王文環(huán),彭緩緩,李光泉 ,呂文峰 ,魏晨吉,秦 勇
(1.中國石油 勘探開發(fā)研究院,北京 100083; 2.中國石化 石油工程技術(shù)服務(wù)有限公司,北京100020)
大慶低滲透油藏注水動態(tài)裂縫開啟機(jī)理及有效調(diào)整對策
王文環(huán)1,彭緩緩1,李光泉2,呂文峰1,魏晨吉1,秦 勇1
(1.中國石油 勘探開發(fā)研究院,北京 100083; 2.中國石化 石油工程技術(shù)服務(wù)有限公司,北京100020)
大慶長垣外圍低滲透油藏水驅(qū)開發(fā)受注水動態(tài)裂縫影響,水驅(qū)開發(fā)效果差。為改善水驅(qū)效果,需首先明確注水動態(tài)裂縫開啟規(guī)律,進(jìn)而才能提出開發(fā)調(diào)整對策。綜合利用地質(zhì)力學(xué)、油藏工程及數(shù)值模擬等方法,建立了注水動態(tài)裂縫開啟壓力計算方法,揭示了其開啟機(jī)理和延伸規(guī)律,并針對裂縫開啟不同情況,形成了相應(yīng)的調(diào)整對策。研究表明:當(dāng)注水壓力超過儲層現(xiàn)今最小水平主應(yīng)力時,裂縫首先沿現(xiàn)今最大水平主應(yīng)力方向開啟;隨著注水壓力繼續(xù)增加,裂縫沿與現(xiàn)今最大主應(yīng)力方向夾角較小的注采井連線方向開啟。根據(jù)裂縫開啟壓力計算方法,結(jié)合大慶外圍A油藏條件,其裂縫開啟的臨界注水壓力為9 MPa。油藏注水壓力為12~14 MPa,當(dāng)注水井排與現(xiàn)今最大水平主應(yīng)力方向一致時,油藏沿現(xiàn)今最大水平主應(yīng)力方向開啟單方向裂縫,剩余油主要沿裂縫呈條帶狀分布;當(dāng)注水井排與現(xiàn)今最大水平主應(yīng)力方向呈一定夾角時,油藏開啟多方向裂縫,剩余油被多方向裂縫切割呈零散分布?;诓煌W(wǎng)與裂縫匹配油藏剩余油分布模式,提出了“限壓注水控制多方向注水動態(tài)裂縫開啟、沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、側(cè)向基質(zhì)驅(qū)替”的開發(fā)新理念,給出了注水壓力界限與井網(wǎng)加密調(diào)整模式,現(xiàn)場應(yīng)用效果顯著。
注水動態(tài)裂縫;井網(wǎng)加密調(diào)整;低滲透油藏;大慶油田
大慶長垣外圍A低滲透油田位于松遼盆地,含油層系是扶、楊低滲透儲層,儲層發(fā)育多組剪切縫,但絕大部分表現(xiàn)為閉合無效縫[1-4],平均滲透率為10×10-3μm2。該油田于20世紀(jì)80年代中后期投入開發(fā),目前已逐步進(jìn)入中、高含水期,含水上升快、產(chǎn)量遞減大,水驅(qū)采收率為25%左右。為進(jìn)一步改善低滲透油藏水驅(qū)開發(fā)效果,前人在合理井網(wǎng)優(yōu)化調(diào)整方面開展了大量研究工作[5-21],主要是從井網(wǎng)與油井人工壓裂裂縫適配性研究的角度出發(fā),提出大井距、小排距的菱形反九點(diǎn)、五點(diǎn)矩形等井網(wǎng)方式。
筆者對大慶長垣外圍A低滲透油田35個不同類型油藏現(xiàn)場生產(chǎn)資料分析發(fā)現(xiàn),在低滲透油藏注水開發(fā)過程中,除了天然裂縫、油井人工壓裂裂縫外,還存在注水動態(tài)裂縫。只沿現(xiàn)今最大水平主應(yīng)力方向開啟了裂縫,發(fā)生了單方向油井暴性水淹;注水井排與現(xiàn)今最大水平主應(yīng)力方向不一致的油藏,沿多個注采井連線方向開啟了裂縫,導(dǎo)致多方向油井暴性水淹。注水動態(tài)裂縫導(dǎo)致油藏注入水無效循環(huán),難以形成基質(zhì)有效驅(qū)替,大大降低了油藏的存水率和水驅(qū)波及程度,水驅(qū)開發(fā)效果差。
為此,筆者開展了注水動態(tài)裂縫開啟機(jī)理及延伸規(guī)律研究,建立了注水動態(tài)裂縫開啟壓力計算方法,給出了避免多方向注水動態(tài)裂縫開啟的合理注水壓力界限。并進(jìn)一步開展了單方向及多方向注水動態(tài)裂縫開啟情況下,剩余油分布規(guī)律研究,形成了不同井網(wǎng)與裂縫匹配油藏注水壓力控制界限及井網(wǎng)側(cè)向加密調(diào)整模式。
