賈夏麗,潘洋洋,喬利英,郭云雁,胡子喬,張 方,李寶鈞,劉文忠
(山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
脂肪分化相關(guān)信號(hào)通路及microRNA調(diào)節(jié)研究進(jìn)展
賈夏麗#,潘洋洋#,喬利英,郭云雁,胡子喬,張 方,李寶鈞,劉文忠*
(山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
畜禽體內(nèi)脂肪含量的多少?zèng)Q定了其肉質(zhì)的好壞,而脂肪分化則是一個(gè)由許多因子調(diào)控的復(fù)雜生物學(xué)過(guò)程。了解脂肪分化相關(guān)的信號(hào)通路及其miRNAs的調(diào)節(jié)作用,可以在一定程度上揭示脂肪分化的分子調(diào)控機(jī)制。本文在對(duì)6個(gè)重要的調(diào)控脂肪細(xì)胞分化的信號(hào)通路進(jìn)行介紹的基礎(chǔ)上,分別對(duì)8個(gè)促進(jìn)脂肪細(xì)胞分化和8個(gè)抑制脂肪細(xì)胞分化的miRNAs的生物學(xué)功能和作用機(jī)制進(jìn)行了探討,總結(jié)了其靶基因在脂肪形成中的作用。有關(guān)miRNAs及其靶基因的研究為畜禽肉質(zhì)性狀的遺傳改良提供了理論依據(jù)。
脂肪細(xì)胞;成脂分化;信號(hào)通路;microRNA;靶基因
脂肪是動(dòng)物體內(nèi)重要的貯能物質(zhì),也是機(jī)體能量穩(wěn)態(tài)的調(diào)節(jié)器。當(dāng)機(jī)體需要能量時(shí),貯存在脂肪細(xì)胞中的脂肪,通過(guò)動(dòng)員被脂肪酶水解為游離脂肪酸和甘油,釋放入血液,被其他組織氧化利用。脂肪也與肥胖相關(guān)的一些代謝性疾病如心血管疾病和Ⅱ型糖尿病的發(fā)生和發(fā)展有關(guān)[1-3]。動(dòng)物脂肪的發(fā)育是一個(gè)復(fù)雜過(guò)程,受多種轉(zhuǎn)錄因子、細(xì)胞信號(hào)分子的調(diào)控。其中,脂肪分化相關(guān)的幾個(gè)重要信號(hào)通路和miRNAs對(duì)脂肪發(fā)育具有重要的調(diào)控作用。
脂肪的發(fā)育過(guò)程受許多因子調(diào)控,形成了一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò)。脂肪細(xì)胞分化的信號(hào)通路主要包括:Wnt信號(hào)通路、過(guò)氧化物酶體增殖物激活受體(Peroxisome proliferator-activated receptors,PPARs)通路、固醇調(diào)節(jié)組件結(jié)合蛋白(Sterol regulatory element-binding proteins,SREBPs)通路、ERK-MAPK信號(hào)通路、cAMP/PKA信號(hào)通路和Hedgehog信號(hào)通路等。
1.1 Wnt信號(hào)通路
Wnt信號(hào)通路是一種高度保守的信號(hào)通路,通過(guò)抑制核受體因子過(guò)氧化物酶體增殖物激活受體γ(PPARγ)及其轉(zhuǎn)錄因子CCAAT/增強(qiáng)子結(jié)合蛋白(CCAAT/enhancer binding protein,C/EBP),削弱骨髓基質(zhì)細(xì)胞(Bone marrow stromal cells,BMSCs)向脂肪細(xì)胞的分化[4],從而抑制脂肪細(xì)胞的分化[5],該通路失控可導(dǎo)致肥胖的發(fā)生[6]。此外,細(xì)胞因子如白細(xì)胞介素-6(Interleukin-6,IL-6)和腫瘤壞死因子α(Tumor necrosis factor,TNF-α)對(duì)Wnt通路也有一定的調(diào)節(jié)作用。IL-6可以促進(jìn)Wnt蛋白的表達(dá),TNF-α增加了Fz/LRP/Dvl復(fù)合體的磷酸化,二者均激活Wnt信號(hào),抑制β聯(lián)蛋白(β-catenin)的降解,激活的Wnt信號(hào)使前體脂肪細(xì)胞生長(zhǎng)停滯。生長(zhǎng)停滯的前體脂肪細(xì)胞在MDI(0.5 mmol·L-1甲基異丁基黃嘌呤(Methylisobutylxanthine)、1 μmol·L-1地塞米松(Dexamethasone)和 865 nmol·L-1胰島素(Insulin))誘導(dǎo)下分化,β-catenin抑制下游水平的C/EBPα和PPARγ,削弱甚至阻止脂肪細(xì)胞分化(圖1)[7]。Wnt通路中的轉(zhuǎn)錄因子7-類似物2(Transcription factor 7-like 2,Tcf7l2)是觸發(fā)該通路的重要因子,與Ⅱ型糖尿病的發(fā)生有著密切的關(guān)系[8]。
圖1 細(xì)胞因子誘導(dǎo)影響Wnt信號(hào)通路及下游事件導(dǎo)致脂肪細(xì)胞分化示意圖[7]Fig.1 Schematic representation of the cytokine-induced effect on the Wnt signaling pathway and the downstream events leading to adipocyte differentiation[7]
1.2 PPARs信號(hào)通路
