屈文振,廖偉雄,張 浩,李 冀,王克濤,楊以萌,李眾利
解放軍總醫(yī)院 骨科,北京 100853
鈦合金球頭鍍類金剛石碳膜人工髖關節(jié)磨屑分析
屈文振,廖偉雄,張 浩,李 冀,王克濤,楊以萌,李眾利
解放軍總醫(yī)院 骨科,北京 100853
目的分析鈦合金球頭鍍類金剛石碳(diamond-like carbon,DLC)膜人工髖關節(jié)的磨屑特征。方法實驗設置3組:進口關節(jié)組(A),鈷鉻鉬合金球頭對超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)臼杯(CoCrMo-UHMWPE,Zimmer,America);鍍膜關節(jié)組(B),鍍類金剛石碳膜鈦合金球頭對超高分子量聚乙烯臼杯(Ti-DLC- UHMWPE,京航,中國);國產關節(jié)組(C),鈷鉻鉬合金球頭對超高分子量聚乙烯臼杯(CoCrMo- UHMWPE,京航,中國)。髖關節(jié)模擬機運行0.33×106轉后,收集含有磨屑的小牛血清潤滑液,經酸消解過濾后,用掃描電鏡-能量色散X線分析儀鑒定濾膜上的磨屑。采用Image-Pro Plus 6.0對電鏡圖片進行圖像分析獲取顆粒大小、形狀、數(shù)量信息,比較各組的差異。結果能量色散X線分析顯示磨屑的元素峰主要為碳(C)峰,未見明顯的鈷(Co)、鉻(Cr)、鉬(Mo)、鈦(Ti)等金屬元素峰。各組磨屑60%以上為類球狀顆粒,粒徑為0.1 ~ 40μm,0.1 ~ 1μm的顆粒數(shù)量較多,1μm以上的顆粒所占體積百分比大;B組濾膜上的磨屑數(shù)量少于另外兩組。結論實驗產生的磨屑主要為超高分子量聚乙烯顆粒;鈦合金球頭鍍類金剛石碳膜人工髖關節(jié)可減少磨屑的數(shù)量。
髖假體;超高分子量聚乙烯;類金剛石碳;磨屑
人工全髖關節(jié)置換術(total hip arthroplasty,THA)經過不斷發(fā)展,目前已經成為最常見的關節(jié)置換手術[1]。然而,術后假體產生的磨屑會誘發(fā)細胞反應,引起假體周圍骨溶解,導致假體松動。據(jù)文獻報道,每年接受關節(jié)置換手術患者術后骨溶解及關節(jié)松動的發(fā)生率達到了20%[2-3]。磨屑的類型取決于人工關節(jié)摩擦界面應用的材料和固定方式。目前,假體磨屑主要有聚合物[通常是超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)或者高交聯(lián)聚乙烯]、金屬(通常是鈷鉻鉬合金CoCrMo、鈦合金)、氧化鋁陶瓷和骨水泥(PMMA)。其中關于UHMWP磨屑和金屬磨屑的研究最多,因為金屬-UHMWPE和陶瓷-UHMWPE是人工關節(jié)最常用的摩擦配伍界面。UHMWP磨屑是最主要的摩擦產物,假體周圍組織消化分解后的細胞學檢查發(fā)現(xiàn),磨屑中70% ~ 90%都是聚乙烯顆粒[4]。金屬磨屑可使局部組織或血液中金屬離子含量升高,超過正常閾值,具有潛在的細胞毒性[5-6]。陶瓷材料由于其低摩擦系數(shù)的特點,產生的陶瓷磨屑少,粒徑小,易碎裂是其最大的缺點[7]。傳統(tǒng)的骨水泥固定假體會在人體內產生大量骨水泥顆粒。隨著人們對假體磨屑危害認識的加深,無骨水泥的生物型固定應用越來越廣泛。2012年美國93%接受THA的患者都采用了生物型固定假體[8]。研究表明,磨屑的類型、尺寸、形狀、數(shù)量、表面形貌都可以影響磨屑引起細胞反應的大小。因此,準確把握磨屑特征可以更好地評估假體摩擦產物引起細胞反應的潛在能力,對于改進人工關節(jié)生物材料和假體設計有重要的參考意義。本實驗收集了髖關節(jié)模擬機運行0.33×106轉后含有磨屑的小牛血清潤滑液,對鈦合金球頭鍍類金剛石碳膜人工髖關節(jié)的磨屑進行了初步的定性、定量分析,并與對照組進行比較。
