白翠媚+梅昀+張苗
摘要:采用武漢市1996-2010年的土地利用變更數(shù)據(jù)、能源數(shù)據(jù)以及相關經濟數(shù)據(jù),通過構建碳排放、碳足跡模型,測算近15年來武漢市土地利用的碳排放量和碳足跡,并分析其碳排放量、碳足跡的變化及影響因素。結果表明,武漢市建設用地碳排放量占碳排放總量的98%以上,在1996-2010年處于逐年增加的狀態(tài),2010年已達到1996年的1.4倍;武漢市的總碳足跡和人均碳足跡也在逐年增加,碳赤字較為嚴重。碳排放總量的不斷增加主要是由武漢市建設用地不斷擴大以及經濟增長方式和能源結構不合理造成。為此,武漢市不僅要控制建設用地的擴張,同時還應改變經濟增長方式、調整能源消費結構。
關鍵詞:碳排放;碳足跡;建設用地;能源結構;武漢市
中圖分類號:F301.24 ? ? ? ?文獻標識碼:A ? ? ? ?文章編號:0439-8114(2015)02-0313-05
DOI:10.14088/j.cnki.issn0439-8114.2015.02.015
Land Use Patterns of Carbon Emissions and Carbon Footprint of Wuhan City
BAI Cui-mei, MEI Yun, ZHANG Miao
(Land Management College, Huazhong Agriculture University,Wuhan 430070, China)
Abstract: In order to build a “two sides society” and develop the low-carbon economy, the carbon emission and energy carbon footprint of Wuhan city during past 15 years were estimated. The changes and the impact factors were analyzed with carbon emission model and carbon footprint model based on data of land use patterns, data of energy and data of economic of Wuhan city from 1996 to 2010. The results showed that the carbon emission of construction land accounted for more than 98% of total carbon emissions, and gradually increased from 1996 to 2010. Carbon emission of construction land in 2010 was 1.4 times more than that in 1996. The total carbon footprint and per capita carbon footprint of Wuhan city increased constantly. Carbon deficit in Wuhan city was severe. The increase of total carbon emission was mainly caused by the increase of construction land and the growth way of the economic and the irrational energy structure in Wuhan. The expansion of construction land must be controlled. The growth mode of economy and the structure of the energy consumption should by adjusted.