PPARs家族是控制目的基因轉(zhuǎn)錄的核受體因子[9]。PPARs包括α、β、γ 3種亞型,其中PPARα和PPARγ與高血脂癥和動(dòng)脈粥樣硬化等相關(guān)疾病有關(guān)[10],二者在脂肪分化與代謝中發(fā)揮重要作用。PPARα與甘油三酯、低密度膽固醇以及血脂藥物應(yīng)答的炎癥標(biāo)志物有關(guān)[11]。PPARγ是一種成脂分化的重要轉(zhuǎn)錄因子,可以加快脂肪細(xì)胞分化和沉積[12]。林婄婄等[13]發(fā)現(xiàn),PPARα與PPARγ在調(diào)節(jié)脂肪代謝方面作用相反,但是存在協(xié)同作用。
1.3 SREBP信號(hào)通路
固醇調(diào)節(jié)組件結(jié)合蛋白(SREBPs)一直是研究鞘脂(Sphingolipids)合成抑制動(dòng)脈粥樣硬化機(jī)制的焦點(diǎn)[14],是脂質(zhì)代謝的重要調(diào)控因子。其家族中的3個(gè)轉(zhuǎn)錄因子SREBP-1a、SREBP-1c和SREBP-2分別由SREBP1和SREBP2兩個(gè)基因編碼,可參與調(diào)節(jié)膽固醇、脂肪酸、甘油三酯等代謝相關(guān)基因的表達(dá)。SREBP-1a和SREBP-1c是同一個(gè)基因選擇性剪接的結(jié)果,其差異僅體現(xiàn)在N端序列的不同。前者是成脂分化關(guān)鍵的轉(zhuǎn)錄調(diào)控因子,可以促進(jìn)人的前脂肪細(xì)胞增殖,并調(diào)控細(xì)胞周期[15];后者限制血漿甘油三酯和膽固醇水平,還可以調(diào)節(jié)極低密度脂蛋白(Very low density lipoprotein,VLDL)的大小。由于其表達(dá)水平在胰島素抵抗和Ⅱ型糖尿病中偏高,它可能對(duì)糖尿病血脂異常和因血脂異常引起的動(dòng)脈粥樣硬化具有重要作用[16]。SREBP-2是激活膽固醇吸收所需的主要基因,控制膽固醇的合成[17]。
1.4 ERK-MAPK信號(hào)通路
絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信號(hào)通路在細(xì)胞增殖和分化等許多重要的細(xì)胞過(guò)程中發(fā)揮重要作用,細(xì)胞外信號(hào)調(diào)節(jié)激酶(Extracellular signal-regulated kinase,ERK)是MAPK信號(hào)通路的主要成員之一。研究表明,ERK-MAPK信號(hào)通路在間充質(zhì)干細(xì)胞(Mesenchymal stem cells,MSCs)分化過(guò)程中影響成脂分化[18-19]。
1.5 cAMP/PKA信號(hào)通路
環(huán)磷酸腺苷(Cyclic 3′,5′-adenosine monophosphate,cAMP)是一個(gè)重要的胞內(nèi)信號(hào)分子,其主要功能是激活cAMP依賴的蛋白激酶A(Protein kinase A,PKA),調(diào)控細(xì)胞的分化。cAMP/PKA信號(hào)可促進(jìn)MSCs的成脂分化,抑制其成骨分化[20]。β3腎上腺素能受體(β3-adrenergic receptors,ADRB3)參與脂肪分解和產(chǎn)熱[21],其對(duì)MSCs的成脂分化的影響是通過(guò)cAMP/PKA信號(hào)通路介導(dǎo)的[22]。
1.6 Hedgehog信號(hào)通路
Hedgehog(Hh)由Sonic hedgehog(Shh)、Indian hedgehog(Ihh)和Dersert Hedgehog(Dhh)3個(gè)成員組成,在細(xì)胞分化過(guò)程中發(fā)揮至關(guān)重要的作用。在脂肪細(xì)胞分化過(guò)程中Hh信號(hào)減弱,是成脂分化過(guò)程中一個(gè)必需的調(diào)節(jié)器,但并不足以觸發(fā)成脂分化[23]。瘦素(Leptin)對(duì)發(fā)育、肥胖和腫瘤轉(zhuǎn)移等瘦素調(diào)節(jié)過(guò)程具有重要作用,通過(guò)激活Hedgehog信號(hào)以改變控制PPARγ等細(xì)胞分化相關(guān)基因的表達(dá)[24]。
R.C.Lee等[25]在Caenorhabditiselegans中發(fā)現(xiàn)了第一個(gè)小RNA,其長(zhǎng)度只有22 nt,將其命名為lin-4。lin-4不編碼蛋白,但可以通過(guò)反義RNA-RNA互作的方式調(diào)節(jié)lin-14基因的翻譯。此后,越來(lái)越多的研究者開(kāi)始關(guān)注小分子非編碼RNA(sncRNAs)。MicroRNA(miRNAs)是一類內(nèi)源性的小分子非編碼RNA,其長(zhǎng)度約為18~25 nt,主要通過(guò)與mRNA序列3′UTR完全或不完全的堿基互補(bǔ)配對(duì),導(dǎo)致mRNA降解或抑制其表達(dá),從而實(shí)現(xiàn)對(duì)基因表達(dá)的轉(zhuǎn)錄后調(diào)控。然而,也有少數(shù)miRNAs通過(guò)靶作用于啟動(dòng)子序列而誘導(dǎo)基因表達(dá),如miR-373[26]。隨著miRNAs研究方法的發(fā)展,已發(fā)現(xiàn)多個(gè)miRNAs在脂肪發(fā)育中發(fā)揮調(diào)控作用。一些miRNAs對(duì)脂肪細(xì)胞分化起正調(diào)控作用,而另一些則抑制脂肪細(xì)胞的分化。