1 儀器試劑 所用試劑均為分析純級別。37%鹽酸(體積分數(shù)),無水甲醇,蒸餾水,可換膜過濾器(直徑25 mm,Millipore),聚碳酸酯濾膜(直徑25 mm,Whatman),水浴恒溫振蕩器(SHZ-88,金壇市岸頭儀都儀器廠),數(shù)顯電熱鼓風干燥箱(HD,昆山海達精密儀器有限公司),掃描電鏡-X線能譜儀(SEM-EDS)(S-3000N,日本Hitachi)。
2 實驗分組 實驗設置3組:進口關節(jié)組(A),鈷鉻鉬合金球頭對超高分子量聚乙烯臼杯(CoCrMo-UHMWPE,Zimmer,America);鍍膜關節(jié)組(B),鍍DLC膜鈦合金球頭對超高分子量聚乙烯臼杯(Ti-DLC-UHMWPE,京航,中國);國產關節(jié)組(C),鈷鉻鉬合金球頭對超高分子量聚乙烯臼杯(CoCrMo-UHMWPE,京航,中國)。
3 髖關節(jié)模擬機實驗 采用蛋白質濃度為17 g/L的小牛血清(加入了0.03%疊氮化鈉)作為潤滑介質。Prosim髖關節(jié)模擬機運行0.33×106轉后,收集血清標本,-80℃保存。
4 磨屑提取 取體積分數(shù)為37%的濃鹽酸40 ml置于離心管中,加入10 ml的小牛血清標本,于50℃恒溫振蕩箱中放置1 h。消解完畢后(此時溶液變?yōu)樽仙?,配成不同濃度,各取0.5 ml消解液,分別加入10 ml甲醇稀釋(20倍組),100 ml甲醇(200倍)稀釋。將稀釋后的消化溶液分別經孔徑為1μm、0.1μm的聚碳酸酯膜(Whattman, British)濾膜過濾,收集每次過濾后的濾膜并做好正反標記,隨后的處理中始終保持濾膜正面(含顆粒面)朝上。濾膜干燥后噴金處理增強其導電性,然后用掃描電鏡(scanning electron microscope,SEM)觀察濾膜上磨屑的特征。
5 磨屑測量 參考Besong等[9]的方法,每個樣品至少在4張顆粒無重疊的圖片上測量至少150個微粒,獲取相關參數(shù)(共統(tǒng)計2 000多顆粒)。能量色散X線分析儀(Energy Dispersive X-Ray Spectroscopy,EDX)確定顆粒的元素種類,排除可能存在的污染情況。使用Image-Pro Plus 6.0對保存的SEM圖片進行圖像分析,測算顆粒的大小、形狀、數(shù)量。參照之前研究[10],采用二分法對顆粒形狀分類:首先計算顆粒的縱橫比(aspect ratio,AR),AR≤2.4為類球狀顆粒,AR>2.4為纖維條狀顆粒(包含鏡下觀察到的條狀、棒狀及部分片塊狀顆粒)。采用以下公式估算整張濾膜上的磨屑數(shù)量和體積:
N:1張濾膜上的磨屑數(shù)量;n:觀察視野下的顆粒數(shù);V:1張濾膜上的磨屑體積;v:觀察視野下的顆粒體積;S:濾膜的面積;s:觀察視野的面積。文獻報道,通過原子力顯微鏡觀察測出濾膜上顆粒的厚度,線性回歸法確定顆粒厚度約為等效圓直徑(equivalent circle diameter,ECD)的1/3[11],顆粒體積計算公式:
V粒:顆粒體積;S粒:顆粒在濾膜上的二維投影面積;ECD:與顆粒投影面積相等的圓的直徑。
1 不同稀釋倍數(shù)下濾膜上的顆粒密度對比 血清消化溶液在不同的稀釋倍數(shù)下過濾后,掃面電鏡下所見濾膜上顆粒分布的密度不同:20倍組濾膜上顆粒比較密集,顆粒相互重疊、聚集成團的較多(圖1),幾乎看不到濾膜、濾孔。稀釋200倍組的顆粒分布較均勻,出現(xiàn)團聚的情況較少,背景濾膜和濾孔清晰可見(圖1)。
2 顆粒成分鑒定 對樣品隨機抽選的區(qū)域顆粒進行X線能譜分析(稀釋20倍條件下),顆粒C、O能譜峰最明顯,未見明顯的Co、Cr、Mo、Ti元素峰。定量結果顯示,C、O元素所占比例達95%以上,而Co、Cr、Mo、Ti元素合計不到1%(圖2)。顆粒中主要為非金屬成分,參考ISO 17853和以前文獻中關于UHMWPE的研究和電鏡圖片[12-13],可判斷濾膜上的顆粒主要為UHMWPE顆粒。
