胡靈芝 胡江琴 王利琳 張栩佳 陳哲皓
摘要:鹽脅迫是世界范圍內(nèi)限制作物產(chǎn)量和農(nóng)業(yè)生產(chǎn)的主要非生物脅迫。探索鹽脅迫對(duì)植物的影響,研究并利用植物的耐鹽機(jī)制,選育和開(kāi)發(fā)耐鹽作物品種,對(duì)于更合理有效地利用有限的耕地具有重要的研究和應(yīng)用價(jià)值。從降低鹽脅迫的損傷程度,建立內(nèi)部滲透平衡和鈉離子內(nèi)穩(wěn)態(tài),調(diào)控自身生長(zhǎng)狀態(tài)這三個(gè)方面綜述了最新的植物耐鹽機(jī)制,旨在為進(jìn)一步推動(dòng)耐鹽作物選育、加快鹽土地開(kāi)發(fā)提供參考。
關(guān)鍵詞:植物;鹽脅迫;響應(yīng);調(diào)控;適應(yīng)
中圖分類(lèi)號(hào):Q948.113 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2015)01-0001-06
在阻礙植物正常生長(zhǎng)發(fā)育的逆境條件中,鹽脅迫是最嚴(yán)重的非生物脅迫之一。根據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織提供的數(shù)據(jù),2005年全世界共有3.97億hm2的土地受到鹽脅迫影響,到2008年受影響的土地已經(jīng)增加到了8億hm2,而到2010年,這一數(shù)值已達(dá)到9.5 hm2,接近全世界地表面積的10%[1-3]。在遭受鹽脅迫的土地中,農(nóng)業(yè)用地中的灌溉地受到的影響尤其巨大,統(tǒng)計(jì)數(shù)據(jù)表明全世界約有50%的灌溉地受其影響[3]。鹽脅迫對(duì)全球土地的影響越來(lái)越嚴(yán)重,包括處于干旱和半干旱狀態(tài)的土地長(zhǎng)期積累的大量鹽分,沿海地區(qū)土壤中由于雨水和風(fēng)等自然因素增加的鹽分等[4]。而除此之外,不合理的開(kāi)荒和灌溉等人為因素也嚴(yán)重造成了農(nóng)業(yè)用地中鹽含量的增加[2]。
植物受到鹽脅迫的嚴(yán)重影響,土壤中過(guò)多的鹽分和因此產(chǎn)生的高離子濃度農(nóng)業(yè)用水均會(huì)影響植物正常的代謝和生長(zhǎng)發(fā)育,減少作物的經(jīng)濟(jì)產(chǎn)量[5]。最新的研究通過(guò)預(yù)測(cè)全球人口增長(zhǎng)趨勢(shì),提出2030年全球的糧食作物至少需要比2011年增長(zhǎng)40%才能滿(mǎn)足那時(shí)人們?nèi)粘I钏?,而?050年則至少需要增長(zhǎng)70%[6]。中國(guó)人口眾多,受到鹽脅迫影響的耕地也越來(lái)越多,越來(lái)越嚴(yán)重。因而探索鹽脅迫對(duì)植物的影響,研究和利用植物的耐鹽機(jī)制,選育和開(kāi)發(fā)耐鹽作物品種,不僅可以提高作物產(chǎn)量,還能更加合理有效地利用受到鹽脅迫影響的有限耕地,具有重要的研究意義和應(yīng)用價(jià)值。
研究發(fā)現(xiàn)植物的耐鹽機(jī)制主要通過(guò)發(fā)起響應(yīng)、調(diào)控自身和改變形態(tài)來(lái)適應(yīng)高鹽環(huán)境。本文從降低植物鹽脅迫的損傷程度,建立內(nèi)部滲透平衡和鈉離子內(nèi)穩(wěn)態(tài),調(diào)控自身生長(zhǎng)狀態(tài)這三個(gè)方面綜述了最新的植物耐鹽機(jī)制,可為進(jìn)一步推動(dòng)耐鹽作物選育、加快鹽土地開(kāi)發(fā)提供參考依據(jù)。
1 降低植物受損程度的耐鹽機(jī)制
分子狀態(tài)的氧(O2、O3)是地球上生命不可或缺的,正常情況下不會(huì)對(duì)植物活細(xì)胞產(chǎn)生直接損害[7]。但在多種生物和非生物脅迫下,植物體內(nèi)會(huì)大量積累活性氧(ROS),而過(guò)量積累活性氧產(chǎn)生的高反應(yīng)性和毒害性往往引起蛋白質(zhì)、脂質(zhì)、碳水化合物甚至DNA的損傷,不利于植物正常生長(zhǎng)[8,9]。在鹽脅迫下,植物常常表現(xiàn)出復(fù)雜的分子響應(yīng)機(jī)制,包括大量積累脅迫相關(guān)滲透因子和調(diào)控蛋白,阻止細(xì)胞結(jié)構(gòu)受損;或通過(guò)提高抗氧化酶及還原性物質(zhì)加工酶的表達(dá),清除植物體內(nèi)的活性氧,從而減輕植株所受的鹽離子毒害作用[10]。