2.1 促進(jìn)脂肪細(xì)胞分化和脂肪沉積的miRNAs
表1列出了促進(jìn)脂肪細(xì)胞分化相關(guān)的miRNAs及其靶基因。
表1 促進(jìn)脂肪細(xì)胞分化相關(guān)的miRNAs及其靶基因
Table 1 The miRNAs promoting adipocyte differentiation and their target genes
miRNA靶基因Targetgene材料Material文獻(xiàn)SourcemiRNA靶基因Targetgene材料Material文獻(xiàn)Sourcelet-7aHMGA2ADIPOR23T3-L1Gallus[28][29]miR-210Tcf7l23T3-L1[38]miR-17/92Rbl2/p1303T3-L1[30]miR-519dPPARαSAT(H)[40]miR-24BMP-2Trb3C3H10T1/2PASMCs[32][33]miR-33aABCA1M[41]miR-143ERK5Pre-ad(H)[35]miR-221ADIPOR1ETS1Pre-ad(H)[43]
3T3-L1.小鼠脂肪樣成纖維細(xì)胞;C3H10T1/2.從C3H小鼠分離建立的間充質(zhì)干細(xì)胞株;PASMCs.肺動(dòng)脈平滑肌細(xì)胞;Pre-ad.前體脂肪細(xì)胞;H.人類;M.小鼠;SAT.皮下脂肪組織
3T3-L1.Mouse embryonic fibroblast adipose like cell line;C3H10T1/2.Mesenchymal stem cell lines separated from C3H mice;PASMCs.Pulmonary artery smooth-muscle cells;Pre-ad.Preadipocyte;H.Homosapiens;M.Musmusculus;SAT.Subcutaneous adipose tissue
Let-7家族是最早發(fā)現(xiàn)的具有物種間保守性的miRNA家族之一,在生物生長(zhǎng)發(fā)育過(guò)程中具有廣泛的作用,尤其對(duì)腫瘤細(xì)胞的生長(zhǎng)發(fā)育發(fā)揮重要作用[27]。對(duì)3T3-L1前脂肪細(xì)胞分化過(guò)程中miRNA的表達(dá)譜研究發(fā)現(xiàn),其家族成員let-7a具有促進(jìn)脂肪細(xì)胞分化的能力,其靶基因?yàn)楦哌w移率族蛋白A2(High mobility group protein A2,HMGA2)基因[28]。let-7a與脂聯(lián)素受體2(Adiponectin receptor 2,ADIPOR2)基因也存在潛在靶標(biāo)關(guān)系[29]。這說(shuō)明一個(gè)miRNA可能調(diào)節(jié)多個(gè)靶基因。
有些miRNAs在基因組上成簇存在。miR-17/92簇就是一個(gè)高度保守的基因簇。在小鼠3T3-L1脂肪細(xì)胞分化過(guò)程中,該基因簇促進(jìn)細(xì)胞增殖,在脂肪細(xì)胞分化克隆擴(kuò)增階段顯著上調(diào)。該基因簇與視網(wǎng)膜母細(xì)胞瘤(Retinoblastoma 2,Rbl2/p130)基因存在靶標(biāo)關(guān)系[30]。其調(diào)控機(jī)理是miR-17/92簇通過(guò)靶作用于Rbl2/p130的3′UTR抑制其表達(dá),進(jìn)而使得轉(zhuǎn)錄因子E2F4和E2F5的編碼基因上調(diào)。其中,這兩個(gè)基因具有調(diào)控細(xì)胞周期和促進(jìn)脂肪細(xì)胞分化的功能。
骨形態(tài)發(fā)生蛋白 2(Bone morphogenetic protein-2,BMP-2)可以誘導(dǎo)脂肪細(xì)胞分化[31]。F.Sun等[32]發(fā)現(xiàn),miR-24可以上調(diào)BMP-2基因的表達(dá),進(jìn)而更有效地促進(jìn)脂肪細(xì)胞分化;而miR-31是通過(guò)靶向作用于C/EBPα抑制脂肪細(xì)胞分化。該研究組單獨(dú)過(guò)表達(dá)miR-24和miR-31,分別與陰性對(duì)照比較發(fā)現(xiàn),它們對(duì)脂肪分化并沒(méi)有明顯的作用。說(shuō)明這兩個(gè)miRNAs是通過(guò)靶基因起作用的。此外,miR-24還靶向作用于毛球樣蛋白-3(Tribbles-like protein-3,Trb3)基因Trb3[33],下調(diào)其表達(dá)。而Trb3蛋白在胰島素抵抗和Ⅱ型糖尿病的發(fā)生中發(fā)揮作用[34]。
研究發(fā)現(xiàn),miR-143在脂肪細(xì)胞分化過(guò)程中表達(dá)上調(diào),而細(xì)胞外信號(hào)調(diào)節(jié)激酶5(ERK5)表達(dá)下降,但是在加入miR-143的抑制物后,ERK5的表達(dá)升高,說(shuō)明ERK5是miR-143的靶基因[35]。R.Takanabe等[36]發(fā)現(xiàn),miR-143的表達(dá)水平與脂肪細(xì)胞分化標(biāo)志物PPARγ、ap2(Adipocyte-specific lipid-binding protein 2)以及l(fā)eptin等的表達(dá)水平高度相關(guān)。之后,H.M.Xie等[37]對(duì)小鼠前脂肪細(xì)胞的研究也證實(shí)了miR-143的重要作用,并發(fā)現(xiàn)了與之具有相反作用的miR-103。