3 顆粒形態(tài)分析 電鏡下觀察,可見到各組磨屑呈現(xiàn)類球狀、條狀、桿狀、片狀、團塊狀(圖3)。觀察中發(fā)現(xiàn),顆粒的尺寸越大,其形態(tài)越多變、表面形貌越復雜。而尺寸越小的磨粒其輪廓越規(guī)則、表面越光滑,呈現(xiàn)類球狀。大粒徑的磨粒分布不均勻,容易有小顆粒附著,形成粘連團聚。更有某些看似大粒徑的顆粒完全由小顆粒聚集而成。各組磨屑的形態(tài)均以類球狀為主,0.1μm濾膜和1μm濾膜上類球狀顆粒數(shù)量百分比均占到60%以上(圖4)。
4 顆粒的粒徑、數(shù)量和體積 顆粒的粒徑分布范圍為0.1 ~ 40μm,0.1μm濾膜上90%的顆粒ECD為0.1 ~ 0.5μm,1μm濾膜上90%的顆粒ECD為1 ~ 10μm。各組數(shù)量、體積分布規(guī)律一致。0.1 ~ 1μm的顆粒數(shù)量較多,占到整張濾膜上顆粒數(shù)量的98% ~ 99%,但所占整張濾膜上顆粒體積比不到6%;1μm以上的顆粒體積較大,占到整張濾膜上顆粒體積的94% ~ 98%,但數(shù)量僅占整張濾膜上顆粒數(shù)的1% ~ 2%(圖5 ~圖6)。B組濾膜上顆粒總數(shù)量最少,其次是A組,C組顆粒數(shù)量最高(圖7)。B組濾膜上顆??傮w積最大,其次是A組,C組顆粒體積最小(圖8)。
圖 1 B組濾膜上磨屑SEM圖片 A:消化溶液稀釋20倍; B:消化溶液稀釋200倍Fig. 1 SEM picture of debris on filter in group B A: digestion solution diluted 20 times; B: digestion solution diluted 200 times
圖 2 濾膜上不同區(qū)域顆粒的EDX分析Fig. 2 EDX analysis of debris on filter in different fields
國外最早在20世紀60年代末就開始了體外關節(jié)模擬機實驗[14],國內的人工關節(jié)摩擦實驗起步較晚,而且往往側重于對不同材料界面、不同介質中的摩擦系數(shù)、磨損體積和磨損率的考察,而對直接引起生物學反應的磨屑研究較少。磨屑不同的種類、尺寸、數(shù)量和形態(tài)反映了不同的磨損形式、機制和潛在引起生物學反應的能力,含有重要的摩擦學信息。文獻報道,幾種常見的磨屑中,鈦顆粒激活巨噬細胞的作用最小[15]。不規(guī)則顆粒和0.1 ~ 10μm的顆粒比其他顆粒更強烈地激活巨噬細胞[16]。表面越粗糙、形狀越不規(guī)則的磨屑引起的細胞反應越重[10]。因此,磨屑的特征,對于人工關節(jié)摩擦界面生物材料的性能評估有著重要參考意義。
由于血清消化溶液中的磨屑含量未知,不同的稀釋倍數(shù)可極大影響電鏡觀察濾膜上磨屑的圖片質量。實驗中發(fā)現(xiàn),血清消化溶液稀釋20倍時電鏡觀察到濾膜上顆粒密集,磨屑成團成片分布,有利于EDX集中分析磨屑的元素組成,卻不利于單個顆粒的測量。而血清消化溶液稀釋200倍濾膜上的顆粒分布均勻,背景清晰,便于單個顆粒的參數(shù)測量和計數(shù)工作。20倍和200倍的稀釋條件可在磨屑分析實驗中互補運用。
磨屑不同的形態(tài)反映了不同的磨損機制。類球狀顆粒數(shù)量較多,粒徑較小,在顆粒分散好、無重疊的視野中容易觀察到(0.1μm濾膜多見),多為假體界面輕度黏著磨損或腐蝕磨損過程中產生。條狀、桿棒狀顆粒是由于假體材料表面撕裂,脫落的顆粒受到反復摩擦碾壓形成,見于嚴重的黏著磨損或磨粒磨損。碎片狀顆粒邊緣整齊,表面光滑,有時呈現(xiàn)折疊卷曲狀,考慮為從假體表面分層剝落產生的顆粒,多見于疲勞磨損。觀察到的團塊狀顆粒中,多數(shù)形狀不規(guī)則,表面毛糙,存在小顆粒的附著、聚集,部分表面還有裂隙。少數(shù)團塊顆粒輪廓清晰、形態(tài)完整、表面光滑、體積巨大,考慮為整塊從假體界面的脫落,多發(fā)生在初期的磨合磨損階段和后期的劇烈磨損階段。
