耿 鑫, 孫詩(shī)譽(yù), 張志超, 仝兆鵬
(東北大學(xué)材料與冶金學(xué)院,沈陽(yáng)110819)
真空感應(yīng)爐坩堝材質(zhì)對(duì)Cr12鋼純凈度的影響
耿鑫, 孫詩(shī)譽(yù), 張志超, 仝兆鵬
(東北大學(xué)材料與冶金學(xué)院,沈陽(yáng)110819)
摘要:研究和分析了10 kg真空感應(yīng)爐MgO和CaO坩堝對(duì)所熔煉Cr12鋼的純凈度影響.結(jié)果表明,采用MgO坩堝進(jìn)行真空冶煉,精煉真空度為50~100 Pa時(shí),鋼中w達(dá)到最低,為0.002 79%,精煉真空度為5~10 Pa時(shí),鋼中w達(dá)到最低,為0.001 8%;采用CaO坩堝進(jìn)行真空冶煉,精煉真空度為5~10 Pa時(shí),鋼中w達(dá)到最低,為0.000 58%,鋼中w也達(dá)到最低,為0.001 5%.
關(guān)鍵詞:真空感應(yīng)爐;坩堝;氧、氮含量;夾雜物
在真空感應(yīng)爐高溫高真空度的條件下,鋼液中氧含量取決于碳氧反應(yīng)和坩堝材料向鋼液供氧,當(dāng)脫氧速率大于供氧速率時(shí),鋼液含氧量降低;當(dāng)脫氧速率小于供氧速率時(shí), 鋼液含氧量上升[1~5].MgO坩堝在高溫高真空下不穩(wěn)定,在真空度小于50 Pa,就強(qiáng)烈分解,而且隨著熔煉溫度提高,分解加劇.CaO的熱穩(wěn)定性遠(yuǎn)比MgO好,真空度小于2 Pa時(shí)才發(fā)生分解.在超低氧范圍內(nèi)對(duì)鋼液進(jìn)行深度脫氧,避免爐襯分解對(duì)鋼液供氧是關(guān)鍵[6~18].本實(shí)驗(yàn)是在真空感應(yīng)爐分別采用MgO和CaO坩堝冶煉Cr12鋼,對(duì)比兩種坩堝材質(zhì)在不同精煉真空度、精煉時(shí)間對(duì)鋼液氧氮含量及夾雜物的影響,為冶煉純凈鋼提供參考.
1實(shí)驗(yàn)方法
以工業(yè)純鐵、硅、錳、鎳、鉻和碳為原料,在10 kg真空感應(yīng)爐內(nèi)熔煉Cr12鋼,Cr12鋼設(shè)計(jì)成分見(jiàn)表1.
表1 Cr12鋼的設(shè)計(jì)成分(質(zhì)量分?jǐn)?shù))
MgO和CaO坩堝均是預(yù)制坩堝,高溫?zé)Y(jié)法制作,適宜精煉溫度1 550~1 600 ℃,材質(zhì)成分見(jiàn)表2.
表2 坩堝成分(質(zhì)量分?jǐn)?shù))
采用10 kg真空感應(yīng)爐熔煉Cr12鋼,在精煉期開始后5、20、40 min分別取鋼樣.用直讀光譜儀(Optical Emission Spectrometer) 檢測(cè)鋼樣中C、Cr、Ni、Mn、Si、P、S等元素.用TC-500氧氮測(cè)定儀分析氧、氮成分.用金相顯微鏡(NEOPHOT32)分析鋼中夾雜物的尺寸、數(shù)量以及分布情況.用掃描電鏡(QUANTA-400)觀察夾雜物形貌,用能譜定量分析夾雜物成分.
2實(shí)驗(yàn)結(jié)果及分析
在溫度為1 600 ℃,壓力為50~100 Pa、10~50 Pa、5~10 Pa,分別采用MgO和CaO坩堝在真空感應(yīng)爐內(nèi)熔煉40 min后w和w如表3所示.
