7):1167-1183.
[4]BERNABUCCI U,CALAMARI L.Effects of heat stress on bovine milk yield and composition[J].Zootech Nutrition of Animal,1998,24:247-258.
[5]CALAMARI L,MARIANI P.Effects of the hot envi?ronment conditions on the main milk cheesemaking properties[J].Zootech Nutrition of Animal,1998,24:259-271.
[6]GAUGHAN J B,MADER T L,HOLT S M,et al.A new heat load index for feedlot cattle[J].Journal of Animal Science,2008,86(1):226-234.
[7]WEST J W.Effects of heat?stress on production in dairy cattle[J].Journal of Dairy Science,2003,86(6):2131-2144.
[8]RHOADS M L,RHOADS R P,VANBAALE M J,et al.Effects of heat stress and plane of nutrition on lacta?ting Holstein cows:Ⅰ.Production,metabolism,and aspects of circulating somatotropin[J].Journal of Dairy Science,2009,92(5):1986-1997.
[9]SHWARTZ G,RHOADS M L,VANBAALE M J,et al.Effects of a supplemental yeast culture on heat stressed lactating Holstein cows[J].Journal of Dairy Science,2009,92(3):935-942.
[10]王建平,王加啟,卜登攀,等.上海地區(qū)季節(jié)變化對奶牛產(chǎn)奶性能影響的研究[J].中國畜牧獸醫(yī),2005,35(8):70-73.
[11]劉光磊,王加啟,劉文忠,等.全國不同地區(qū)奶牛熱應(yīng)激和冷應(yīng)激規(guī)律研究——“健能贏”規(guī)律研究[J].中國奶牛,2009,8:66-69.
[12]禹愛兵,王加啟,趙國琦,等.鉻對泌乳期奶牛的生產(chǎn)性能和主要生理指標(biāo)的影響[J].畜牧獸醫(yī)文摘,2006,37(8):774-778.
[13]賈磊,王加啟,卜登攀,等.日糧陰陽離子差對泌乳前期熱應(yīng)激奶牛血液酸堿平衡和生產(chǎn)性能的影響[J].動物營養(yǎng)學(xué)報,2007,19(6):663-670.
[14]BU D P,JIA L,WANG J Q,et al.Effect of dietary cation?anion difference on performance and blood acid?base balance of early?lactating dairy cows under heat stress[J].Journal of Animal Science,2008,86(Suppl.):1.
[15]WANG J P,BU D P,WANG J Q,et al.Effect of satu?rated fatty acid supplementation on production and metabolism indices in heat?stressed mid?lactation dairy cows[J].Journal of Dairy Science,2010,93(9):4121-4127.
[16]王建平,王加啟,卜登攀,等.熱應(yīng)激對奶牛瘤胃纖維分解菌的影響[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2010,18(2):302-307.
[17]BERNABUCCI U,LACETERA N,RONCHI B,et al.Effects of the hot season on milk protein fractions in Holstein cows[J].Animal Research,2002,51:25-33.
[18]BAUMGARD L H,WHEELOCK J B,SANDERS S R,et al.Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows[J].Journal of Dairy Science,2011,94(11):5620-5633.
[19]RHOADS R P,LA NOCE A J,WHEELOCK J B,et al.Short communication:Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration[J].Journal of Dairy Science,2011,94(4):1917-1921.
[20]O’BRIEN M D,RHOADS R P,SANDERS S R,et al.Metabolic adaptations to heat stress in growing cat?tle[J].Domestic Animal Endocrinology,2010,38(2):86-94.
[21]WHEELOCK J B,RHOADS R P,VANBAALE M J,et al.Effects of heat stress on energetic metabolism in lactating Holstein cows[J].Journal of Dairy Science,2010,93(2):644-655.
[22]MILLER P M,STOCKDELL R,NEMETH L,et al.Initial steps taken by nine primary care practices to implement alcohol screening guidelines with hyperten?sive patients:the AA?TRIP project[J].Substance A?buse,2006,27(1-2):61-70.
[23]NAN X M,BU D P,LI X Y,et al.Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phos?phorylation in bovine mammary cells[J].Physiologi?cal Genomics,2014,46(7):268-275.
[24]BAUMRUCKER C R.Amino acid transport systems in bovine mammary tissue[J].Journal of Dairy Science,1985,68(9):2436-2451.