圖 3 顆粒形態(tài) A:類球狀顆粒(×8 000); B: 團塊狀顆粒(×800); C:棒狀顆粒(×800); D:條狀(撕裂狀)顆粒(×10 000);E:碎片狀顆粒(×800); F:大顆粒輪廓不清,表面形貌復雜;小顆粒輪廓清晰,表面光滑(×8 000)Fig. 3 Morphology of debris A: globe-like debris (×8 000); B: block debris (×800); C: rod-like debris (×800); D:tear debris (×10 000); E:flake debris (×800); F: large debris with unclear outline and coarse surface, while small debris with clear outline and smooth surface (×8 000)
圖 4 各組類球狀顆粒的比例Fig. 4 Globe-like debris proportion in all groups
圖 5 0.1μm濾膜上顆粒數(shù)量(A)和體積(B)占比Fig. 5 Proportion of number (A) and volume (B) of debris on 0.1μm filter
圖 6 磨屑粒徑分布: 0.1μm濾膜(A)和1μm濾膜(B)Fig. 6 Distribution of debris size on 0.1μm filter (A) and 1μm filter (B)
圖 7 濾膜上顆粒數(shù)量Fig. 7 Number of debris on filter
圖 8 濾膜上顆粒體積Fig. 8 Volume of debris on filter
人工關節(jié)磨屑的研究中發(fā)現(xiàn),引起細胞反應的亞微米級、納米級顆粒數(shù)量眾多,所占的體積卻不大;大顆粒體積大,數(shù)量卻少,與周圍組織接觸面積有限。我們更關心特定尺寸范圍的數(shù)量分布。Hallab和Jacobs[3]的研究顯示,植入假體聚合物顆粒直徑范圍0.23 ~ 1μm,從人體回收的磨屑70% ~90%都為亞微米級別。Visentin等[17]從假體周圍組織和關節(jié)滑液中提取的聚乙烯顆粒ECD為0.48 ~0.95μm。Affatato等[18]發(fā)現(xiàn),關節(jié)模擬機上80%的超高分子量聚乙烯顆粒ECD為0.2 ~ 0.6μm。
本實驗對小牛血清消解液采用1μm、0.1μm的濾膜梯度過濾,計算濾膜上磨屑的粒度分布,0.1μm以下的顆粒未納入檢測。結果發(fā)現(xiàn),0.1 ~1μm的顆粒在濾膜上分布均勻,數(shù)量眾多,占磨屑總數(shù)量的95%以上;長徑10μm以上的顆粒數(shù)量較少,抽樣視野中未見到50μm以上的顆粒。該結果與以前的研究結果一致,反應了假體早期磨損的顆粒分布特征,顆粒數(shù)量明顯呈隨粒徑遞減的偏態(tài)分布,提示磨屑中可能存在更多未觀察到的納米級的顆粒。B組(鍍膜實驗組)產生的磨屑總體積最大,但磨屑的數(shù)量最少;C組磨屑總體積最小,而磨屑數(shù)量卻最多。這種反差說明了鍍膜組產生的磨屑粒徑較大,而磨屑的數(shù)量反而較少。提示鍍膜假體的保護性作用在于減少磨屑的數(shù)量,而并不一定能減少磨屑的體積,單從假體的磨損體積分析并不能反映真實的情況。
綜上所述,本實驗中納米碳多層膜鍍膜人工髖關節(jié)產生的磨屑主要為UHMWPE顆粒,粒徑多分布在1μm以下,形狀以類球狀為主;與對照組比較,鈦合金球頭鍍納米碳多層膜人工髖關節(jié)產生的磨損顆粒數(shù)量較少,1μm以下的免疫激活能力強的顆粒含量更低。