表3 坩堝材質(zhì)對(duì)熔煉的Cr12鋼中w和
在1 600 ℃,通過(guò)熱力學(xué)計(jì)算,MgO坩堝分解達(dá)平衡時(shí)鋼液中w與真空度的關(guān)系是:w=0.066%/Psystem(Psystem代表真空壓力,分別為100,50,5 Pa);CaO坩堝分解達(dá)平衡時(shí)鋼液中w與真空度的關(guān)系是:w=0.000 68%/Psystem(Psystem分別為100,50,5 Pa).
在溫度為1 600 ℃,精煉期真空度分別為50~100 Pa、10~50 Pa、5~10 Pa時(shí),使用MgO坩堝在不同時(shí)間測(cè)得鋼液中w和w如圖1和圖2所示.
圖1 1 600 ℃,用MgO坩堝冶煉Cr12鋼,w與時(shí)間的關(guān)系Fig.1 The relationship between w and time forsteel Cr12 melted with MgO crucible at 1 600 ℃(a)—50~100 Pa;(b)—10~50 Pa;(c)—5~10 Pa
圖2 1 600 ℃,用MgO坩堝冶煉Cr12鋼,w與時(shí)間的關(guān)系Fig.2 The relationship between w and timefor steel Cr12 melted with MgO crucible at 1 600 ℃
如圖1(a)所示,在精煉期真空度保持在50~100 Pa時(shí),w隨精煉時(shí)間持續(xù)下降,最低達(dá)到0.002 79%,明顯高于MgO坩堝熱分解平衡時(shí)的w(12×10-6),坩堝材質(zhì)未發(fā)生分解,碳氧反應(yīng)占主要地位;如圖1(b)所示,在精煉期真空度保持在10~50 Pa時(shí),w隨精煉時(shí)間先下降后上升,最低達(dá)到0.002 59%,低于MgO坩堝熱分解平衡時(shí)w(27×10-6),坩堝發(fā)生分解反應(yīng),分解反應(yīng)占主要地位時(shí),鋼中w開始升高;如圖1(c)所示,在精煉期真空度保持在5~10 Pa時(shí),w隨精煉時(shí)間持續(xù)上升,原因是鋼中w始終低于坩堝材質(zhì)熱分解平衡時(shí)的w(66×10-6),坩堝材質(zhì)發(fā)生分解,并且分解反應(yīng)占主要地位.
如圖2所示,就同一條曲線而言,w含量隨著精煉時(shí)間持續(xù)而降低;對(duì)比50~100 Pa和10~50 Pa兩條曲線,w含量隨著壓力降低而降低,因?yàn)閣含量向平衡的方向移動(dòng),平衡w含量滿足平方根定律,隨著壓力降低平衡w含量降低,同時(shí)壓力降低使得脫氮速率加快.壓力為5~10 Pa在5 min時(shí)氮含量較高是因?yàn)橐睙掃^(guò)程中從熔化到精煉的時(shí)間相對(duì)其它爐次較短,脫氮不充分,5~20 min脫氮速率較快是因?yàn)榇藭r(shí)壓力最小,脫氮最快.
在溫度為1 600 ℃,精煉期真空度分別為50~100 Pa、10~50 Pa、5~10 Pa時(shí),使用CaO坩堝在不同時(shí)間測(cè)得w和w含量如圖3和圖4所示.
如圖3(a、b和c)所示,在精煉期真空度保持在50~100 Pa、10~50 Pa、5~10 Pa時(shí),w隨精煉時(shí)間持續(xù)下降,鋼中w遠(yuǎn)高于坩堝熱分解平衡w(0.1×10-6、0.2×10-6、1×10-6),坩堝材質(zhì)不發(fā)生分解,碳氧反應(yīng)占主要地位.
圖3 1 600 ℃,用CaO坩堝冶煉Cr12鋼,w與時(shí)間的關(guān)系Fig.3 The relationship between w and time forsteel Cr12 melted with CaO crucible at 1 600 ℃(a)—50~100 Pa;(b)—10~50 Pa;(c)—5~10 Pa
如圖4所示,w含量隨著壓力降低而降低,隨著精煉時(shí)間持續(xù)而降低.