1.1 滲透因子
土壤中高濃度的鹽分會(huì)引起植物的高滲脅迫和離子脅迫,也會(huì)誘發(fā)包括氧化脅迫在內(nèi)的一些次級(jí)影響[11]。滲透因子主要通過(guò)滲透調(diào)節(jié)起到增強(qiáng)植株耐鹽性的作用,包括脯氨酸、甜菜堿、肌醇、甘露醇、糖類(lèi)等可溶性有機(jī)物質(zhì)[12-15]。在鹽脅迫下,甜土植物(Glycophyte)和鹽生植物(Halophyte)的細(xì)胞質(zhì)中都會(huì)積累大量滲透因子,增強(qiáng)細(xì)胞吸水能力,減少細(xì)胞失水導(dǎo)致的有害影響,同時(shí)也會(huì)減少細(xì)胞中活性氧的產(chǎn)生,增強(qiáng)植株的耐鹽性[15,16]。
對(duì)莧科植物雁來(lái)紅的研究發(fā)現(xiàn),正常條件下提供足量甜菜堿合成前體物質(zhì),植株的甜菜堿積累量并無(wú)顯著變化;但鹽處理下的植株體內(nèi),尤其在葉片中,甜菜堿含量大幅提升[12]。葉綠體是細(xì)胞中產(chǎn)生活性氧最多的地方,雁來(lái)紅通過(guò)調(diào)節(jié)葉片中滲透因子甜菜堿的含量,減少活性氧含量,提高植株耐鹽性[17]。研究表明,通過(guò)基因轉(zhuǎn)化使植物中滲透因子大量積累,不僅能增強(qiáng)植株的耐鹽性,也能減少寒冷、凍害、高溫和干旱等脅迫引發(fā)的活性氧,提高植物的多種非生物脅迫耐受性[18]。如轉(zhuǎn)P5CS基因煙草在高滲脅迫下,能積累大量脯氨酸作為滲透因子,提高植物對(duì)非生物脅迫的耐受性[19]。
1.2 調(diào)控蛋白與滲透平衡
Singh等[20]在含NaCl的培養(yǎng)基上培養(yǎng)煙草細(xì)胞,發(fā)現(xiàn)一類(lèi)蛋白在植物適應(yīng)滲透脅迫過(guò)程中合成,對(duì)維持液泡中水和溶質(zhì)的平衡起極大作用,有效減少了外界環(huán)境對(duì)植物的損傷。該類(lèi)蛋白能對(duì)鹽、干旱等非生物因素引起的滲透不平衡產(chǎn)生一定的調(diào)控作用,也被稱(chēng)為調(diào)滲蛋白。晚期胚胎富集蛋白(LEA)是一類(lèi)親水性蛋白,在高鹽、干旱、低溫等非生物脅迫的刺激下產(chǎn)生,能維持細(xì)胞膜完整性及細(xì)胞內(nèi)酶活性,降低細(xì)胞受損程度[21,22]。
外界環(huán)境水勢(shì)一般比植物根細(xì)胞中高,水分依照水勢(shì)高低流入植物細(xì)胞內(nèi)。但在鹽脅迫下,外界環(huán)境的水勢(shì)與植物根細(xì)胞水勢(shì)差值減小甚至更低,導(dǎo)致植物吸收水分的能力減弱,甚至失水[23,24]。滲透因子如甜菜堿、脯氨酸,調(diào)滲蛋白如LEA等物質(zhì)的增加可降低植物細(xì)胞水勢(shì),使植物能夠從外界高鹽環(huán)境中吸收水分,維持細(xì)胞內(nèi)外滲透平衡。
水分的運(yùn)輸主要通過(guò)細(xì)胞膜上的水通道蛋白(AQP),鹽脅迫下AQP能促進(jìn)水分跨膜運(yùn)輸,維持細(xì)胞滲透平衡,保證細(xì)胞正常生長(zhǎng)[25]。若AQP基因在細(xì)胞質(zhì)膜上過(guò)量表達(dá),植株水分吸收能力則增強(qiáng),細(xì)胞內(nèi)外滲透平衡得以維持,植株的耐鹽性會(huì)有顯著提高[26]。
1.3 抗氧化酶系
植物中已發(fā)現(xiàn)多種具有清除活性氧能力的酶,如超氧化物歧化酶(SOD)、抗壞血酸過(guò)氧化物酶(APX)、谷胱甘肽還原酶(GR)等,均能增強(qiáng)植株的鹽脅迫耐受能力[27]。另外,過(guò)氧化氫酶(CAT)能通過(guò)清除細(xì)胞內(nèi)積累的H2O2來(lái)增強(qiáng)植株的耐鹽性[28],交替氧化酶(AOXs)能通過(guò)阻止活性氧在細(xì)胞內(nèi)的積累參與調(diào)節(jié)植株的抗鹽能力[29]。這些抗氧化酶系主要通過(guò)阻止植物體內(nèi)氧自由基、過(guò)氧化物的積累,清除過(guò)量有害活性氧,降低植株受損程度,增強(qiáng)植株的耐鹽性。過(guò)量表達(dá)抗氧化酶系相關(guān)基因往往可以有效增強(qiáng)植株的耐鹽能力[27]。endprint
2 建立細(xì)胞鈉離子穩(wěn)態(tài)的耐鹽機(jī)制