1 Knight SR, Aujla R, Biswas SP. Total hip arthroplasty - over 100 years of operative history[J]. Orthop Rev (Pavia), 2011, 3(2): e16.
2 Affatato S, Modena E, Toni A, et al. Retrieval analysis of three generations of Biolox? femoral heads: spectroscopic and SEM characterisation[J]. J Mech Behav Biomed Mater, 2012, 13(13):118-128.
3 Hallab NJ, Jacobs JJ. Biologic effects of implant debris[J]. Bull NYU Hosp Jt Dis, 2009, 67(2):182-188.
4 Wang ML, Sharkey PF, Tuan RS. Particle bioreactivity and wearmediated osteolysis[J]. J Arthroplasty, 2004, 19(8):1028-1038.
5 Natu S,Sidaginamale RP,Gandhi J,et al. Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties[J]. J Clin Pathol,2012,65(5):409-418.
6 Penny J?, Varmarken JE, Ovesen O, et al. Metal ion levels and lymphocyte counts: ASR hip resurfacing prosthesis vs. standard THA: 2-year results from a randomized study[J]. Acta Orthop,2013, 84(2): 130-137.
7 Murali R, Bonar SF, Kirsh G, et al. Osteolysis in third-generation alumina ceramic-on-ceramic hip bearings with severe impingement and titanium metallosis[J]. J Arthroplasty, 2008, 23(8):1240.
8 Lehil MS, Bozic KJ. Trends in total hip arthroplasty implant utilization in the United States[J]. J Arthroplasty, 2014, 29(10):1915-1918.
9 Besong AA, Tipper JL, Ingham E, et al. Quantitative comparison of wear debris from UHMWPE that has and has not been sterilised by gamma irradiation[J]. J Bone Joint Surg Br, 1998, 80(2):340-344.
10 Sieving A, Wu B, Mayton L, et al. Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation[J]. J Biomed Mater Res A, 2003,64(3):457-464.
11 Scott M, Morrison M, Mishra SR, et al. Particle analysis for the determination of UHMWPE wear[J]. J Biomed Mater Res B Appl Biomater, 2005, 73(2): 325-337.