圖4 1 600 ℃,用CaO坩堝冶煉Cr12鋼,w與時(shí)間的關(guān)系Fig.4 The relationship between w and time forsteel Cr12 melted with CaO crucible at 1 600 ℃
將退火后的鋼錠加工成金相試樣,在光學(xué)顯微鏡500倍視場(chǎng)下,用定量金相法對(duì)試樣進(jìn)行統(tǒng)計(jì)分析,隨機(jī)統(tǒng)計(jì)64個(gè)視場(chǎng),用Image-Pro Plus 6.0(IPP 6.0)圖像分析軟件對(duì)Cr12鋼的金相照片進(jìn)行統(tǒng)計(jì)定量分析,統(tǒng)計(jì)結(jié)果如圖5所示.
圖5 Cr12鋼夾雜物統(tǒng)計(jì)結(jié)果Fig.5 Statistical results of inclusions for steel Cr12(a)—夾雜物平均直徑;(b)—單位面積個(gè)數(shù);(c)—夾雜物面積比例
對(duì)MgO坩堝在精煉期真空度為10~50 Pa,精煉時(shí)間為5 min的試樣,用掃面電鏡(SEM)和能譜儀(EDS)進(jìn)行夾雜物形貌和成分的分析,分析結(jié)果如圖6所示,主要的夾雜物為Al2O3夾雜、MnS夾雜及復(fù)合夾雜.
對(duì)MgO坩堝在精煉期真空度為10~50 Pa,精煉時(shí)間20 min時(shí)的試樣,用掃面電鏡(SEM)和能譜儀(EDS)進(jìn)行夾雜物形貌和成分的分析,分析結(jié)果如圖7所示,主要的夾雜物為Al2O3夾雜、MnS夾雜、尖晶石夾雜及復(fù)合夾雜.
如圖5所示,采用MgO坩堝,在精煉真空度維持在50~100 Pa時(shí),隨著反應(yīng)時(shí)間的增加,鋼中夾雜物的數(shù)量逐漸減少,尺寸逐漸變小.鋼中夾雜物始終是Al2O3夾雜、MnS夾雜及復(fù)合夾雜;如圖6所示,在精煉真空度維持在10~50 Pa時(shí),精煉5 min,鋼中夾雜物是Al2O3夾雜、MnS夾雜及復(fù)合夾雜.隨著反應(yīng)時(shí)間的增加,鋼中夾雜物的數(shù)量先減少后增加,夾雜物的尺寸先變小后變大.如圖7所示,在精煉20 min時(shí),坩堝中MgO已經(jīng)發(fā)生分解,導(dǎo)致鋼中夾雜物除了Al2O3夾雜、MnS夾雜以外,還有尖晶石夾雜;在精煉真空度維持在5~10 Pa時(shí),隨著反應(yīng)時(shí)間的增加,鋼中夾雜物的數(shù)量持續(xù)增加,夾雜物的尺寸逐漸變大,越到精煉的后期夾雜物的數(shù)目越多且尺寸越大.鋼中夾雜物除了Al2O3夾雜、MnS夾雜以外,還有尖晶石夾雜,而且隨著精煉的持續(xù),鋼中尖晶石夾雜逐漸增多.
圖6 采用MgO坩堝,真空度為10~50 Pa,精煉5 min時(shí)Cr12鋼中夾雜物形貌及組成Fig.6 Morphology and composition of inclusions for steel Cr12 melted with MgO crucible at pressure10~50 Pa and in refining time 5 min(a)—Al2O3夾雜;(b)—MnS夾雜
圖7 采用MgO坩堝,真空度為10~50 Pa,精煉20min時(shí)鋼夾雜物形貌及組成Fig.7 Morphology and composition of inclusions for steel Cr12 melted with MgO crucible atpressure 50~100 Pa and in refining time 5 min(a)—Al2O3夾雜;(b)—MnS夾雜;(c)—尖晶石夾雜
如圖5所示,采用CaO坩堝,精煉期真空度保持在50~100 Pa、10~50 Pa、5~10 Pa時(shí),隨著反應(yīng)時(shí)間的增加,夾雜物平均直徑、單位面積個(gè)數(shù)和面積比例均呈下降趨勢(shì).鋼中夾雜物以Al2O3為主,摻雜少量MnS夾雜以及復(fù)合夾雜,夾雜物的種類未隨精煉時(shí)間發(fā)生變化.