巖石風(fēng)化作用釋放的可溶性鹽主要是氯化鈉、氯化鈣和氯化鎂,其中鈉離子(Na+)是土壤中濃度最高的一種離子,能被大部分植物吸收,在高鹽脅迫下,Na+毒害是植物細(xì)胞內(nèi)最主要的離子毒害[2,30]。為使作物能正常生長(zhǎng),需要在脅迫條件下建立新的離子穩(wěn)態(tài),下面主要從Na+穩(wěn)態(tài)的調(diào)控來(lái)說(shuō)明植物體內(nèi)的離子平衡。
2.1 Na+的排出
伴隨蒸騰作用的進(jìn)行,Na+通過(guò)導(dǎo)管流入葉片并積聚起來(lái),其過(guò)量積累顯著影響植物的正常生長(zhǎng)。在擬南芥和一些其他植物中,排出葉片中過(guò)量的Na+能使植物更好地生長(zhǎng)。屬于HKT家族和SOS家族的蛋白成員均能調(diào)控植株體內(nèi)Na+的分布,擬南芥中過(guò)量表達(dá)AtHKT1;1和AtSOS1基因,能在外界鹽脅迫下降低葉片中積累的Na+濃度,提高植株的耐鹽能力[31,32]。
HKT家族成員作為Na+單向轉(zhuǎn)運(yùn)體或者Na+/K+轉(zhuǎn)運(yùn)體,可以分為兩個(gè)亞族[33]。首個(gè)被鑒定的HKT基因?qū)儆谧澧?,但?duì)其特點(diǎn)的研究并沒(méi)有族Ⅰ深入[2,34]。模式植物擬南芥中僅有1個(gè)HKT基因AtHKT1;1[35]。對(duì)AtHKT1;1基因的研究發(fā)現(xiàn),該基因主要在擬南芥和水稻根皮質(zhì)和表皮細(xì)胞表達(dá),Na+流入細(xì)胞后在根部積累,減少木質(zhì)部?jī)?nèi)Na+含量,也使隨蒸騰作用進(jìn)入葉片的Na+減少[35,36]。鹽脅迫下,植物葉片排出的Na+也能在根皮質(zhì)細(xì)胞中積累,而葉片中K+含量升高,使得葉片細(xì)胞溶質(zhì)維持一個(gè)相對(duì)較高的K+/Na+比率[37,38]。Hill等[39]對(duì)AtHKT1;1基因進(jìn)行研究,發(fā)現(xiàn)其對(duì)代謝途徑存在影響,過(guò)表達(dá)AtHKT1;1基因植株的根部能在鹽脅迫下積累比野生型更多的糖類(lèi),而AtHKT1;1基因敲除植株中地上部分的三羧酸循環(huán)異常劇烈,推測(cè)AtHKT1;1可能參與糖代謝來(lái)起調(diào)控作用。
SOS家族成員作為新發(fā)現(xiàn)的質(zhì)膜上的Na+/H+反向轉(zhuǎn)運(yùn)體,主要通過(guò)外排Na+起作用。與其他鹽脅迫響應(yīng)基因不同,SOS1基因只響應(yīng)Na+脅迫,在ABA存在和冷脅迫下并不發(fā)生表達(dá)變化[40]。至今發(fā)現(xiàn)的SOS家族成員包括SOS1、SOS2、SOS3、SOS4和SOS5,而與鹽脅迫相關(guān)的只有SOS1、SOS2和SOS3[41]。研究發(fā)現(xiàn),鹽脅迫下SOS2-SOS3復(fù)合體磷酸化,激活SOS1反向轉(zhuǎn)運(yùn)體的轉(zhuǎn)錄活性,三者構(gòu)成的信號(hào)通路在細(xì)胞信號(hào)傳導(dǎo)中起作用,將細(xì)胞內(nèi)的Na+排出到外界環(huán)境中,維持胞內(nèi)的離子平衡[31,42,43]。
2.2 Na+區(qū)域化
成熟的植物營(yíng)養(yǎng)組織細(xì)胞中,中央液泡是最大的細(xì)胞器,占據(jù)細(xì)胞體積的80%以上,充當(dāng)一個(gè)存儲(chǔ)器,暫時(shí)存放代謝產(chǎn)物和信號(hào)物質(zhì),或是一些潛在的有毒化合物[30]。植物在面對(duì)鹽脅迫或者干旱脅迫時(shí),一方面可以通過(guò)提高液泡中的溶質(zhì)濃度,降低細(xì)胞水勢(shì),使土壤中的水流向植物根細(xì)胞[44]。另一方面,擬南芥Na+/H+反向轉(zhuǎn)運(yùn)體AtNHX能在鹽脅迫下將Na+隔離在液泡中,維持細(xì)胞內(nèi)離子平衡[45]。
NHX不僅是Na+/H+反向轉(zhuǎn)運(yùn)體,同時(shí)也在運(yùn)輸K+進(jìn)入液泡中起關(guān)鍵作用[45,46]。NHX蛋白能將Na+和K+運(yùn)輸?shù)揭号葜蟹e累起來(lái),并維持液泡內(nèi)K+/Na+的偏高比率,從而起到耐鹽作用[47]。進(jìn)一步的研究發(fā)現(xiàn),Na+/H+反向轉(zhuǎn)運(yùn)體的運(yùn)作需要建立跨液泡膜的H+梯度,擬南芥AVP1基因編碼產(chǎn)生液泡焦磷酸酶,是液泡膜上的質(zhì)子泵,通過(guò)消耗ATP跨膜聚集質(zhì)子產(chǎn)生H+電化學(xué)梯度,推測(cè)AVP1基因與NHX基因之間存在密切的聯(lián)系[48]。研究證實(shí)AVP1基因過(guò)表達(dá)植株與野生型相比,在鹽脅迫下生長(zhǎng)更旺盛,表現(xiàn)出較強(qiáng)的鹽抗性[43]。可以推測(cè)同時(shí)過(guò)量表達(dá)液泡膜上的Na+/H+反向轉(zhuǎn)運(yùn)體和H+泵,會(huì)更顯著地增強(qiáng)植株的耐鹽能力[49]。