利用基因芯片技術(shù)和qRT-PCR的方法,發(fā)現(xiàn)miR-210靶向作用于Tcf7l2抑制Wnt信號(hào)通路,促進(jìn)脂質(zhì)形成[38]。同樣,在成脂分化期間,如果阻滯內(nèi)源性miR-210的表達(dá)則會(huì)顯著抑制脂肪細(xì)胞的分化[39]。
R.Martinelli等[40]應(yīng)用基因芯片技術(shù),對(duì)未患糖尿病的嚴(yán)重肥胖者和非肥胖者的皮下脂肪組織中的1 458個(gè)miRNAs的表達(dá)譜進(jìn)行分析,篩選出42個(gè)差異表達(dá)的miRNAs。進(jìn)一步研究發(fā)現(xiàn),miR-519d特異性和劑量依賴性地抑制PPARα蛋白的翻譯,在脂肪細(xì)胞分化過(guò)程中促進(jìn)脂質(zhì)積累。
miR-33a是由SREBP-2的內(nèi)含子轉(zhuǎn)錄得到的,可以抑制與脂質(zhì)代謝和膽固醇逆轉(zhuǎn)運(yùn)相關(guān)的ATP結(jié)合盒式運(yùn)載蛋白A1(ATP-binding cassette transporter A1,ABCA1)的表達(dá),而造成脂質(zhì)堆積進(jìn)而引起心血管疾病[41]。核轉(zhuǎn)錄因子-κB(Nuclear factor-kappa B,NF-κB)的激活可導(dǎo)致SREBP-2和miR-33a表達(dá)增加[42]。
在人前體脂肪細(xì)胞中,leptin和TNF-α可下調(diào)miR-221的表達(dá),而miR-221可以下調(diào)對(duì)脂肪沉積具有抑制作用的ADIPOR1和與血管生成相關(guān)的ETS1(V-ets erythroblastosis virus E26 oncogene homologue 1)的表達(dá)[43]。
2.2 抑制脂肪細(xì)胞分化的miRNAs
表2列出了抑制脂肪細(xì)胞分化相關(guān)的miRNAs及其靶基因。
骨髓間充質(zhì)干細(xì)胞(Bone mesenchymal stem cells,BMSCs)具有多向分化為成骨細(xì)胞、軟骨細(xì)胞、成脂細(xì)胞和成肌細(xì)胞等多種類型細(xì)胞的潛力[44]。Runx2是成骨分化早期的一個(gè)轉(zhuǎn)錄因子,抑制其內(nèi)源性miRNA,即miR-31,調(diào)控成骨分化后期的另一重要轉(zhuǎn)錄因子Satb2[45]。Runx2在未分化的骨髓間充質(zhì)干細(xì)胞中低表達(dá),而高表達(dá)的miR-31可保持骨髓間充質(zhì)干細(xì)胞處于未分化狀態(tài)(圖2)[46],從而抑制成脂分化[32]和成骨分化[47]。
圖2 Runx2、Satb2和miR-31之間的調(diào)控圖[46]Fig.2 Graphic representation of the regulatory feedback loop among Runx2,Satb2 and miR-31[46]
miR-103對(duì)胰島素敏感具有負(fù)向調(diào)控作用,可能是糖尿病發(fā)病的病因[48]。PI3K-Akt-mTOR(Phosphatidylinositol-3-kinase-Akt-mammalian target of rapamycin)信號(hào)通路在細(xì)胞的增殖和生存中具有重要作用。miR-103下調(diào)可導(dǎo)致PI3K-Akt-mTOR下游通路過(guò)度激活而發(fā)生肥胖[49]。
利用熒光素酶報(bào)告載體的方法,在人類脂肪源性多能干細(xì)胞(Human multipotent adipose-derived stem cells,hMADS)中鑒定出PPARγ是miR-27b的靶基因,miR-27b直接靶向作用于PPARγ的3′UTR而阻遏成脂分化[50]。進(jìn)一步的研究[51]證實(shí),miR-27是冷應(yīng)激時(shí)棕色脂肪調(diào)控網(wǎng)絡(luò)中調(diào)控因子PRDM16(PRDI-BF1-RIZ1 domain containing 16)、PPARα、CREB(cAMP responsive element binding protein)、PPARγ和PGC1β(PPARγ coactivators 1β)的核心上游調(diào)節(jié)器(圖3)。由于PRDM16與PPARα和PPARγ的功能綁定并共同起作用,因此,遭受寒冷環(huán)境后miR-27的下調(diào)機(jī)制與這些促進(jìn)棕色脂肪細(xì)胞分化的關(guān)鍵基因的表達(dá)同步進(jìn)行。miR-27通過(guò)作用于合成棕色脂肪的多個(gè)調(diào)控因子調(diào)節(jié)棕色脂肪細(xì)胞的分化。miR-130可靶向作用于PPARγ的編碼區(qū)和3′UTR抑制其表達(dá)[52]。而miR-130受TNFα調(diào)控[53],上調(diào)了的miR-130通過(guò)靶標(biāo)作用,使PPARγ下調(diào),從而抑制脂肪細(xì)胞分化。
表2 抑制脂肪細(xì)胞分化相關(guān)的miRNAs及其靶基因
Table 2 The miRNAs associated with inhibiting adipocyte differentiation and their target genes