[25]HANIGAN M D,CROMPTON L A,BEQUETTE B J,et al.Modelling mammary metabolism in the dairy cow to predict milk constituent yield,with emphasis on amino acid metabolism and milk protein produc?tion:model evaluation[J].Journal of Theoretical Biol?ogy,2002,217(3):311-330.
[26]RIUS A G,MCGILLIARD M L,UMBERGER C A,et al.Interactions of energy and predicted metaboliza?ble protein in determining nitrogen efficiency in the lactating dairy cow[J].Journal of Dairy Science,2010,93(5):2034-2043.
[27]BIONAZ M,LOOR J J.Gene networks driving bovine mammary protein synthesis during the lactation cycle[J].Bioinform Biological Insights,2011,5:83-98.
[28]BURGOS S A,DAI M,CANT J P.Nutrient availabili?ty and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway[J].Journal of Dairy Science,2010,93(1):153-161.
[29]MENZIES K K,LEFèVRE C,MACMILLAN K L,et al.Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland[J].Functional&Integrative Genomics,2009,9(2):197-217.
[30]HANIGAN M D,CANT J P,WEAKLEY D C,et al.An evaluation of postabsorptive protein and amino acid metabolism in the lactating dairy cow[J].Journal of Dairy Science,1998,81(12):3385-3401.
[31]BREMMERS S A.Quality guideline precedes legisla?tion[J].Tijdschr Diergeneeskd,1996,121(9):280.
[32]NEVILLE M C,MCFADDEN T B,F(xiàn)ORSYTH I.Hor?monal regulation of mammary differentiation and milk secretion[J].Journal of Mammary Gland Biology and Neoplasia,2002,7(1):49-66.
[33]BREMMER D R,OVERTON T R,CLARK J H.Pro?duction and composition of milk from Jersey cows ad?ministered bovine somatotropin and fed ruminally pro?tected amino acids[J].Journal of Dairy Science,1997,80(7):1374-1380.
[34]LESCOAT P,SAUVANT D,DANFAER A.Quantita?tive aspects of protein fractional synthesis rates in ru?minants[J].Reproduction Nutrition Development,1997,37(5):493-515.
[35]CHANAT E,AUJEAN E,BALTEANU A,et al.Nu?clear organization and expression of milk protein genes[J].Journal de la Socieye de Bioiogie,2006,200(2):181-192.
[36]WINTERMANTEL T M,BOCK D,F(xiàn)LEIG V,et al.The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mamma?ry lobuloalveolar development but is dispensable for milk production[J].Molecular Endocrinology,2005, 19(2):340-349.
[37]MENZIES K K,LEE H J,LEFèVRE C,et al.Insulin,a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary ex?plants[J].Functional&Integrative Genomics,2010,10(1):87-95.
[38]FEUERMANN Y,SHAMAY A,MABJEESH S J.Leptin up?regulates the lactogenic effect of prolactin in the bovine mammary gland in vitro[J].Journal of Dairy Science,2008,91(11):4183-4189.
[39]SUCHYTA S P,SIPKOVSKY S,HALGREN R G,et al.Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary?specific transcripts[J].Physiological Genomics,2004,16(1):8-18.
[40]O’CONNOR D L,KHAN S,WEISHUHN K,et al.Growth and nutrient intakes of human milk?fed pre?term infants provided with extra energy and nutrients after hospital discharge[J].Pediatrics,2008,121(4):766-776.
[41]陳杰,朱祖康,陸天水.營養(yǎng)基因組學(xué)(Nutrigenom?ics)——畜禽營養(yǎng)生理研究前沿[J].畜牧與獸醫(yī),2006,38:13-15.
[42]TOERIEN C A,TROUT D R,CANT J P.Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukary?otic initiation factor 2 and ribosomal s6 kinase 1[J].Journal of Nutrition,2010,140(2):285-292.
[43]BIONAZ M,PERIASAMY K,RODRIGUEZ?ZAS S L,et al.A novel dynamic impact approach(DIA)for functional analysis of time?course omics studies:vali?dation using the bovine mammary transcriptome[J].PLoS One,2012,7(3):e32455.
[44]JANDAL J M.Comparative aspects of goat and sheep milk[J].Small Ruminant Research.1996,22(2),177-185.
[45]KUMAR S,CLARKE A R,HOOPER M L,et al.Milk composition and lactation of beta?casein?deficient mice[J].Proceedings of the National Academy of Sci?ences,1994,91(13):6138-6142.