3 調(diào)控植物生長(zhǎng)狀態(tài)的耐鹽機(jī)制
細(xì)胞分裂和細(xì)胞生長(zhǎng)過(guò)程調(diào)控植物的總體生長(zhǎng)[50]。鹽脅迫與其他非生物脅迫一樣,通過(guò)調(diào)控細(xì)胞的分裂和生長(zhǎng)過(guò)程減緩植物生長(zhǎng),進(jìn)而增強(qiáng)植物的脅迫耐受性。不同植物在鹽脅迫發(fā)生時(shí)產(chǎn)生不同的響應(yīng)機(jī)制:敏感植物受到溫和鹽脅迫即停止生長(zhǎng),但耐受性增加;而不敏感植物在嚴(yán)峻鹽脅迫下仍能繼續(xù)生長(zhǎng),乃至死亡,因此鹽脅迫和響應(yīng)機(jī)制之間的協(xié)調(diào)非常重要,較強(qiáng)的協(xié)調(diào)能力能更好地提高作物在高鹽和干旱等非生物脅迫下的產(chǎn)量[10]。
3.1 蛋白激酶
植物生長(zhǎng)發(fā)育依賴(lài)分生細(xì)胞的連續(xù)分裂,這個(gè)過(guò)程容易遭受各種環(huán)境脅迫的影響[51]。細(xì)胞周期蛋白依賴(lài)性激酶(CDK)是一種蛋白激酶,能夠通過(guò)促進(jìn)植物細(xì)胞周期增強(qiáng)細(xì)胞生長(zhǎng)速率;植物細(xì)胞中還存在CDK的抑制因子(ICK),ICK蛋白的表達(dá)能抑制細(xì)胞周期,減緩植物生長(zhǎng);兩者及其復(fù)合體共同作用,協(xié)調(diào)了植株生長(zhǎng)狀態(tài),參與脅迫應(yīng)答反應(yīng)[52]。研究發(fā)現(xiàn)擬南芥ICK1和水稻EL2這兩種ICK蛋白能在鹽脅迫下誘導(dǎo)表達(dá),細(xì)胞分裂能力減弱,植物生長(zhǎng)速率減慢,耐鹽能力提高[53]。
小麥TaABC1是ABC1蛋白激酶家族成員,通過(guò)催化蛋白質(zhì)磷酸化,參與信號(hào)轉(zhuǎn)導(dǎo)途徑中的翻譯后修飾過(guò)程[54]。檢測(cè)發(fā)現(xiàn)過(guò)表達(dá)TaABC1的擬南芥植株中DREB1A、DREB2A、RD29A、ABF3、KIN、CBF1、LEA和P5CS等脅迫相關(guān)基因表達(dá)量均有提高,在鹽、低溫、干旱等脅迫下,該植株細(xì)胞滲透勢(shì)降低,光合作用所需酶和色素的損傷減少,植株抗性提高[54]。
3.2 植物激素
植物激素是植物體內(nèi)合成的,調(diào)節(jié)植物生長(zhǎng)發(fā)育的微量有機(jī)物質(zhì)[55]。綠色植物中存在脫落酸(ABA)、赤霉素(GA)、生長(zhǎng)素、細(xì)胞分裂素和乙烯這五大類(lèi)激素,通過(guò)協(xié)同作用和拮抗作用調(diào)控植物的生長(zhǎng)發(fā)育[56]。
ABA對(duì)植物的鹽脅迫耐受性起關(guān)鍵作用。ABA是植物體內(nèi)重要的生長(zhǎng)抑制劑,其含量在高鹽脅迫下顯著提高,進(jìn)而誘導(dǎo)相關(guān)抗性基因的表達(dá)[57]。鹽脅迫下,葉片中ABA含量升高,氣孔導(dǎo)度降低,通過(guò)調(diào)控生理過(guò)程減緩脅迫引起的細(xì)胞失水[58]。同為抑制類(lèi)激素的乙烯也在鹽脅迫下含量升高,參與植物生長(zhǎng)調(diào)節(jié)和脅迫耐受性調(diào)控[59]。而促進(jìn)類(lèi)激素生長(zhǎng)素(IAA)、細(xì)胞分裂素(CTK)、油菜素內(nèi)酯(BRs)等也通過(guò)生長(zhǎng)調(diào)控影響植物對(duì)鹽脅迫的耐受性[60]。如生長(zhǎng)素與油菜素內(nèi)酯共同調(diào)控細(xì)胞分裂、細(xì)胞伸長(zhǎng)和液泡分化等生理過(guò)程,調(diào)節(jié)植物生長(zhǎng)狀態(tài)來(lái)應(yīng)對(duì)外界環(huán)境變化[61,62]。endprint