Key words: carbon emission; carbon footprint; construction land; energy structure; Wuhan city
氣候變暖是全世界公認的環(huán)境問題,造成氣候變暖的原因主要是溫室氣體排放量的大幅增加。2005年2月16日《京都議定書》正式生效,給CO2排放量居世界第二位的中國帶來了嚴峻和現(xiàn)實的壓力與挑戰(zhàn)[1],掀起學術界有關碳排放研究的熱潮。有學者對經濟增長與碳排放的關系進行了研究。彭佳雯等[2]利用脫鉤模型探討了中國經濟增長與能源碳排放的脫鉤關系及程度;杜婷婷等[3]則以庫茨涅茲環(huán)境曲線及衍生曲線為依據(jù),對中國CO2排放量與人均收入增長時序資料進行統(tǒng)計擬合得出中國經濟發(fā)展與CO2排放的函數(shù)關系。也有學者對土地利用類型轉變引起的碳排放效應變化進行了研究。如蘇雅麗等[4]對陜西省土地利用變化的碳排放效益進行了研究。對于土地利用碳排放影響因素的研究也有了一定的成果,主要是利用指數(shù)分解法對影響土地利用碳排放效應的因素進行分解分析,如蔣金荷[5]運用對數(shù)平均Divisia指數(shù)法(LMDI法)定量分析了中國1995-2007年碳排放的影響因素及貢獻率。對于碳足跡的研究,趙榮欽等[6]計算和分析了江蘇省不同土地利用方式能源消費碳排放與碳足跡。還有其他學者通過碳足跡計算模型,從碳足跡核算和碳足跡評價的角度進行了有意的探討[7-9]。研究不同土地利用方式的碳排放效應,有助于從土地利用調控的角度控制碳排放。本研究以武漢市為例,分析武漢市土地利用碳排放和碳足跡,探討武漢市碳排放變化的影響因素,為武漢市調控土地利用以減少碳排放提供科學依據(jù),對武漢市構建“兩型社會”具有重要的理論與現(xiàn)實意義。endprint
1 ?研究區(qū)域概況
武漢市位于中國的中部地區(qū)、江漢平原的東部,地處東經113°41′-115°05′,北緯29°58′-31°22′。地形以平原為主,擁有豐富的自然資源。截至2010年,全市土地面積為8 494.41 km2,農用地面積為4 270.45 km2,其中耕地面積為3 174.05 km2,林地面積為975.81 km2, 建設用地1 596.51 km2,未利用地面積2 627.45 km2。本年全市國民生產總值達到6 762.20億元,同比增長12.5%,位居15個副省級城市第五位。第一、第二、第三產業(yè)分別為198.70億、3 254.02億、3 303.48億元,比重為2.94%、48.12%、48.94%。人均GDP為68 286.24元,城鎮(zhèn)居民人均可支配收入23 738.09元,農村居民人均純收入9 813.59元。全市全年社會消費品零售總額達2 959.04億元。
2 ?研究方法與數(shù)據(jù)來源
2.1 ?碳排放測算模型
根據(jù)李穎等[10]、蘇雅麗等[4]的研究,本研究基于各種用地類型的碳排放/碳吸收系數(shù)計算碳排放量,主要涉及耕地、林地、草地、建設用地。其中建設用地具有碳源效應,耕地上的農作物雖然能夠吸收二氧化碳,但是在很短的時間內又會被分解釋放到空氣中,因此將耕地視為碳源[11],林地和草地為碳匯。
碳排放測算公式[10]:
CL=∑Si■·Qi ? (1)
其中,CL為碳排放總量;Si為第i種土地利用類型的面積;Qi為第i種土地利用類型的碳排放(吸收)系數(shù),吸收為負,其中耕地、林地、草地的碳排放系數(shù)分別為0.422、-0.644、-0.02 tC/hm2[12]。
建設用地的碳排放主要通過計算其建設過程消耗能源所產生的碳排放間接得到。這里的能源主要是指煤炭、石油和天然氣。
建設用地碳排放估算公式[10]:
CP=∑ni=∑M■·Qi ?(2)
其中,CP為碳排放量;ni為第i種能源的碳排放量;Mi為第i種能源消耗標準煤;Qi為第i種能源的碳排放系數(shù),其中煤、石油、天然氣的碳排放系數(shù)分別為0.747 6 tC/t標準煤、0.582 5 tC/t標準煤、0.443 4 tC/t標準煤[12]。