miRNA靶基因Targetgene材料Material文獻(xiàn)SourcemiRNA靶基因Targetgene材料Material文獻(xiàn)SourcemiR-31C/EBPAC3H10T1/2BMSCs[32][47]miR-138EID1hAD-MSC[55]miR-103———3T3-L1[37][49]miR-448KLF53T3-L1[58]miR-27bPPARγhMADS[50]miR-218SERP2DKK2HASCs[59]miR-130PPARγPre-ad[52]miR-21SPRY2MSC[61]
C3H10T1/2.從C3H小鼠分離建立的間充質(zhì)干細(xì)胞株;BMSCs.骨髓間充質(zhì)干細(xì)胞;3T3-L1.小鼠脂肪樣成纖維細(xì)胞;hMADS.人類脂肪源性多能干細(xì)胞;Pre-ad.前體脂肪細(xì)胞;hAD-MSC.人脂肪組織源性骨髓間充質(zhì)干細(xì)胞;HASCs.人類脂肪源性干細(xì)胞;MSC.間充質(zhì)干細(xì)胞
C3H10T1/2.Mesenchymal stem cell lines separated from C3H mice;BMSCs.Bone mesenchymal stem cells;3T3-L1.Mouse embryonic fibroblast adipose like cell line;hMADS.Human multipotent adipose-derived stem cells;Pre-ad.Preadipocyte;hAD-MSC.Human adipose tissue derived mesenchymal stem cells;HASCs.Human adipose-derived stem cells;MSC.Mesenchymal stem cell
E1A樣分化抑制劑1(Early region 1-A-like inhibitor of differentiation 1,EID1)是一種核受體共調(diào)因子,在白色脂肪分化的早期階段抑制相關(guān)基因的活性,上調(diào)棕色脂肪組織中某些基因的表達(dá)[54]。利用RNAi沉默EID1后,脂肪細(xì)胞分化受到抑制[55]。miR-138可直接作用于EID1基因的3′UTR,抑制其發(fā)揮作用[55]。
圖3 miR-27在皮下脂肪組織中米色/棕色成脂分化中的功能[51]Fig.3 The function of miR-27 in beige/brown adipogenesis of subcutaneous adipose tissue (SAT)[51]
鋅指蛋白轉(zhuǎn)錄因子家族(Krüppel-like factors,KLFs)是一類保守的、重要的轉(zhuǎn)錄因子,在多種類型的細(xì)胞中均有表達(dá),控制多種細(xì)胞進(jìn)程[56]。在脂肪細(xì)胞分化的幾個(gè)階段中,KLF5是重要的調(diào)節(jié)因素。KLF5由C/EBPβ誘導(dǎo),調(diào)控PPARγ的表達(dá),具有促進(jìn)脂肪細(xì)胞分化的功能[57]。M.Kinoshita等[58]利用熒光素酶報(bào)告載體鑒定出KLF5是miR-448的靶基因。進(jìn)一步研究發(fā)現(xiàn),過(guò)表達(dá)miR-448抑制了KLF5的表達(dá)和脂肪細(xì)胞的分化。
Dickkopf 2(DKK2)與SERP2(Stress-associated endoplasmic reticulum protein family member 2)是Wnt信號(hào)通路的阻遏物。miR-218可直接作用于SERP2和DKK2,增強(qiáng)Wnt信號(hào)活性,抑制人類脂肪源性干細(xì)胞(Human adipose-derived stem cells,hASCs)的成脂分化,并促進(jìn)其成骨分化[59]。miR-21與miR-218有相似的作用,也可作用于DKK2,抑制其表達(dá)[60]。另有研究認(rèn)為,在MSCs分化中,miR-21是通過(guò)抑制SPRY2(Sprouty2)的表達(dá)以維持ERK-MAPK信號(hào)通路的活性及作用時(shí)間[61]。
脂肪分化是一個(gè)復(fù)雜的過(guò)程,有多個(gè)信號(hào)通路和許多基因參與。miRNA是脂肪分化過(guò)程中基因調(diào)控和信號(hào)通路網(wǎng)絡(luò)中不可或缺的調(diào)節(jié)器。了解脂肪分化相關(guān)的信號(hào)通路及其miRNAs的調(diào)節(jié)作用,可以在一定程度上揭示脂肪分化的調(diào)控機(jī)制。鑒于miRNAs、靶基因和miRNA抑制物的相互作用,研究與畜禽肉質(zhì)性狀和人類脂肪發(fā)育相關(guān)基因的miRNAs調(diào)控機(jī)制,對(duì)畜禽肉質(zhì)性狀的遺傳改良和人類代謝性疾病的治療具有重要的科學(xué)意義。
[1] LUKIC L,LALIC N M,RAJKOVIC N,et al.Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels:Potential targets for an efficient preventive intervention[J].IntJEnvironmentalResPublicHealth,2014,11(4):3586-3598.