3.3 轉(zhuǎn)錄因子
轉(zhuǎn)錄因子是非生物脅迫信號(hào)轉(zhuǎn)導(dǎo)途徑中的重要組分,不同轉(zhuǎn)錄因子響應(yīng)不同的非生物脅迫,通過(guò)與順式作用元件結(jié)合,引起下游基因的表達(dá)或沉默,進(jìn)一步調(diào)控脅迫相關(guān)基因的表達(dá)[63,64]。Nakashima等[65]研究了啟動(dòng)子與轉(zhuǎn)錄因子的結(jié)合情況,進(jìn)而分析植物對(duì)脅迫的耐受性,通過(guò)研究水稻中典型的高鹽和干旱脅迫關(guān)聯(lián)基因(LIP9、OsNAC6,OsLEA14a、OsRAB16D、OsLEA3-1和Oshox24)啟動(dòng)子,發(fā)現(xiàn)轉(zhuǎn)錄因子AREB能增強(qiáng)除OsNAC6之外所有基因的啟動(dòng)子活性,而轉(zhuǎn)錄因子CBF/DREB能誘導(dǎo)LIP9基因的適度表達(dá)。
研究認(rèn)為,改變轉(zhuǎn)錄因子在細(xì)胞內(nèi)的積累能夠引發(fā)脅迫相關(guān)基因表達(dá),調(diào)控植物生長(zhǎng),增強(qiáng)植株的耐鹽能力。例如,bZIP家族是高等植物轉(zhuǎn)錄因子家族中最大的一個(gè),Liu等[64]發(fā)現(xiàn)OsZIP71過(guò)表達(dá)水稻中脅迫相關(guān)基因(OsVHA-B、OsNHX1、COR413-TM1和OsMyb4)表達(dá)量增加,鹽耐受性提高;而這些基因的表達(dá)量在OsZIP71-RNAi植株中降低,增加了植株對(duì)鹽脅迫的敏感性。
3.4 表觀遺傳調(diào)控
植物固著生長(zhǎng),無(wú)法主動(dòng)規(guī)避各種非生物脅迫,因此發(fā)展出一系列機(jī)制來(lái)適應(yīng)外界環(huán)境的變化。表觀遺傳修飾諸如DNA甲基化、組蛋白翻譯后修飾、染色質(zhì)重塑等現(xiàn)象,均能調(diào)節(jié)基因表達(dá),適時(shí)改變植物生長(zhǎng)周期以及生長(zhǎng)狀態(tài),應(yīng)對(duì)逆境[66]。
DNA甲基化通常與基因的轉(zhuǎn)錄抑制有關(guān),外界鹽脅迫能引發(fā)DNA甲基化,調(diào)控植物基因表達(dá)豐度和表達(dá)特異性,是表觀遺傳修飾的重要組成部分[67]。例如胞嘧啶甲基化是一個(gè)保守的表觀遺傳標(biāo)記,阻礙基因表達(dá),減少外源遺傳因子或病毒DNA對(duì)植物生長(zhǎng)發(fā)育過(guò)程的影響,增強(qiáng)脅迫抗性[68]。組蛋白乙?;揎椧矔?huì)影響基因表達(dá),從而影響植株對(duì)鹽脅迫的耐受性[69]。一個(gè)與乙酰轉(zhuǎn)移酶相關(guān)的基因SGF29A-1,其突變體sgf29a-1中組蛋白乙?;潭仁芤种疲鄠€(gè)基因表達(dá)受阻,導(dǎo)致蓮座葉較小,數(shù)目減少,花期推遲,但是該突變體對(duì)于鹽脅迫的耐受性卻明顯提高[70]。
4 展望
非生物脅迫中鹽脅迫對(duì)農(nóng)牧業(yè)的可持續(xù)發(fā)展構(gòu)成嚴(yán)重威脅,影響世界糧食產(chǎn)量。植物的耐鹽機(jī)制由多基因調(diào)控,受到遺傳因素和復(fù)雜信號(hào)轉(zhuǎn)導(dǎo)途徑的影響。新的研究發(fā)現(xiàn)植物MicroRNA(miRNA)也參與了鹽脅迫調(diào)控機(jī)制。miRNA是一類(lèi)由20~24個(gè)核苷酸組成的內(nèi)源RNA分子,通過(guò)DNA甲基化修飾改變?nèi)旧|(zhì)結(jié)構(gòu)、降解mRNA轉(zhuǎn)錄產(chǎn)物以及抑制蛋白翻譯三個(gè)方面調(diào)節(jié)細(xì)胞各種生理生化活動(dòng)[71]。水稻miR393在轉(zhuǎn)錄后水平負(fù)調(diào)控生長(zhǎng)素受體基因OsTIR1和OsAFB2,影響生長(zhǎng)素信號(hào)通路,miR393過(guò)表達(dá)植株分蘗多,開(kāi)花早,鹽敏感性增高。OsTIR1或OsAFB2過(guò)表達(dá)植株對(duì)鹽的耐受性更強(qiáng)[72]。