12 Tipper JL, Galvin AL, Williams S, et al. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators[J]. J Biomed Mater Res A, 2006, 78(3): 473-480.
13 Wear of implant materials - Polymer and metal wear particles -Isolation and characterization[S]. ISO 17853-2011.
14 Scales JT,Kelly P,Goddard D. Friction torque studies of total joint replacements. The use of a simulator[J]. Ann Rheum Dis,1969,28(5):30-35.
15 St Pierre CA, Chan M, Iwakura Y, et al. Periprosthetic osteolysis:characterizing the innate immune response to Titanium wear-particles[J]. J Orthop Res, 2010, 28(11): 1418-1424.
16 Besong AA,Tipper JL,Mathews BJ,et al. The influence of lubricant on the morphology of ultra-high molecular weight polyethylene wear debris generated in laboratory tests[J]. Proc Inst Mech Eng H,1999,213(2):155-158.
17 Visentin M, Stea S, De Clerico M, et al. Determination of crystallinity and crystal structure of Hylamer polyethylene after in vivo wear[J]. J Biomater Appl, 2006, 21(2): 131-145.
18 Affatato S, Bersaglia G, Rocchi M, et al. Wear behaviour of crosslinked polyethylene assessed in vitro under severe conditions[J]. Biomaterials, 2005, 26(16): 3259-3267.
Wear particles analysis of Ti alloy femoral heads with diamond-like carbon coating
QU Wenzhen, LIAO Weixiong, ZHANG Hao, LI Ji, WANG Ketao, YANG Yimeng, LI Zhongli
Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
LI Zhongli. Email: lizhongli@263.net
ObjectiveTo identify the characteristics of wear particles generated by Ti alloy femoral head coated by diamondlike carbon (DLC) film on hip simulator.MethodsThree groups of artificial femoral head were studied in this research, Group A: CoCrMo alloy femoral head against ultra-high molecular weight polyethylene (UHMWPE) acetabular cup (CoCrMo- UHMWPE,Zimmer, America); Group B: Ti alloy femoral head with diamond-like carbon coating against UHMWPE acetabular cup (Ti-DLCUHMWPE, Jinghang, China); Group C: CoCrMo alloy femoral head against UHMWPE acetabular cup (CoCrMo- UHMWPE, Jinghang, China). Fetal bovine serum lubricant was collected respectively from each group after 0.33 million circles (mc). Then the bovine serum was digested by adding acid and filtered through polycarbonate. The characteristics of particles of each group were determined by scanning electron microscope-energy dispersion X-ray analysis (SEM-EDX). The size, shape and number of particles were measured with Image-Pro Plus6.0 on SEM pictures.ResultsThe energy dispersion X-ray analysis (EDX) showed that the main element was carbon. No marked cobalt, chromium, molybdenum, titanium was detected. Over 60% of the particles were globe-like in all groups. The particle size varied from 0.1 to 40μm, most of which ranged from 0.1 to 1μm. Particles with diameter over 1μm had a large proportion in volume. The number of particles on filter in group B was less than other groups.ConclusionThe wear particles are predominately UHMWPE particles. Artificial femoral heads with DLC coating produce less wear particles.
hip prosthesis; ultra-high molecular weight polyethylene; diamond-like carbon; wear debris
R 318
A
2095-5227(2015)12-1217-05
10.3969/j.issn.2095-5227.2015.12.016
時間:2015-11-11 10:35:07
http://www.cnki.net/kcms/detail/11.3275.R.20151111.1035.008.html
2015-04-15
國家科技支撐計劃項目(2012BAI18B04)
Supported by the National Key Technology R&D Program(2012BAI18B04)
屈文振,男,在讀碩士。研究方向:關節(jié)外科與運動醫(yī)學。Email: qwz8519@163.com
李眾利,男,主任醫(yī)師,教授,博士生導師。Email: lizh ongli@263.net