[46]GREEN S W,RENFREE M B.Changes in the milk proteins during lactation in the tammar wallaby,Mac?ropus eugenii[J].Australia Journal of Biological Sci?ence,1982,35(2):145-152.
[47]HORNE D S,ANEMA S,ZHU X,et al.A lactational study of the composition and integrity of casein mi?celles from the milk of the tammar wallaby(Macro?pus eugenii)[J].Archives of Biochemistry and Bio?physics,2007,467(1):107-118.
[48]FUQUAY J W.Heat stress as it affects animal produc?tion[J].Journal of Animal Science,1981,52(1):164-174.
[49]SILANIKOVE N,SHAMAY A,SHINDER D,et al.Stress down regulates milk yield in cows by plasmin induced β?casein product that blocks K+channels on the apical membranes[J].Life Science,2000,67(18):2201-2212.
[50]DESHAZER J A,HAHN G L,XIN H.Basic principles of the thermal environment and livestock energetics[M]//DESHAZER J A.Asabe Monograph Livestock Energetics and Thermal Environment Management.St.Joseph,MI:ASABE.2009,1-35
[51]COLLIER S R,COLLINS E,KANALEY J A.Oral ar?ginine attenuates the growth hormone response to re?sistance exercise[J].Journal of Applied Physiology,2006,101(3):848-852.
[52]BAUMGARD L H,RHOADS R P.Ruminant nutrition symposium:ruminant production and metabolic re?sponses to heat stress[J].Journal of Animal Science,2011,90(6):1855-1865.
[53]SINGH K,ERDMAN R A,SWANSON K M,et al.Epigenetic regulation of milk production in dairy cows[J].Journal of Mammary Gland Biology and Neopla?sia,2010,15(1):101-112.
[54]COLLIER R J,COLLIER J L,RHOADS R P,et al.Invited review:genes involved in the bovine heat stress response[J].Journal of Dairy Science,2008,91(2):445-454.
[55]周振峰,崔瑞蓮,王加啟,等.熱應(yīng)激對體外培養(yǎng)奶牛乳腺上皮細(xì)胞生長、凋亡及其熱休克蛋白mRNA轉(zhuǎn)錄的影響[J].畜牧獸醫(yī)學(xué)報,2010,41(5):600-607.
[56]胡菡,王加啟,李發(fā)弟,等.高溫誘導(dǎo)體外培養(yǎng)奶牛乳腺上皮細(xì)胞的應(yīng)激響應(yīng)[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2011,19(2):287-293.
[57]VELS L,R?NTVED C M,BJERRING M,et al.Cyto?kine and acute phase protein gene expression in repeat?ed liver biopsies of dairy cows with a lipopolysaccha?ride?induced mastitis[J].Journal of Dairy Science,2009,92(3):922-934.
[58]JAENISCH R,BIRD A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J].Nature Genetics,2003,33:245-254.
[59]JOHNSON M L,LEVY J,SUPOWIT S C,et al.Tis?sue?and cell?specific casein gene expression.Ⅱ.Rela?tionship to site?specific DNA methylation[J].Journal of Biological Chemistry,1983,258:10805-10811.
[60]PLATENBURG G J,VOLLEBREGT E J,KARAT?ZAS C N,et al.Mammary gland?specific hypomethyl?ation of HpaⅡsites flanking the bovine alpha αS1?casein gene[J].Transgenic Research,1996,5(6):421-431.
[61]THOMPSON M D,NAKHASI H L.Methylation and expression of rat kappa?casein gene in normal and ne?oplastic rat mammary gland[J].Cancer Research,1985,45(3):1291-1295.
[62]VANSELOW J,YANG W,HERRMANN J,et al.DNA?remethylation around a STAT5?binding enhan?cer in the αS1?casein promoter is associated with ab?rupt shutdown of αS1?casein synthesis during acute mastitis[J].Journal of Molecular Endocrinology,2006,37(3):463-477.
[63]MOLENAAR A,BIET J,SEYFERT H M,et al.Com?paction of the alpha?S1?casein and opening of a defen?sin promotor occurs during infection and in forced in?volution of the bovine mammary gland[C]//7th in?ternational symposium on milk genomics and human health.Davis:[s.n.],2010.