當(dāng)前對(duì)植物耐鹽機(jī)理的研究工作主要圍繞模式植物擬南芥開(kāi)展,但擬南芥是甜土植物,與鹽生植物在鹽脅迫應(yīng)答與耐受性上存在很大差異,因而探尋一種合適的鹽生植物作為植物耐鹽機(jī)制的新研究對(duì)象很有必要。基于目前的研究現(xiàn)狀,筆者認(rèn)為還可從以下幾個(gè)方面進(jìn)一步開(kāi)展植物耐鹽機(jī)制研究:①研究不同信號(hào)轉(zhuǎn)導(dǎo)途徑之間的聯(lián)系,找尋植物鹽脅迫響應(yīng)的特征與共性;②尋找更多抗鹽脅迫的代謝現(xiàn)象,拓展植物的鹽脅迫耐受方式;③尋找新的關(guān)鍵性、高效性耐鹽基因。
隨著分子生物學(xué)技術(shù)的不斷發(fā)展和完善,對(duì)植物耐鹽機(jī)理的研究將會(huì)更加深入,其目標(biāo)是建立完善的耐鹽機(jī)制模型,為提高植物耐鹽能力提供更多理論依據(jù),通過(guò)結(jié)合基因工程手段與傳統(tǒng)育種技術(shù),不僅能提高作物耐鹽性,更能合理有效地利用受到鹽脅迫影響的土地,提高世界糧食作物和經(jīng)濟(jì)作物產(chǎn)量。
參考文獻(xiàn):
[1] SETIA R,GOTTSCHALK P,SMITH P,et al.Soil salinity decreases global soil organic carbon stocks[J].The Science of the Total Environment,2013,465:267-272.
[2] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology,2008,59:651-681.
[3] RUAN C J,TEIXEIRA DA SILVA J A,MOPPER S,et al. Halophyte improvement for a salinized world[J].Critical Reviews in Plant Sciences,2010,29:329-359.
[4] RENGASAMY P.Transient salinity and subsoil contraints to dryland farming in Australian sodic soils: An overview[J]. Australian Journal of Experiment Agriculture,2002,42:351-361.
[5] ORABY H, AHMAD R. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress[J].Plant Science, 2012, 185-186: 331-339.
[6] SCHROEDER J I,DELHAIZE E,F(xiàn)ROMMER W B,et al.Using membrane transporters to improve crops for sustainable food production[J]. Nature,2013,497:60-66.endprint
[7] ABOGADALLAH G M.Antioxidative defense under salt stress[J]. Plant Signaling & Behavior,2010,5(4):369-374.
[8] MLLER I M,SWEETLOVE L J.ROS signalling-specificity is required[J]. Trends in Plant Science,2010,15(7):370-374.
[9] HUANG G T,MA S L,BAI L P,et al.Signal transduction during cold, salt, and drought stresses in plants[J].Molecular Biology Reports,2012,39(2):969-987.
[10] ZHU J K.Plant salt tolerance[J].Trends in Plant Science, 2001,6(2):66-71.
[11] ZHU J K.Genetic analysis of plant salt tolerance using Arabidopsis[J].Plant Physiology,2000,124(3):941-948.
[12] ZSIGMOND L,SZEPESI A,TARI I,et al.Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis[J].Plant Science,2012,182:87-93.