2.2 ?不同土地利用類型的碳足跡
碳足跡是指吸收碳排放所需的生產性土地(植被)面積,即碳排放的生態(tài)足跡[13]。凈生態(tài)系統(tǒng)生產力即NEP是指1 hm2植被一年的碳吸收量,用來反映植被的固碳能力[13],采用NEP指標反映不同植被的碳吸收量,并以此計算出消納碳排放所需的生產性土地的面積(碳足跡)。森林和草原是主要的陸地生態(tài)系統(tǒng),因此本文主要考察這兩種植被類型的碳吸收[13]。根據(jù)趙榮欽等[6]、謝鴻宇等[13]的方法,首先計算出化石能源碳排放量,再根據(jù)森林和草地的碳吸收量計算出各自的碳吸收比例,最后由各自的NEP計算出吸收化石能源消耗碳排放所需的森林和草地的面積。化石能源碳足跡計算公式為:
A=∑A■=■+ ■ ?(3)
其中,A為總的化石能源碳足跡,Ai為第i類能源的碳足跡,Ci為第i種能源的消耗量(萬噸標準煤),Qi為第i種能源的碳排放系數(shù),P■與P■分別為森林與草原吸收碳的比例;NEP■與NEP■分別為森林和草地的凈積累量。吸收1 t的CO2所需的相應生產用地土地面積計算結果見表1。
2.3 ?數(shù)據(jù)來源
能源數(shù)據(jù)與經濟數(shù)據(jù)來源于《武漢市統(tǒng)計年鑒(1996-2010)》,武漢市土地利用結構數(shù)據(jù)來源于武漢國土資源和規(guī)劃局。
3 ?結果與分析
3.1 ?武漢市碳排放量
根據(jù)公式(1)、(2)和《武漢市統(tǒng)計年鑒》所查詢的武漢市能源消耗量,以及武漢市歷年土地變更數(shù)據(jù),計算武漢市1996-2010年的碳排放量見表2。
從不同土地利用類型的碳排放量來看(表2),建設用地的碳排放量占碳排放總量的98%以上, 由此可以說明建設用地為主要的碳源。同時可以看到,武漢市的建設用地碳排放量增加較快, 1996到2010年間,武漢市建設用地碳排放量增加了1 091.6萬t,增幅為88.58%,碳排放總量也增加了87.21%。通過SPSS 19對建設用地面積與碳排放總量進行雙側檢驗,結果表明,在0.01水平下顯著相關,可見武漢市的碳排放總量與建設用地的碳排放量走勢保持同步。
在建設用地面積增加的同時,耕地面積在不斷減少,但是耕地面積的減少對碳排放總量并沒有起到明顯的影響,原因可能有兩個方面,一是耕地的碳排放量相對于建設用地來講數(shù)量太小,最高也只占碳源排放總量的1.6%;二是耕地轉變?yōu)榻ㄔO用地不僅沒有降低碳排放量,反而會增加碳排放量。
另一方面,武漢市的碳吸收總量也在不斷增加,1996到2010年間增加了2.09萬t,增幅為49.76%,其中占碳匯吸收比例較小的草地碳吸收量在逐年下降,但是林地的碳吸收量占總吸收量的90%以上,甚至有些年份達到了99%以上,且林地面積在不斷擴大,林地的固碳量在增加,從而使得武漢市碳吸收量15年間不斷增加。
3.2 ?武漢市建設用地碳足跡分析
由公式(3)計算武漢市1996-2010年的能源消耗碳足跡間接得到建設用地碳足跡,如表3所示。由表3中可以看出,武漢市的建設用地碳足跡逐年增加,在此期間,雖然武漢市的林地與草地的總面積有所增加,但是遠遠不足總碳足跡的增加速度,同時人均碳足跡由0.63 hm2增加為0.74 hm2,由此表明武漢市的生態(tài)系統(tǒng)不足以彌補能源消費的碳足跡。不同能源的碳足跡表明,煤炭的消費是引起總碳足跡增加的主要原因。表3也表明,森林的碳吸收能力比草地要強,碳足跡以森林為主。endprint
3.3 ?影響因素分析
3.3.1 ?土地利用結構 ?不同的土地利用結構對碳排放量與碳吸收量都會產生影響。1996-2010年武漢市土地利用結構變化見表4。由表4可以看出,武漢市的林地面積不斷增加,草地面積在減少,但是由于林地是主要的碳匯,因此武漢市的碳匯量隨林地面積的增加而增加。耕地面積在減少,建設用地面積不斷增加,且增加速度較快,一部分面積的增加是由于耕地的非農化,即耕地轉為了建設用地,而建設用地是主要碳源,因此,武漢市的碳排放量隨建設用地面積增加而增加。