[64]SWANSON K M,STELWAGEN K,DOBSON J,et al.Transcriptome profiling of Streptococcus uberis?in?duced mastitis reveals fundamental differences be?tween immune gene expression in the mammary gland and in a primary cell culture model[J].Journal of Dairy Science,2009,92(1):117-129.
[65]SINGH K,DAVIS S R,DOBSON J M,et al.cDNA microarray analysis reveals that antioxidant and im?mune genes are up?regulated during involution of the bovine mammary gland[J].Journal of dairy science,2008,91(6):2236-2246.
[66]SINGH K,SWANSON K,COULDREY C,et al.DNA Methylation events associated with the suppression of milk protein gene expression during involution of the bovine mammary gland[J].Proceedings of the New Zealand Society of Animal Production,2009,69:57-59.
[67]CHEUNG O,PURI P,EICKEN C,et al.Nonalcoholic steatohepatitis is associated with altered hepatic Mi?croRNA expression[J].Hepatology,2008,48(6):1810-1820.
[68]ESAU C,DAVIS S,MURRAY S F,et al.miR?122regulation of lipid metabolism revealed by in vivo anti?sense targeting[J].Cell Metabolism,2006,3(2):87-98.
[69]LI H M,WANG C M,LI Q Z,et al.MiR?15a decrea?ses bovine mammary epithelial cell viability and lacta?tion and regulates growth hormone receptor expression[J].Molecules,2012,17(10):12037-12048.
[70]CUI W,LI Q Z,F(xiàn)ENG L,et al.MiR?126?3p regulates progesterone receptors and involves development and lactation of mouse mammary gland[J].Molecular and Cellular Biochemistry,2011,355(1-2):17-25.
[71]YU J,LIU F H,YIN P,et al.Integrating miRNA and mRNA expression profiles in response to heat stress?induced injury in rat small intestine[J].Functional&Integrative Genomics,2011,11(2):203-213
[72]YIN C,WANG X Y,KUKREJA R C.Endogenous microRNAs induced by heat?shock reduce myocardial infarction following ischemia?reperfusion in mice[J].FEBS Letters,2008,582(30):4137-4142.
[73]WILMINK G J,ROTH C L,IBEY B L,et al.Identifi?cation of microRNAs associated with hyperthermia?in?duced cellular stress response[J].Cell Stress and Chaperones,2010,15(6):1027-1038.
Mechanism of Heat Stress Affects Casein Synthesis in Mammary Gland of Cows
MA Lu1,2BU Dengpan1,2,3?GAO Shengtao1,2GUO Jiang1,2QUAN Suyu1,2
(1.State Key Laboratory of Animal Nutrition,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,China;
(責(zé)任編輯 王智航)
2.Joint Laboratory on Agroforestry and Sustainable Animal Husbandry,CAAS?ICRAF,Beijing 100193,China;
3.Synergetic Innovation Center of
Food Safety and Nutrition,Northeast Agricultural University,Harbin 150030,China)
E?mail:budengpan@126.com
Abstract:Not only the health of dairy cows is affected by heat stress,but also the production and quality of their milk.Milk protein as one of the most important components in cow’s milk,the content and quantity are both affected by gene,environment and endocrine hormone.However,the previous studies results for the effects of heat stress on the milk protein quantity and production are inconsistent.Thus,this paper reviewed the mechanism of gene networks for the redistribution of the nutrients caused by the changes of endocrine hor?mones,and the response and transcriptional of milk protein synthesis of cows under heat stress,which could affect the casein synthesis of milk,in order to supply some bases for the future study.[Chinese Journal of Ani?mal Nutrition,2015,27(11):3319?3325]
Key words:cow;heat stress;milk protein;hormone;miRNA
Corresponding author?,professor,
doi:10.3969/j.issn.1006?267x.2015.11.001
文章編號:1006?267X(2015)11?3319?07
文獻(xiàn)標(biāo)識碼:A
中圖分類號:S823
作者簡介:馬 露(1984—),女,內(nèi)蒙古商都人,博士,研究方向為動物營養(yǎng)與飼料科學(xué)。
基金項目:國家自然科學(xué)基金(31372341);十二五國家科技支撐計劃(2012BAD12B02?05);動物營養(yǎng)學(xué)國家重點實驗室自主課題(2004DA125184G1103)
收稿日期:2015-06-10
通信作者:?卜登攀,研究員,碩士生導(dǎo)師,
E?mail:budengpan@126.com