針對低滲透油藏易于產(chǎn)生注水動態(tài)裂縫問題,首先從裂縫開啟理論入手,對油藏現(xiàn)今地應(yīng)力場、井網(wǎng)與注水動態(tài)裂縫匹配形式、以及注采壓力系統(tǒng)等進(jìn)行了綜合研究,明確了裂縫開啟的主控因素和延伸規(guī)律,給出了不同井網(wǎng)與裂縫匹配油藏有效控制多方向注水動態(tài)裂縫開啟的注水壓力界限。
1.1 注水動態(tài)裂縫開啟機(jī)理
前人研究認(rèn)為[22-29],裂縫的開啟是受現(xiàn)今水平地應(yīng)力和天然裂縫雙重因素控制的,注水開發(fā)中裂縫開啟順序取決于天然裂縫走向與現(xiàn)今最大水平主應(yīng)力方向的夾角,夾角越小,天然裂縫開啟壓力就越小,注入水將首先沿現(xiàn)今最大水平主應(yīng)力方向的天然裂縫推進(jìn)。隨著注水壓力的增大,其它方向的天然裂縫將依次開啟,導(dǎo)致油藏單方向或多方向水淹。筆者認(rèn)為,注水動態(tài)裂縫的開啟與天然裂縫無關(guān),主要取決于注水壓力及各注采井連線方向現(xiàn)今水平地應(yīng)力的大小。當(dāng)注水壓力大于某注采井連線方向現(xiàn)今水平地應(yīng)力時,該注采井連線上就會開啟裂縫,油井就會裂縫性水淹。
圖1 現(xiàn)今水平地應(yīng)力變化曲線
從不同方向現(xiàn)今水平地應(yīng)力變化軌跡曲線(圖1)可以看出,當(dāng)注采井連線與現(xiàn)今最大水平主應(yīng)力方向夾角為θ時,該方向現(xiàn)今水平地應(yīng)力可表示為:
pki=pkmin+(pkmax-pkmin)sinθ
(1)
式中:pki為不同注采井連線方向現(xiàn)今水平地應(yīng)力,MPa;pkmin為現(xiàn)今最小水平主應(yīng)力,MPa;pkmax為現(xiàn)今最大水平主應(yīng)力,MPa;θ為注采井連線與現(xiàn)今最大水平主應(yīng)力方向的夾角,(°)。
由此可見,沿現(xiàn)今最大水平主應(yīng)力方向的注采井連線方向首先開啟注水動態(tài)裂縫。隨著注水壓力增大,當(dāng)注水壓力超過其它注采井連線方向現(xiàn)今水平地應(yīng)力時,該方向也開啟裂縫。因此,現(xiàn)今最大、最小水平主應(yīng)力差值越小,注采井連線與現(xiàn)今最大水平主應(yīng)力方向夾角越小,就越容易開啟多方向注水動態(tài)裂縫。
1.2 注水動態(tài)裂縫開啟壓力界限
大慶長垣外圍A低滲透油田包括35個低滲透油藏,主要存在4種井網(wǎng)與裂縫匹配形式:注水井排與現(xiàn)今最大水平主應(yīng)力方向成26.5°的正方形反九點(diǎn)井網(wǎng)、注水井排與現(xiàn)今最大水平主應(yīng)力方向成0°的正方形反九點(diǎn)井網(wǎng)、菱形反九點(diǎn)井網(wǎng)、注水井排與現(xiàn)今最大水平主應(yīng)力方向成0°的反七點(diǎn)井網(wǎng)(圖2)。A油田現(xiàn)今最大水平主應(yīng)力為32.3 MPa,最小水平主應(yīng)力為19.4 MPa。這表明現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫開啟的臨界壓力為19.4 MPa。該油田油層中部平均深度為1 040 m,因此現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫開啟的注水壓力為9 MPa。同理,計算出不同注采井連線方向注水動態(tài)裂縫開啟壓力界限。注水井排與現(xiàn)今最大水平主應(yīng)力方向成26.5°的正方形
圖2 不同類型井網(wǎng)注水動態(tài)裂縫開啟壓力