對(duì)比兩種坩堝材質(zhì)對(duì)w含量的影響,當(dāng)壓力降低至10~50 Pa,MgO坩堝出現(xiàn)分解現(xiàn)象,鋼中w含量升高;而對(duì)于CaO坩堝,即使壓力降至5~10 Pa,仍未出現(xiàn)增w現(xiàn)象,說(shuō)明CaO坩堝比MgO坩堝更穩(wěn)定,更適合冶煉超低氧鋼.
對(duì)比兩種坩堝材質(zhì)在不同壓力下,對(duì)Cr12鋼精煉40 min時(shí)夾雜物的影響,CaO坩堝冶煉比MgO坩堝冶煉的鋼中夾雜物平均直徑、單位面積個(gè)數(shù)及面積比均要小,說(shuō)明CaO坩堝冶煉的鋼比MgO坩堝冶煉的鋼更加純凈.
3結(jié)論
(1)采用MgO坩堝進(jìn)行真空冶煉,精煉真空度在50~100 Pa時(shí),鋼中w和夾雜物體積分?jǐn)?shù)持續(xù)下降,夾雜物主要為Al2O3和MnS夾雜;精煉真空度在10~50 Pa時(shí),鋼中w和夾雜物體積分?jǐn)?shù)先下降,此時(shí)鋼中夾雜物主要為Al2O3和MnS夾雜,而后上升,此時(shí)鋼中夾雜物中出現(xiàn)了尖晶石夾雜;精煉真空度在5~10 Pa時(shí),鋼中w和夾雜物體積分?jǐn)?shù)持續(xù)上升,此時(shí)鋼中夾雜物主要為Al2O3、MnS以及尖晶石夾雜.
(2)采用CaO坩堝進(jìn)行真空冶煉,精煉真空度在50~100 Pa、10~50 Pa、5~10 Pa時(shí),鋼中w和夾雜物體積分?jǐn)?shù)均呈下降趨勢(shì),鋼中主要有Al2O3和MnS夾雜.
(3)采用MgO坩堝與CaO坩堝進(jìn)行真空冶煉,w含量隨著真空度降低而減少,隨著精煉時(shí)間的增加而減少.
(4)采用CaO坩堝冶煉的鋼樣全氧含量要低于相同條件下的MgO坩堝所煉鋼樣;CaO坩堝在熱穩(wěn)定性上要優(yōu)于MgO坩堝;在設(shè)置的實(shí)驗(yàn)中,CaO坩堝未發(fā)生分解供氧.
參考文獻(xiàn)
[1]薛正良, 齊江華, 高俊波. 超低氧鋼熔煉過(guò)程中爐襯與鋼液的相互作用. 武漢科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2005, 28(2): 119-121.
(Xue Zhengliang, Qi Jianghua, Gao Junbo. The interaction between crucible and molten steel during the melting process of ultra low oxygen steel . Journal of Wuhan University of Science and Technology: Natural Sciences, 2005, 28(2):119-121.)
[2]薛正良, 齊江華, 周國(guó)凡, 等. 真空感應(yīng)熔煉含鋁鋼的脫氧規(guī)律. 鋼鐵研究學(xué)報(bào), 2007, 19(11): 18-20.
(Xue Zhengliang, Qi Jianghua, Zhou Guofan,etal. Deoxidation law of smelting aluminized steel by vacuum induction . Journal of Iron and Steel Research, 2007,19(11):18-20.)
[3]李守軍, 羅威豹, 張紅斌. GH132合金在冶煉過(guò)程中氮及氧的變化規(guī)律. 金屬學(xué)報(bào), 1995, 31(1): 317-322.
(Li Shoujun, Luo Weibao, Zhang Hongbin. The variation of nitrogen and oxygen druing the smelting process of alloy GH132 . Journal of Metal, 1995,31(1):317-322.)
[4]Ivanov I N, Vikhreva R K. Vacuum metallurgy improves working conditions . Metallurgist, 1986, 30 (5):178-180.
[5] Chen Bo,Ma Yingche, Gao Ming,etal. Changes of oxygen content in molten TiAl as a function of superheat during vacuum induction melting . Materials Science & Technology, 2010, 26 (10):900-903.