[2] RAJKOVIC N,ZAMAKLAR M,LALIC K,et al.Relationship between obesity,adipocytokines and inflammatory markers in type 2 diabetes:Relevance for cardiovascular risk prevention[J].IntJEnvironmentalResPublicHealth,2014,11(4):4049-4065.
[3] ALONSO R,ANDRES E,MATA N,et al.Lipoprotein(a) Lipoprotein(a) levels in familial hypercholesterolemia:an important predictor of cardiovascular disease independent of the type of LDL receptor mutation[J].JAmCollCardiol,2014,63(19):1982-1989.[4] ZAHOOR M,CHA P H,CHOI K Y.Indirubin-3’-oxime,an activator of Wnt/β-catenin signaling,enhances osteogenic commitment of ST2 cells and restores bone loss in high-fat diet-induced obese male mice[J].Bone,2014,65:60-68.
[5] BARON R,KNEISSEL M.WNT signaling in bone homeostasis and disease:from human mutations to treatments[J].NatMed,2013,19(2):179-192.
[6] GONG M L,LIU C G,ZHANG L,et al.Loss of the TNFα function inhibits Wnt/β-catenin signaling,exacerbates obesity development in adolescent spontaneous obese mice[J].MolCellBiochem,2014,391(1-2):59-66.
[7] GUSTAFSON B,SMITH U.Cytokines promote wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes[J].JBiolChem,2006,281(14):9507-9516.
[8] CHOI H J,LEE D H,JEON H J,et al.Transcription factor 7-like 2 (TCF7L2) gene polymorphism rs7903146 is associated with stroke in type 2 diabetes patients with long disease duration[J].DiabetesResClinPrac,2014,103(3):e3-e6.
[9] SASAKI T,NAKATA R,INOUE H,et al.Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle[J].AmJPhysiol:EndocrinolMetab,2014,306(9):E1085-E1092.
[10] KISFALI P,POLGR N,SFRNY E,et al.Triglyceride level affecting shared susceptibility genes in metabolic syndrome and coronary artery disease[J].CurrMedChem,2010,17(30):3533-3541.
[11] FRAZIER-WOOD A C,ORDOVAS J M,STRAKA R J,et al.The PPAR alpha gene is associated with triglyceride,low-density cholesterol and inflammation marker response to fenofibrate intervention:the GOLDN study[J].PharmacogenomicsJ,2013,13(4):312-317.
[12] 林婄婄,高中元,喬利英,等.核受體因子PPARγ的研究進(jìn)展[J].四川畜牧獸醫(yī),2011,(5):32-34. LIN P P,GAO Z Y,QIAO L Y,et al.Advances of nuclear hormone factor:peroxisome proliferator-actived recepter gamma[J].SichuanAnimal&VeterinarySciences,2011,(5):32-34.(in Chinese)
[13] 林婄婄,高中元,袁亞男,等.PPARα和PPARγ基因在不同脂尾型綿羊脂肪組織中的發(fā)育性表達(dá)研究[J].畜牧獸醫(yī)學(xué)報(bào),2012,43(9):1369-1376. LIN P P,GAO Z Y,YUAN Y N,et al.Developmental expression of PPARα and PPARγ mRNA in adipose tissues of different fat-tailed sheep[J].ActaVeterinariaetZootechnicaSinica,2012,43(9):1369-1376.(in Chinese)
[14] HORNEMANNA T,WORGALLB T S.Sphingolipids and atherosclerosis[J].Atherosclerosis,2013,226(1):16-28.
[15] ALVAREZ M S,ALVAREZ A F,CUCARELLA C,et al.Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence[J].BiochemBiophysicalResCommun,2014,447(1):51-56.