反九點(diǎn)井網(wǎng),多方向注水動態(tài)裂縫開啟的注水壓力界限為13.1 MPa;0°正方形和菱形反九點(diǎn)井網(wǎng),多方向注水動態(tài)裂縫開啟注水壓力界限為18.1 MPa; 0°反七點(diǎn)井網(wǎng),多方向注水動態(tài)裂縫開啟注水壓力界限為20.2 MPa。由此可見,注采井連線與現(xiàn)今最大水平主應(yīng)力方向夾角越小,多方向注水動態(tài)裂縫開啟的注水壓力界限值越低,越容易產(chǎn)生多方向注水動態(tài)裂縫。
2.1 不同井網(wǎng)與裂縫匹配油藏水淹規(guī)律
目前大慶長垣外圍一類低滲透油藏注水壓力為12~14 MPa,二類、三類低滲透油藏注水壓力為15~16 MPa。因此,當(dāng)井網(wǎng)注水井排與現(xiàn)今最大水平主應(yīng)力方向一致時,注水壓力只是高于現(xiàn)今最大水平主應(yīng)力方向裂縫開啟壓力;當(dāng)注采井連線與現(xiàn)今最大水平主應(yīng)力方向成26.5°角時,注水壓力已高于多方向裂縫開啟壓力。生產(chǎn)實際表明,26.5°正方形反九點(diǎn)井網(wǎng)形式油藏出現(xiàn)了雙方向注水動態(tài)裂縫開啟及油井暴性水淹;0°正方形、菱形反九點(diǎn)及反七點(diǎn)等井網(wǎng)形式油藏,只開啟了現(xiàn)今最大水平主應(yīng)力單方向注水動態(tài)裂縫及油井暴性水淹。
因此,低滲透油藏注水井排與現(xiàn)今最大水平主應(yīng)力方向是否匹配是決定低滲透油藏能否有效開發(fā)的關(guān)鍵。合理調(diào)整井網(wǎng)、控制注水壓力避免多方向注水動態(tài)裂縫開啟是改善油藏開發(fā)效果的重要技術(shù)手段。
2.2 不同井網(wǎng)與裂縫匹配油藏剩余油分布規(guī)律
在不同井網(wǎng)與裂縫匹配油藏水淹規(guī)律認(rèn)識的基礎(chǔ)上,采用方向性壓敏效應(yīng)表征注水動態(tài)裂縫開啟延伸特征,非線性滲流理論表征裂縫側(cè)向基質(zhì)驅(qū)替特征,對不同井網(wǎng)與裂縫匹配油藏剩余油分布規(guī)律進(jìn)行了數(shù)值模擬研究,模擬結(jié)果見圖3。由圖3可以看出,注水動態(tài)裂縫的開啟方向控制著油藏的剩余油分布規(guī)律。當(dāng)油藏注水井排與現(xiàn)今最大水平主應(yīng)力方向一致時,由于僅開啟了現(xiàn)今最大水平主應(yīng)力方向的裂縫,導(dǎo)致注入水沿現(xiàn)今最大水平主應(yīng)力方向線性推進(jìn);轉(zhuǎn)注該裂縫方向水淹油井后,形成側(cè)向基質(zhì)驅(qū)替,因此剩余油主要沿現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫兩側(cè)呈條帶狀分布。當(dāng)油藏注水井排與現(xiàn)今最大水平主應(yīng)力方向不一致時,由于開啟了多方向裂縫,剩余油被多方向注水動態(tài)裂縫切割,束縛在裂縫交錯的區(qū)域內(nèi),呈零散分布。
圖3 不同井網(wǎng)與裂縫匹配油藏剩余油分布
圖4 不同類型井網(wǎng)加密調(diào)整模式
2.3 不同井網(wǎng)與裂縫匹配油藏井網(wǎng)加密調(diào)整模式
基于大慶長垣外圍A低滲透油田不同井網(wǎng)與裂縫匹配油藏存在的兩種水淹及剩余油分布規(guī)律,形成兩種井網(wǎng)加密調(diào)整模式。一是對于剩余油主要沿現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫兩側(cè)分布的油藏,轉(zhuǎn)注該方向水淹油井、沿裂縫側(cè)向加密油井,形成“沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、且側(cè)向加密油井”的線性井網(wǎng)模式(圖4a—c)。