3.3.2 ?經濟增長方式 ?現(xiàn)有的研究表明[10],國家工業(yè)化,能源消費碳排放是最主要的排放類型,可占二氧化碳排放的90%以上。從上述武漢市碳排放量測算結果來看,能源碳排放占碳排放總量的98%以上。由此,應分析經濟發(fā)展中能源消費帶來的碳排放變化。
碳排放強度是碳排放量與國內生產總值(GDP)的比值,是衡量溫室氣體排放的指標,可以作為發(fā)展中國家承認和反映其對減緩氣候變化的貢獻指標[14]。計算可知,1996-2010年武漢市碳排放強度總體上呈下降趨勢,由1996年的1.88 t/萬元下降到2010年的0.53 t/萬元,下降了71.81%,年平均下降4.79%。根據(jù)何建坤等[14]的研究,要實現(xiàn)二氧化碳的絕對減排,碳排放強度的下降率要大于GDP的增長率。而武漢市1996-2010年碳排放強度下降率遠小于14.54%的GDP增長率,這遠遠不能實現(xiàn)碳減排。
經濟增長既需要資本的投入,也需要土地、能源等物資投入,若經濟增長使得土地、能源等物資消耗加劇,碳排放量加大,則資源利用效率降低,對環(huán)境的不利影響加劇,顯然這種經濟增長方式不可取。為評判經濟增長對碳排放變化的影響,可選用能源碳排放系數(shù),即能源碳排放增長速度與國內生產總值的比值來反映經濟增長對碳排放的影響,其與能源消費彈性系數(shù)具有同樣的測量意義[15]。已有研究表明,發(fā)展中國家能源消費彈性系數(shù)一般都大于或接近于1,而發(fā)達國家則小于或接近0.5[15]。其值越大,說明能源碳排放增長快于經濟增長速度。計算發(fā)現(xiàn),武漢市能源碳排放系數(shù)達到了0.76,遠遠大于0.5。由此說明,武漢市的經濟增長促進了碳排放量的增加。
3.3.3 ?能源結構 ?不同的能源其碳排放系數(shù)不同,三大能源中,煤炭的碳排放系數(shù)最大,天然氣最小,石油居中。因此,煤炭的消耗量越大,則能源碳排放量越大。根據(jù)公式(2)可測算各種能源碳排放量,并得出三大能源碳排放量趨勢圖(見圖1)。由于各能源的碳排放量與能源消費量之間呈正比,因此,能源碳排放量的趨勢與能源消費量的趨勢一致。由圖1可知,石油和天然氣的消費量在1996-2010年間較為平穩(wěn),煤炭的消費量在1996-2002年間保持穩(wěn)定,2002-2006年快速上升,2006-2009出現(xiàn)微小下降,2010年又開始上升,與武漢市碳源排放總量變化走勢一致,煤炭消耗量占總能源的67%以上。可以看出,武漢市是以煤炭為主的能源結構。
平均碳排放系數(shù)是指能源碳排放總量與能源消耗總量的比值,其變化能夠反映能源結構變動對碳排放量的影響。當?shù)吞寄茉幢壤脑黾訒r,平均碳排放系數(shù)將會變小。從圖1來看,武漢市1996-2010年的平均碳排放系數(shù)較為平穩(wěn),在0.707~0.717之間浮動。以上分析表明,武漢市能源消費結構不合理。
3.3.4 ?碳足跡影響因素分析 ?武漢市能源消耗總量在15年間由1 790.13萬t增長到了3 352.96萬t,與此同時,其碳足跡也由328.13萬hm2增長到了618.78萬hm2。能源消耗總量與碳足跡走勢圖(圖2)表明,碳足跡隨著能源消耗總量的變動而變動,兩者呈現(xiàn)出高度一致的走勢。
采用回歸分析可以定量分析能源消耗總量與碳足跡的關系。本文以95%的置信度通過有關檢驗,其相關性如表5所示,能源消耗量與碳足跡的相關系數(shù)達到了0.999 5,說明碳足跡受能源消耗總量影響較大。
4 ?小結與討論
1)建設用地是主要的碳源,其碳排放量占總碳排放總量的98%以上。建設用地面積的增加是武漢碳排放量增加的一個重要原因。發(fā)展低碳經濟,建設“兩型社會”,武漢需控制建設用地面積的不斷擴大。同時,提高土地利用集約度,通過集約利用緩解建設用地供求矛盾,實現(xiàn)低碳集約利用。