[13] MISSIHOUN T D,SCHMITZ J,KLUG R,et al. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses[J].Planta, 2011,233(2):369-382.
[14] ISHITANI M, MAJUMDER A L,BORNHOUSER A,et al.Coordinate transcriptional induction of myo-inositol metabolism during environmental stress[J].The Plant Journal,1996,9(4): 537-548.
[15] ASKARI H, EDQVIST J,HAJHEIDARI M,et al.Effects of salinity levels on proteome of Suaeda aegyptiaca leaves[J]. Proteomics,2006,6(8):2542-2554.
[16] SAHI C,SINGH A,BLUMWALD E,et al.Beyond osmolytes and transporters:Novel plant salt-stress tolerance-related genes from transcriptional profiling data[J].Physiologia Plantarum, 2006,127:1-9.
[17] BHUIYAN N H,HAMADA A,YAMADA N,et al.Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor[J].Jouranl of Experimental Botany,2007,58(15-16):4203-4212.
[18] KALIR A, POLJAKOFF MAYBER A.Changes in activity of malate dehydrogenase,catalase,peroxidase and superoxide dismutase in leaves of Halimione portulacoides L. Allen exposed to high sodium chloride concentration[J].Annals of Botany, 1981,47:75-85.
[19] HONG Z L, LAKKINENI K,ZHANG Z M,et al.Removal of feedback inhibition of 1-pyrroline 5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology,2000,122:747-756.
[20] SINGH N K,LAROSA P C,HANDA A K,et al.Hormonal regulation of protein synthesis associated with salt tolerance in plant cells[J]. Proceedings of the National Academy of Sciences of the USA,1987,84(3):739-743.
[21] DUAN J L,CAI W M. OsLEA3-2,an abiotic stress induced gene of rice plays a key role in salt and drought tolerance[J]. Plos One,2012,7(9): e45117.endprint
[22] CHECKER V G,CHHIBBAR A K,KHURANA P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought,salinity and cold stress[J].Transgenic Research,2012,21(5):939-957.
[23] KATSUHARA M,HANBA Y T,SHIRATAKE K,et al. Expanding roles of plant aquaporins in plasma membranes and cell organells[J].Functional Plant Biology,2008,35:1-14.
[24] BOURSIAC Y,CHEN S,LUU D T,et al.Early effects of salinity on water transport in Arabidopsis roots.Molecular and cellular features of aquaporin expression[J].Plant Physiology, 2005,139(2):790-805.
[25] LIU C H,LI C,LIANG D,et al.Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species[J]. Plant Physiology and Biochemistry, 2012, 58: 159-165.
[26] SREEDHARAN S, SHEKHAWAT U K, GANAPATHI T R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses[J]. Plant Biotechnology Jounal, 2013, 11(8): 942-952.
[27] QURESHI M I, ABDIN M Z, AHMAD J, et al. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.)[J]. Phytochemistry, 2013, 95: 215-223.
[28] NAYYAR H, GUPTA D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany, 2006, 58: 106-113.
[29] LUTTS S, ALMANSOURI M, KINER J M. Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus[J]. Plant Science, 2004, 167: 9-18.
[30] MARTINOIA E, MEYER S, DE ANGELI A, et al. Vacuolar transporters in their physiological context[J]. Annual Review of Plant Biology, 2012, 63: 183-213.
[31] JHA D, SHIRLEY N, TESTER M, et al. Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport[J]. Plant, Cell & Environment, 2010, 33(5): 793-804.
[32] MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
[33] PLATTEN J D, COTSAFTIS O, BERTHOMIEU P, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance[J]. Trends in Plant Science, 2006, 11(8): 372-374.endprint
[34] SCHACHTMAN D P, SCHROEDER J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature, 1994, 370(6491): 655-658.
[35] UOZUMI N, KIM E J, RUBIO F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiology, 2000, 122(4): 1249-1260.
[36] PLETT D, SAFWAT G, GILLIHAM M, et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1[J]. Plos One, 2010, 5(9): e12571.
[37] MLLER I S, GILLIHAM M, JHA D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. Plant Cell, 2009, 21(7): 2163-2178.
[38] HAUSER F, HORIE T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress[J]. Plant, Cell & Environment, 2010, 33(4):552-565.
[39] HILL C B, JHA D, BACIC A, et al. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains[J]. Molecular Plant, 2013, 6(2): 350-368.
[40] SHI H, ISHITANI M, WU S J, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceeding of the National Academy of Sciences of the USA, 2000, 97(12): 6896-6901.
[41] MAHAJAN S,PANDEY G K,TUTEJA N. Calcium-and salt-stress signaling in plants: Shedding light on SOS pathway[J]. Archives of Biochemistry and Biophysics, 2008, 471(2): 146-158.
[42] BATELLI G, VERSLUES P E, AGIUS F,et al.SOS2 promotes salt tolerance in part by interacting with the vaculoar H+-ATPase and upregulating its transport activity[J].Molecular and Cellular Biology,2007,27(22):7781-7790.