二是對于剩余油被多方向注水動態(tài)裂縫切割呈零散分布的油藏,轉(zhuǎn)注現(xiàn)今最大水平主應(yīng)力方向水淹油井、關(guān)閉其他方向水淹油井(因為轉(zhuǎn)注其他方向水淹油井,會導(dǎo)致開啟更多條現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫,必須關(guān)閉其他方向水淹油井,而不是轉(zhuǎn)注),且沿現(xiàn)今最大水平主應(yīng)力方向注水動態(tài)裂縫側(cè)向加密油井,最終同樣形成“沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、側(cè)向加密油井”的線性井網(wǎng)模式(圖4d);同時控制注水壓力,避免多方向裂縫開啟。由此,形成了低滲透油藏“沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、側(cè)向基質(zhì)驅(qū)替”的線性側(cè)向加密井網(wǎng)調(diào)整模式。
大慶長垣外圍A低滲透油田C5油藏1990年投入開發(fā),原井網(wǎng)為注水井排與現(xiàn)今最大水平主應(yīng)力方向成0°、井排距為300 m×300 m正方形反九點(diǎn)井網(wǎng)。調(diào)整前,油藏現(xiàn)今最大水平主應(yīng)力方向油井水淹,含水迅速上升,含水上升率高達(dá)7.2%,水驅(qū)開發(fā)矛盾日益突出。根據(jù)以上研究成果,對該油藏進(jìn)行了綜合加密調(diào)整試驗,轉(zhuǎn)注現(xiàn)今最大水平主應(yīng)力方向水淹油井、側(cè)向加密油井,將原面積井網(wǎng)加密調(diào)整為300 m×150 m的線性注水井網(wǎng)(圖4a);同時將注水壓力控制在13 MPa以下,避免了多方向注水動態(tài)裂縫開啟。
C5油藏加密調(diào)整后,平均單井日產(chǎn)油量1.5t,含水保持穩(wěn)定,水驅(qū)采收率由25%升至32%,加密調(diào)整效果顯著(圖5a)。
大慶長垣外圍A低滲透油田C55油藏1992年投入開發(fā),原井網(wǎng)為注水井排與現(xiàn)今最大水平主應(yīng)力方向成26.5°、井排距為300 m×300 m正方形反九點(diǎn)井網(wǎng)。調(diào)整前,油藏出現(xiàn)多方向油井暴性水淹,含水上升率高達(dá)14%,水驅(qū)開發(fā)矛盾日益突出。對該油藏進(jìn)行了綜合加密調(diào)整試驗,轉(zhuǎn)注現(xiàn)今最大水平主應(yīng)力方向水淹油井、側(cè)向加密油井,將原井網(wǎng)調(diào)整加密為220 m×130 m的線性注水井網(wǎng)(圖4d);同時將注水壓力控制在15 MPa左右。
圖5 不同類型油藏加密調(diào)整前后含水與采出程度關(guān)系
加密調(diào)整后,含水持續(xù)上升,平均單井日產(chǎn)油量持續(xù)遞減,水驅(qū)采收率僅提高1%左右(圖5b),加密調(diào)整效果很差。分析認(rèn)為有兩方面原因?qū)е抡{(diào)整的失敗,一是沒有關(guān)閉非現(xiàn)今最大水平主應(yīng)力方向水淹油井,導(dǎo)致注入水繼續(xù)無效循環(huán);二是注水壓力沒有控制在多向裂縫開啟壓力界限13 MPa以內(nèi),導(dǎo)致油藏又開啟新的注水動態(tài)裂縫。
1) 低滲透油藏長期注水開發(fā)后,因注水壓力高,導(dǎo)致單方向或多方向注水動態(tài)裂縫開啟,造成油井暴性水淹,降低水驅(qū)波及體積。因此,注水動態(tài)裂縫是控制水驅(qū)開發(fā)效果及剩余油分布規(guī)律的關(guān)鍵因素。
2) 低滲透油藏注水開發(fā)易于產(chǎn)生注水動態(tài)裂縫,而且對于多數(shù)低滲透油藏是不可避免的。注水動態(tài)裂縫的開啟與注水壓力和注采井連線方向現(xiàn)今水平地應(yīng)力大小密切相關(guān),根據(jù)文中建立的不同注采井連線方向現(xiàn)今水平地應(yīng)力計算公式,確定了不同井網(wǎng)與裂縫匹配油藏各注采井連線方向注水動態(tài)裂縫開啟壓力控制界限。
3) 針對不同井網(wǎng)與裂縫匹配類型油藏,形成了低滲透油藏“沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、側(cè)向加密油井”的線性側(cè)向加密井網(wǎng)調(diào)整模式。