2)武漢市的總碳足跡和人均碳足跡在不斷增加,雖然武漢市的林地與草地的總面積有所增加,但是遠遠不足總碳足跡的增加速度,表明武漢市碳赤字較為嚴重。其中,森林碳足跡和煤炭碳足跡為碳足跡的主要“碳匯”和“碳源”,煤炭的消耗是引起總碳足跡增加的主要原因。因此,增強生產性土地,特別是森林的固碳能力,改善能源消費結構,減少煤炭消費量,提高石油、天然氣等能源的消費比例,可以較好地降低碳排放水平。
3)1996-2010年,武漢市碳排放量總體上升。主要原因除了建設用地面積不斷增加外,還受經濟增長方式與能源結構的影響。較高的能源碳排放系數(shù)反映出武漢市目前的經濟增長方式不利于低碳經濟的發(fā)展。建立低碳的能源體系,調整產業(yè)結構和能源消費結構,是發(fā)展低碳經濟社會的關鍵。
4)通過土地利用變化以及能源消費量的變化分析了武漢市的碳排放以及碳足跡的變化,但是在計算能源消費碳排放時,因數(shù)據(jù)的限制,僅考慮了化石能源消費所帶來的碳排放,未計算農村生物質能燃燒帶來的碳排放。同時,由于目前對碳足跡的概念和計算邊界缺乏統(tǒng)一的定義,計算數(shù)據(jù)獲取難度較大,碳足跡的研究需要進一步深入探討與完善。
參考文獻:
[1] 莊貴陽.低碳經濟:中國之選[J].中國石油石化,2007,7(13):32-34.
[2] 彭佳雯,黃賢金,鐘太洋,等.中國經濟增長與能源碳排放的脫鉤研究[J].資源科學,2011,33(4):626-633.endprint
[3] 杜婷婷,毛 ?鋒,羅 ?銳.中國經濟增長與CO2排放演化探析[J].中國人口資源與環(huán)境,2007,17(2):94-99.
[4] 蘇雅麗,張艷芳.陜西省土地利用變化的碳排放效益研究[J].水土保持學報,2011,25(1):152-156.
[5] 蔣金荷.中國碳排放量測算及影響因素分析[J].資源科學, 2011,33(4):597-604.
[6] 趙榮欽,黃賢金.基于能源消費的江蘇省土地利用碳排放與碳足跡[J].地理研究,2010,29(9):1639-1649.
[7] SOVACOOL B K, BROWN M A. Twelve metropolitan carbon footprints: A preliminary comparative global assessment[J]. Energy Policy, 2010, 38(9):4856-4869.
[8] KENNY T, GRAY N F. Comparative performance of six carbon footprint models for use in Ireland[J]. Environmental Impact Assessment Review, 2009, 29(1):1-61.
[9] 黃賢金,葛 ?楊,葉堂林,等.循環(huán)經濟學[M].南京:東南大學出版社,2009.
[10] 李 ?穎,黃賢金,甄 ?峰.江蘇省區(qū)域不同土地利用方式的碳排放效應分析[J].農業(yè)工程學報,2008,24(S2):102-107.
[11] 肖紅艷,袁興中,李 波,等.土地利用變化碳排放效應研究—以重慶市為例[J].重慶師范大學學報(自然科學版),2012,29(1):38-43.
[12] 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. Geneva:IPCC,2006.
[13] 謝鴻宇,陳賢生,林凱榮,等.基于碳循環(huán)的化石能源及電力生態(tài)足跡[J].生態(tài)學報,2008,28(4):1729-1735.
[14] 何建坤,劉 濱.作為溫室氣體排放量衡量指標的碳排放強度分析[J].清華大學學報(自然科學版),2004,44(6):740-743.
[15] FANG J Y, CHEN A P, PENG C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292:2320-2322.
[16] 藍家程,傅瓦利,袁 ?波,等.重慶市不同土地利用碳排放及碳足跡分析[J].水土保持學報,2010,26(1):146-155.endprint