[6]王振東, 曹孔健, 何紀(jì)龍. 感應(yīng)爐冶煉. 北京: 化學(xué)工業(yè)出版社, 2007.
(Wang Zhendong, Cao Kongjian, He Jilong. Smelting of Induction furnace . Beijing: Press of Chemistry Industry,2007.)
[7]Sakamoto Koichi, Yoshikawa Katsuyuki, Kusamichi Tatsuhiko. Changes in oxygen of titanium aluminides by vacuum induction, cold crucible induction and electron beam melting . ISIJ International, 1992,32(5):616-624.
[8]肖英龍,張化義. 川崎鋼鐵公司開發(fā)新鋼水脫氮技術(shù). 世界金屬導(dǎo)報(bào),1998.
(Xiao Yinglong, Zhang Huayi. The new denitrification technologies developed by Kawasaki Steel Corporation . World Metal Bulletin, 1998.)
[9]Niu Jianping, Yang Kenu, Jin Tao. Desulphurization during VIM refining Ni-based superalloy using CaO crucible . Materials Science & Technology, 2003, 19(1):69-72.
[10]Brown E E, Stulga J E, Jennings L,etal. The influence of VIM crucible composition, vacuum arc remelting, and electroslag remelting on the non-metallic inclusion content of merl 76 . ASM, 1980.
[11]邵象華, 知水, 趙仁川, 等. 間歇式真空感應(yīng)爐中坩堝供氧的一個(gè)來(lái)源. 金屬學(xué)報(bào), 1965,8(3): 392-394.
(Shao Xianghua, Zhi Shui, Zhao Renchuan,etal. A source of oxygen in the crucible of intermittent vacuum induction furnace . Journal of metal, 1965,8(3):392-394.)
[12]Degawa T, Ototani T. Refining of high purity Ni-base superalloy using calcium refractory. Tetsu-to-Hagane, 1987, 73(14): 1691-1697.
[13]Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys. Computational Materials Science, 2006, 38(2): 374-385.
[14]Betz U, Kemmer H, Schlebusch D,etal. Vacuum induction melting-new developments in equipment design and process control. Special Melting and Processing Technologies, 1988(3): 183-210.
[15]薛正良, 李正邦, 張家雯, 等. 真空感應(yīng)熔煉碳脫氧研究. 鋼鐵, 2003, 38(6):12-14.
(Xue Zhengliang, Li Zhengbang, Zhang Jiawen,etal. Research of carbon deoxidation by smelting of vacuum induction furnace . Iron and Steel, 2003,38(6):12-14.)
[16]Sutton W H. Proc. 8th international conference on vacuum metallurgy//Japanese Iron & Steel Institute. Tokyo, 1982, 1420-1428.
[17]虞明全. 100 t真空精煉爐脫氮工藝的實(shí)踐. 鋼鐵研究, 2001(1): 7-9.
(Yu Mingquan. The practice of denitrification process by 100t vacuum refining furnace . Research of Iron and Steel, 2001(1):7-9.)
[18] Niu Jianping, Hu Zhuangqi. Investigation on denitrogenation technology and mechanism during VIM refining Ni-base superalloy . Advanced Materials Research, 2011, 2433-2436.
Effect of crucible materials of vacuum induction furnace
on cleanliness of steel Cr12
Geng Xin, Sun Shiyu, Zhang Zhichao, Tong Zhaopeng
(School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China)
Abstract:The effects of magnesium oxide and calcium oxide crucibles in 10kg vacuum induction furnace on oxygen and nitrogen contents in molten steel Cr12 where been studied and analyzed. The results showed that the oxygen content reaches a lowest point 0.00279% at refining pressure 50~100 Pa and the nitrogen content reaches a lowest point 0.0018% at refining pressure 5~10 Pa with the magnesium oxide crucible; the oxygen content reaches a lowest point 0.00058% at refining pressure 5~10 Pa and the nitrogen content reaches a lowest point 0.0015% at the same pressure with the calcium oxide crucible.
Key words:vacuum induction furnace; crucible; oxygen and nitrogen content; inclusion
中圖分類號(hào):TF 743
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1671-6620(2015)03-0175-07
doi:10.14186/j.cnki.1671-6620.2015.03.003