4) 綜合以上研究,最終確立了“限壓注水控制多方向注水動態(tài)裂縫開啟、沿現(xiàn)今最大水平主應(yīng)力方向裂縫線性注水、側(cè)向基質(zhì)驅(qū)替”的開發(fā)新理念,為低滲透油藏有效水驅(qū)開發(fā)提供了新思路,現(xiàn)場應(yīng)用效果顯著。
[1] 王秀娟,孫貽鈴,龐彥明.三肇地區(qū)扶、楊油層裂縫和地應(yīng)力分布特征及對注水開發(fā)的影響[J].大慶石油地質(zhì)與開發(fā),2000,19(5):9-12. Wang Xiujuan,Sun Yiling,Pang Yanming.Distribution of fractures and stress in Sanzhao areaFuyang layer and their effects on water flooding development[J].Petroleum Geology & Oilfield Development in Daqing,2000,19(5):9-12.
[2] 王秀娟,楊學(xué)保,遲博,等.大慶外圍低滲透儲層裂縫與地應(yīng)力研究[J].大慶石油地質(zhì)與開發(fā),2004,23(5):88-90. Wang Xiujuan,Yang Xuebao,Chi Bo,et al.Fractures and stress of low permeability reservoirs in peripheral part of Daqing oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2004,23(5):88-90.
[3] 孫貽鈴,王秀娟.朝陽溝油田構(gòu)造裂縫及其有效性研究[J].大慶石油地質(zhì)與開發(fā),2005,24(1):33-34. Sun Yiling,Wang Xiujuan.Structural fracture and its validity in Chaoyanggou Oilfield [J].Petroleum Geology & Oilfield Development in Daqing,2005,24(1):33-34.
[4] 薛永超,程林松.微裂縫低滲透巖石滲透率隨圍壓變化實驗研究[J].石油實驗地質(zhì),2007,29(1):108-110. Xue Yongchao,Cheng Linsong.Experimental study on permeability variation with confining pressure in micro-fracture and low-permeabi-lity rock[J].Petroleum Geology & Experiment,2007,29(1):108-110.
[5] 張璋,何順利,劉廣峰.低滲透油藏裂縫方向偏轉(zhuǎn)時井網(wǎng)與水力裂縫適配性研究[J].油氣地質(zhì)與采收率,2013,20(3):98-101. Zhang Zhang,He Shunli, Liu Guangfeng.An investigation of suitability between well patternand hydraulic fracture system with deflected orientation in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2013,20(3):98-101.
[6] 樊兆琪,程林松,耿昌浩,等.低滲透油藏儲層非均質(zhì)性評價與井網(wǎng)調(diào)整新方法[J].石油鉆探技術(shù),2013,41(2):93-98. Fan Zhaoqi,Cheng Linsong,Geng Changhao,et al.A new approach for heterogeneity evaluation and well pattern adjustment in low permeability reservoirs[J].Petroleum Drilling Techniques,2013,41(2):93-98.