[16] KARASAWA T,TAKAHASHI A,SAITO R,et al.Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice[J].ArteriosclerThrombVascBiol,2011,31:1788-1795.
[17] GOLDSTEIN J L,DEBOSE-BOYD R A,BROWN M S.Protein sensors for membrane sterols[J].Cell,2006,124(1):35-46.
[18] BOST F,CARON L,MARCHETTI I,et al.Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage[J].BiochemJ,2002,361(3):621-627.
[19] LIAO Q C,LI Y L,QIN Y F,et al.Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity[J].JCellBiochem,2008,104(5):1853-1864.
[20] YANG D C,TSAY H J,LIN S Y,et al.cAMP/PKA regulates osteogenesis,adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin[J].PLoSONE,2008,3(2):e1540-e1541.
[21] 武建亮,喬利英,劉建華,等.綿羊β3腎上腺素能受體基因在脂肪組織中的表達(dá)研究[J].畜牧獸醫(yī)學(xué)報(bào),2012,43(2):196-203. WU J L,QIAO L Y,LIU J H,et al.Expression of β3-adrenergic recept or gene in ovine adipose tissues[J].ActaVeterinariaetZootechnicaSinica,2012,43(2):196-203.(in Chinese)
[22] LI H F,F(xiàn)ONG C C,CHEN Y,et al.Beta-adrenergic signals regulate adipogenesis of mouse mesenchymal stem cells via cAMP/PKA pathway[J].MolCellEndocrinol,2010,323(2):201-207.
[23] FONTAINE C,COUSIN W,PLAISANT M,et al.Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells[J].StemCells,2008,26(4):1037-1046.
[24] CHOI S S,SYN W K,KARACA G F,et al.Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway[J].JBiolChem,2010,285(47):36551-36560.
[25] LEE R C,F(xiàn)EINBAUM R L,AMBROS V.TheC.elegansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[26] LI L C,POOKOT D,NOONAN E J,et al.MicroRNA-373 induces expression of genes with complementary promoter sequences[J].ProcNatlAcadSci,2008,105(5):1608-1613.
[27] PATEL K,KOLLORY A,TAKASHIMA A,et al.MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression[J].CancerLetters,2014,347(1):54-64.
[28] KAJIMOTO K,NARABA H,IWAI N.MicroRNA and 3T3-L1 pre-adipocyte differentiation[J].RNA,2006,12(9):1626-1632.
[29] 王樂(lè)樂(lè).雞let-7a的組織表達(dá)、功能預(yù)測(cè)及其靶基因ADIPOR2遺傳效應(yīng)分析[D].鄭州:河南農(nóng)業(yè)大學(xué),2013. WANG L L.Expression profile and function prediction of chicken miRNA let-7a and genetic variation analysis of target genes ADIPOR2[D].Zhengzhou:Henan Agricultural University,2013.(in Chinese)
[30] WANG Q,LI Y C,WANG J,et al.miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J].ProcNatlAcadSciUSA,2008,105(8):2889-2894.
[31] HATA K,NISHIMURA R,IKEDA F,et al.Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor c during bone morphogenetic protein 2-induced adipogenesis[J].MolBiolCell,2003,14 (2):545-555.
[32] SUN F,WANG J,PAN Q,et al.Characterization of function and regulation of miR-24-1 and miR-31[J].BiochemBiophysResCommun,2009,380(3):660-665.[33] CHAN M C,HILYARD A C,WU C,et al.Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR-24 expression[J].EMBOJ,2010,29(3):559-573.
[34] SATOH H,AUDREY NGUYEN M T,KUDOH A,et al.Yacon diet (Smallanthus sonchifolius,Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats[J].NutrDiabetes,2013,3(5):e70.
[35] ESAU C,KANG X,PERALTA E,et al.MicroRNA-143 regulates adipocyte differentiation[J].JBiolChem,2004,279(50):52361-52365.
[36] TAKANABE R,ONO K,ABE Y,et al.Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J].BiochemBiophysResCommun,2008,376(4):728-732.[37] XIE H M,LIM B,LODISH H F.MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J].Diabetes,2009,58(5):1050-1057.
[38] QIN L M,CHEN Y S,NIU Y N,et al.A deep investigation into the adipogenesis mechanism:Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway[J].BMCGenomics,2010,11(320):1-10.
[39] LIANG W C,WANG Y,WAN D C,et al.Characterization of miR-210 in 3T3-L1 adipogenesis[J].JCellBiochem,2013,114(12):2699-2707.
[40] MARTINELLI R,NARDELLI C,PILONE V,et al.miR-519d overexpression is associated with human obesity[J].Obesity,2010,18(11):2170-2076.
[41] ROTLLAN N,RAMíREZ C M,ARYAL B,et al.Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/-Mice—Brief Report[J].ArteriosclerThrombVascBiol,2013,33(8):1973-1977.
[42] ZHAO G J,TANG S L,LV Y C,et al.NF-κB suppresses the expression of ATP-binding cassette transporter A1/G1 by regulating SREBP-2 and miR-33a in mice[J].IntJCardiol,2014,171(3):e93-e95.