[43] JI H, PARDO J M, BATELLI G, et al. The salt overly sensitive(SOS) pathway: Established and emerging roles[J]. Molecular Plant, 2013, 6(2): 275-286.
[44] PASAPULA V, SHEN G, KUPPU S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnology Journal, 2011, 9(1): 88-99.
[45] APSE M P, AHARON G S, SNEDDEN W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science,1999, 285(5431): 1256-1258.endprint
[46] GAXIOLA R A, RAO R, SHERMAN A, et al. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proceedings of the National Academy of Sciences of the USA, 1999, 96(4): 1480-1485.
[47] ASIF M A, ZAFAR Y, IQBAL J, et al. Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improve salt and drought tolerance[J]. Plant Molecular Biology, 2011, 49(3): 250-256.
[48] BLUMWALD E. Tonoplast vesicles as a tool on the study of ion transport at the plant vacuoles[J]. Physiologia Plantarum, 1987, 69(4): 731-734.
[49] GAXIOLA R A., FINK G R, HIRSCHI K D. Genetic manipulation of vacuolar proton pumps and transporters[J]. Plant Physiology, 2002, 129(3): 967-973.
[50] GONZALEZ N, VANHAEREN H, INZ D.Leaf size control: Complex coordination of cell division and expansion[J]. Trends in Plant Science,2012,17(6):332-340.
[51] OGAWA D, ABE K, MIYAO A, et al. RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice[J]. Nature Communications,2011,2:278-288.
[52] WEN B, NIEUWLAND J, MURRAY J A H. The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth through cell elongation and endoreduplication[J].Journal of Experimental Botany, 2013, 64(4): 1135-1144.
[53] PERES A, CHURCHMAN M L, HARIHARAN S, et al. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses[J]. The Journal of Biological Chemistry, 2007, 282(35): 25588-25596.
[54] WANG C X, JING R L, MAO X G, et al. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(3): 1299-1311.
[55] MCSTEEN P, ZHAO Y. Plant hormones and signaling: Commonthemes and new developments[J]. Development Cell,2008, 14(4): 467-473.
[56] JOHRI M M. Hormonal regulation in green plant lineage families[J]. Physiology and Molecular Biology of Plants, 2008, 14(1-2): 23-38.
[57] RAGHAVENDRA A S, GONUGUNTA V K, CHRISTMANN A, et al. ABA perception and signalling[J]. Trends in Plant Science, 2010, 15(7): 395-401.
[58] PONS R, CORNEJO M J,SANZ A. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines[J].Plant Physiology and Biochemistry, 2013, 62: 88-94.
[59] LI J S, JIA H L, WANG J.cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots[J]. Plant Cell Reports,2013,33(3):447-459.endprint
[60] DOBREV P I, VANKOVA R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues[J]. Methods in Molecular Biology, 2012,913:251-261.
[61] BAJGUZ A, PIOTROWSKA-NICZYPORUK A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (trebouxiophyceae)[J]. Plant Physiology and Biochemistry, 2013, 71: 290-297.
[62] TROMAS A, PAQUE S, STIERL V, et al. Auxin-Binding Protein 1 is a negative regulator of the SCF (TIR1/AFB) pathway[J]. Nature Communications, 2013, 4: 2496-2504.
[63] DEVI S J, MADHAV M S, KUMAR G R, et al. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice[J]. Gene, 2013, 531(1): 15-22.
[64] LIU C T, MAO B G, OU S J, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1-2): 19-36.
[65] NAKASHIMA K, JAN A, TODAKA D, et al. Comparative functional analysis of six drought-responsive promoters in transgenic rice[J]. Planta, 2014,239(1): 47-60.
[66] YAISH M W, COLASANTI J, ROTHSTEIN S J. The role of epigenetic processes in controlling flowering time in plants exposed to stress[J]. Journal of Experimental Botany, 2011, 62(11): 3727-3735.
[67] KARAN R, DELEON T, BIRADAR H, et al. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes[J]. Plos One, 2012, 7(6): e40203.
[68] SANTOS A P, SERRA T, FIGUEIREDO D D, et al. Transcription regulation of abiotic stress responses in rice: A combined action of transcription factors and epigenetic mechanisms[J]. A Journal of Integrative Biology,2011,15(12): 839-858.
[69] CHOI C S, SANO H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants[J]. Molecular Genetics and Genomics, 2007, 277(5): 589-560.
[70] KALDIS A, TSEMENTZI D, TANRIVERDI O, et al. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses[J]. Planta, 2011, 233(4): 749-762.
[71] RAMACHANDRAN V, CHEN X M. Small RNA metabolism in Arabidopsis[J]. Trends in Plant Science, 2008, 13(7): 368-374.
[72] XIA K, WANG R,OU X,et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice[J]. Plos One, 2012, 7(1):e30039.endprint