[7] 蘇玉亮,吳春新,高麗,等.特低滲透油藏水驅(qū)油注水界限的確定[J].石油鉆探技術(shù),2012,40(2):82-86. Su Yuliang,Wu Chunxin,Gao Li,et al.Determination of waterfloo-ding limits for driving an ultra-Low permeability reservoir[J].Petrol-eum Drilling Techniques,2012,40(2):82-86.
[8] 劉偉偉,蘇月琦,王茂文,等.特低滲油藏壓裂井注采井距與注水見效關(guān)系[J].斷塊油氣田,2012,19(6):736-739. Liu Weiwei,Su Yueqi,Wang Maowen,et al.Relationship of injector-producer spacing and waterflooding response for fracturingwells in ultra-low permeability reservoir[J].Fault-Block Oil & Gas Field,2012,19(6):736-739.
[9] 王玫珠,楊正明,王學(xué)武,等.大慶外圍特低滲透油藏非線性滲流周期注水研究[J].斷塊油氣田,2012,19(3):327-331. Wang Meizhu,Yang Zhengming,Wang Xuewu,et al.Study on cycle water injection considering non-linear flow of ultra-low permeability reservoir in periphery part of Daqing Oilfield[J].Fault-Block Oil & Gas Field,2012,19(3):327-331.
[10] 王文環(huán).提高薄互層低滲透砂巖油藏采收率的有效開發(fā)技術(shù)[J].石油與天然氣地質(zhì),2006,27(5): 660-667,674. Wang Wenhuan.Technology of effectively enhancing recovery efficiency in thin-interbedding low-permeability sandstone reservoirs[J].Oil & Gas Geology,2006,27(5): 660-667,674.
[11] 高寶國,滑輝,丁文閣,等.低滲透油田特高含水期開發(fā)技術(shù)對策:以渤南油田義11井區(qū)為例[J].油氣地質(zhì)與采收率,2013,20(6):97-99,103. Gao Baoguo,Hua Hui,Ding Wenge,et al .Technical treatment in extra-high water cut stage for low permeable reservoir: case study of Yi11 area,Bonan oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(6):97-99,103.
[12] 計秉玉.國內(nèi)外油田提高采收率技術(shù)進(jìn)展與展望[J].石油與天然氣地質(zhì),2012,33(1):111-117. Ji Bingyu.Progress and prospects of enhanced oil recovery technologies at home and abroad[J].Oil & Gas Geology,2012,33(1):111-117.
[13] 趙立強(qiáng),劉飛,王佩珊,等.復(fù)雜水力裂縫網(wǎng)絡(luò)延伸規(guī)律研究進(jìn)展[J].石油與天然氣地質(zhì),2014,35(4):562-569. Zhao Liqiang,Liu Fei,Wang Peishan,et al.A review of creation and propagation of complex hydraulic fracture network[J].Oil & Gas Geology,2014,35(4):562-569.
[14] 鄒桂麗,王新杰,李祥珠,等.低滲透油藏五點(diǎn)井網(wǎng)裂縫參數(shù)優(yōu)化研究[J].石油化工應(yīng)用,2013,32(11):16-19,28. Zou Guili,Wang Xinjie,Li Xiangzhu,et al.Low permeability reservoirs at five o'clock pattern fracture parameters optimization research[J].Petrochemical Industry Application,2013,32(11): 16-19,28.
[15] 茍波,郭建春.基于精細(xì)地質(zhì)模型的大型壓裂裂縫參數(shù)優(yōu)化[J].石油與天然氣地質(zhì),2013,34(6):809-815. Gou Bo,Guo Jianchun.Fracture parameter optimization of large hydraulic fracturing based on the fine geological model[J].Oil & Gas Geology,2013,34(6):809-815.
[16] 杜現(xiàn)飛,殷桂琴,齊銀,等.長慶油田華慶超低滲油藏水平井壓裂裂縫優(yōu)化[J].斷塊油氣田,2014,21(5):668-670. Du Xianfei,Yin Guiqin,Qi Yin,et al.Optimization on fracturing fracture of horizontal well in Huaqing ultra-low permeability reservoir of Changqing Oilfield[J].Fault-Block Oil and Gas Field,2014,21(5):668-670.