[43] MEERSON A,TRAURIG M,OSSOWSKI V,et al .Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α[J].Diabetologia,2013,56(9):1971-1979.[44] BROWN P T,SQUIRE M W,LI W J.Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow[J].CellTissueRes,2014,358(1):149-164.
[45] ZHANG Y,XIE R L,STEIN J L,et al.A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2[J].PNAS,2011,108(24):9863-9868.
[46] DENG Y,WU S,ZHOU H F,et al.Effects of a miR-31,Runx2,and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells[J].StemCellDev,2013,22(16):2278-2286.
[48] TRAJKOVSKI M,HAUSSER J,SOUTSCHEK J,et al.MicroRNAs 103 and 107 regulate insulin sensitivity[J].Nature,2011,474:649-653.
[49] VINNIKOV I A,HAJDUKIEWICZ K,REYMANN J,et al.Hypothalamic miR-103 protects from hyperphagic obesity in mice[J].JNeurosci,2014,34(32):10659-10674.
[50] KARBIENER M,F(xiàn)ISCHER C,NOWITSCH S,et al.microRNA miR-27b impairs human adipocyte differentiation and targets PPAR[J].BiochemBiophysResCommun,2009,390(2):247-251.
[51] SUN L,TRAJKOVSKIC M.MiR-27 orchestrates the transcriptional regulation of brown adipogenesis[J].Metabolism,2014,63(2):272-282.
[52] LEE E K,LEE M J,ABDELMOHSEN K,et al.miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression[J].MolCellBiol,2011,31(4):626-638.
[53] KIM C,LEE H,CHO Y M,et al.TNFα-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation[J].FEBSLetters,2013,587(23):3853-3858.
[54] LIZCANO F,VARGAS D.EID1-induces brown-like adipocyte traits in white 3T3-L1 pre-adipocytes[J].BiochemBiophysResCommun,2010,398(2):160-165.[55] YANG Z,BIAN C J,ZHOU H,et al.Differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1[J].StemCellDev,2011,20(2):259-267.
[56] HASHMI S,ZHANG J,SIDDIQUI S S,et al.Partner in fat metabolism:role of KLFs in fat burning and reproductive behavior[J].3Biotech,2011,1(2):59-72.
[57] MATSUBARA Y,AOKI M,ENDO T,et al.Characterization of the expression profiles of adipogenesis-related factors,ZNF423,KLFs and FGF10,during preadipocyte differentiation and abdominal adipose tissue development in chickens[J].ComparativeBiochemistryandPhysiology,PartB,2013,165:189-195.[58] KINOSHITA M,ONO K,HORIE T,et al.Regulation of adipocyte differentiation by activation of serotonin (5-ht) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5[J].MolEndocrinol,2010,24(10):1978-1987.
[59] ZHANG W B,ZHONG W J,WANG L.A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation[J].Bone,2014,58:59-66.
[60] KAWAKITA A,YANAMOTO S,YAMADA S I,et al.MicroRNA-21 promotes oral cancer invasion via the Wnt/β-Catenin pathway by targeting DKK2[J].PatholOncolRes,2013,20(2):253-261.
[61] MEI Y,BIAN C J,LI J,et al.miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J].JCellBiochem,2013,114(6):1374-1384.
(編輯 郭云雁)
Research Progress in Signaling Pathways and microRNA Regulation of Adipocyte Differentiation
JIA Xia-li#,PAN Yang-yang#,QIAO Li-ying,GUO Yun-yan,HU Zi-qiao,ZHANG Fang,LI Bao-jun,LIU Wen-zhong*
(CollegeofAnimalScienceandVeterinaryMedicine,ShanxiAgriculturalUniversity,Taigu030801,China)
Content of body fat in domestic livestocks and poultry determines the meat quality.Adipocyte differentiation is a complex biological process regulated by many factors.Understanding the adipose differentiation-related signaling pathways and their miRNA regulations can reveal the molecular mechanisms of adipocyte differentiation.Based on introduction to the 6 important signaling pathways regulating adipocyte differentiation,biological functions and mechanisms of 8 miRNAs for promoting and another 8 miRNAs for inhibiting adipocyte differentiation were discussed.The function of target genes of these miRNAs in adipogenesis was summarized.Studies on the related miRNAs and their target genes provide theoretical bases for genetic improvement of meat quality traits in domestic livestocks and poultry.
adipocyte;adipogenic differentiation;signaling pathways;microRNA;target gene
10.11843/j.issn.0366-6964.2015.04.002
2014-10-10
國(guó)家自然科學(xué)基金項(xiàng)目(31372292);山西省研究生優(yōu)秀創(chuàng)新項(xiàng)目(20143059)
賈夏麗(1988-),女,山西洪洞人,碩士生,主要從事肉用綿羊的分子遺傳育種研究,E-mail:jiaxialimm@163.com;潘洋洋(1989-),男,山東濰坊人,碩士生,主要從事肉用綿羊的分子遺傳育種研究,E-mail:pyybiology@163.com。賈夏麗和潘洋洋并列為第一作者
*通信作者:劉文忠,教授,E-mail:tglwzyc@163.com
S813.3
A
0366-6964(2015)04-0518-08