[17] 舒杰,唐海,王營營,等.含裂縫正方形反九點(diǎn)井網(wǎng)面積波及效率影響研究[J].斷塊油氣田,2014,21(3):360-363. Shu Jie,Tang Hai,Wang Yingying,et al.Study on areal sweep efficiency of square inverted nine-spot well pattern with crack[J].Fault-Block Oil and Gas Field,2014,21(3):360-363.
[18] 屈懷林,劉紅現(xiàn),覃建華,等.特低滲礫巖油藏有效驅(qū)動壓力系統(tǒng)評價及對策[J].斷塊油氣田,2013,20(6):752-754. Qu Huailin,Liu Hongxian,Qin Jianhua,et al.Evaluation and countermeasures on effective Driving pressure system of ultra-low permeability conglomerate reservoir[J].Fault-Block Oil and Gas Field,2013,20(6):752-754.
[19] 戚濤,呂棟梁,李標(biāo),等.四點(diǎn)井網(wǎng)含水率與采出程度關(guān)系的確定[J].斷塊油氣田,2014,21(2):208-212. Qi Tao,Lv Dongliang,Li Biao,et al.Determination of relationship between water cut and recovery percent of four-spot pattern[J].Fault-Block Oil and Gas Field,2014,21(2):208-212.
[20] 沈瑞,李兆國,段寶江,等.王窯油田西部低滲透油藏正方形反九點(diǎn)井網(wǎng)加密調(diào)整物理模擬[J].油氣地質(zhì)與采收率,2014,21(3):89-91. Shen Rui,Li Zhaoguo,Duan Baojiang, et al.Physical simulation of square inverted nine-spot pattern infilling and adjustment for low permeability reservoirs in western Wangyao oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):89-91.
[21] 李紅南, 徐懷民, 許寧, 等.低滲透儲層非均質(zhì)模式與剩余油分布——以遼河西部凹陷齊9—?dú)g50區(qū)塊杜家臺油層為例[J],石油實驗地質(zhì),2006,28(4):404-408. Li Hongnan,Xu Huaimin,Xu Ning,et al.The heterogeneity model of low permeability reservoir and remaining oil distribution—A case study of Dujiatai oil zone in Qi 9-Huan 50 block,the west Liaohe depression[J].Petroleum Geology & Experiment,2006,28(4):404-408.
[22] 趙良金,黃新文,王軍.文東油田沙河街組三段中亞段油藏裂縫發(fā)育規(guī)律及其對注水開發(fā)的影響[J].石油與天然氣地質(zhì),2009,30(1):102-107. Zhao Liangjin,Huang Xinwen,Wang Jun.Pattern of fracture occurrence and its influence on waterflooding in the Es3reservoirs of Wendong oilfield [J].Oil & Gas Geology,2009,30(1):102-107.
[23] 張莉,岳樂平,楊亞娟.鄯善油田地應(yīng)力、裂縫系統(tǒng)與油田開發(fā)[J].石油與天然氣地質(zhì),1999,20(4): 330-332. Zhang Li,Yue Leping,Yang Yajuan.In-situ stress,fracture system and oil-field developmet Shanshan oilfield[J].Oil & Gas Geology,1999,20(4): 330-332.
[24] 何江,付永雷,沈桂川,等.低滲砂巖儲層巖石學(xué)特征與應(yīng)力敏感性耦合關(guān)系——以鄂爾多斯盆地蘇里格-吉爾地區(qū)下石盒子組八段下亞段為例[J].石油與天然氣地質(zhì),2012,33(6):923-931. He Jiang,Fu Yonglei,Shen Guichuan,et al.Coupling relations between the petrologic characteristics and stress-sensitiveness in low-permeability sandstone reservoirs: an example from the lower 8thmember of the Lower Shihezi Formation in Sulige-Jier area,Ordos Basin[J].Oil & Gas Geology,2012,33(6): 923-931.
[25] 陳鳳,羅美娥,張維平,等.大慶外圍油田地應(yīng)力特征及人工裂縫形態(tài)分析[J].斷塊油氣田,2006,13(3):13-15. Chen Feng,Luo Meie,Zhang Weiping,et al.Ground stress characte-ristics and artificial fracture morphology analysis of peripheral low permeability reservoirs[J].Fault-block Oil & Gas Field,2006,13(3):13-15.
[26] 唐汝眾,李根生.雙重介質(zhì)低滲透儲層的壓裂診斷與施工工藝[J].石油鉆探技術(shù),2004,32(4):57-59. Tang Ruzhong,Li Gensheng.Fracturing diagnosis and execution technology for low-permeability dual-media reservoirs[J].Petroleum Drilling Techniques,2004,32(4):57-59.
[27] 孫松領(lǐng),李琦,李娟,等.低滲透砂巖儲層構(gòu)造裂縫預(yù)測及開啟性分析[J].特種油氣藏,2007,14(1):30-33. Sun Songling,Li Qi,Li Juan,et al.Prediction and analysis of the opening of tectonic fracture in low permeability sandstone reservoir[J].Special Oiland Gas Reservoirs,2007,14(1):30-33.
[28] 曾聯(lián)波著.低滲透砂巖儲層裂縫的形成與分布[M].北京:科技出版社,2008:101-122. Zeng Lianbo.Formation and distribution of fractures in low permeability sandstone reservoir[M].Beijing: Science Press,2008:101-122.
[29] 謝景彬,龍國清,田昌炳,等.特低滲透砂巖油藏動態(tài)裂縫成因及對注水開發(fā)的影響——以安塞油田王窯區(qū)長6油組為例[J].油氣地質(zhì)與采收率,2015,22(3):106-110. Xie Jingbin,Long Guoqing,Tian Changbing,et al.Genetic mechanism of dynamic fracture and its influence on water flooding development in extra-low permeability sandstone reservoir:a case of Chang6 member in Wangyao area,Ansai oilfield[J].Petroleum Geology and Recovery Efficiency,2015,22(3):106-110.
(編輯 張亞雄)
Opening mechanism of dynamic fractures caused by water injection and effective adjustments in low permeability reservoirs,Daqing oilfield in Songliao Basin
Wang Wenhuan1,Peng Huanhuan1, Li Guangquan2, Lyu Wenfeng1,Wei Chenji1,Qin Yong1
(1.ResearchInstituteofPetroleumExploration&Development,PetroChina,Beijing100083,China;2.OilfieldServiceCorporation,SINOPEC,Beijing100020,China)
The performance of water flooding in low permeability reservoirs of Daqing oilfield is not satisfied due to the dynamic induced fractures.Understanding of the opening mechanisms of the dynamic induced fractures and optimization of development adjustment schemes are critical to improving water flooding recovery.Geomechanics, reservoir engineering and numerical simulation methods were utilized to establish a new method to calculate the fracture opening pressure and reveal propagation mechanism.Corresponding adjustment measures are proposed for different fracture opening scenarios.Results indicate that when injection pressure exceeds the current minimum horizontal principle stress, dynamic fractures will open first in the direction of the maximum horizontal principle stress.Then, they may open in the direction of line connecting injector and producer that has the smallest included angle with current maximum principle stress along with the rising injection pressure.Based on calculation methods of fracture opening pressure and in combination with the conditions of A reservoir in the periphery of Daqing oilfield, a critical injection pressure of 9 MPa is determined for fracture opening.Actually the injection pressure of A oilfield is up to 12~14 MPa.When the line of injection wells is in parallel with the current maximum horizontal principle stress, fractures only open in the direction of the maximum horizontal principle stress, and remaining oil are distributed along the fractures on both sides.Otherwise, fractures open in multiple directions, and the remaining oil distribute irregularly.Based on the remaining oil distribution under different well patterns, a new concept is proposed that ‘controlling the opening of multi-directional dynamic fractures through limiting injection pressure and line flooding along the dynamic fracture in parallel with the maximum horizontal principle stress and lateral matrix displacement’.Water injection pressure limits and well pattern adjustment strategies are proposed under the gui-dance of this concept, and their field application is very successfully.
water flooding dynamic fracture,well pattern infilling adjustment,low permeability reservoir,Daqing oilfield
2015-04-10;
2015-06-20。
王文環(huán)(1965—),女,高級工程師、博士,低滲透油氣田開發(fā)。E-mail:wangwenhuan@petrochina.com.cn。
國家科技重大專項(2011ZX05013-006);中國石油天然氣股份有限公司油氣田開發(fā)重大科技項目(2011B-1205)。
0253-9985(2015)05-0842-06
10.11743/ogg20150517
TE348
A