胡磊山,胡照文,鄧聯(lián)文, 2,文 瑞,張 雨,唐 璐,劉 勝
?
近場(chǎng)通信系統(tǒng)用抗電磁干擾Fe基軟磁材料的制備
胡磊山1,胡照文1,鄧聯(lián)文1, 2,文 瑞1,張 雨1,唐 璐1,劉 勝1
(1. 中南大學(xué)物理與電子學(xué)院,超微結(jié)構(gòu)與超快過程湖南省重點(diǎn)實(shí)驗(yàn)室,長沙 410083;2. 中南大學(xué)粉末冶金國家重點(diǎn)實(shí)驗(yàn)室,長沙 410083)
采用熔體快淬法制備FeSiAl快淬帶料;利用行星式高能球磨工藝進(jìn)行扁平化處理;使用真空管式爐進(jìn)行氫還原退火處理;采用SEM、PPMS表征試樣的形貌及室溫磁滯回線;使用矢量網(wǎng)絡(luò)分析儀測(cè)量試樣在10~100 MHz頻段的復(fù)磁導(dǎo)率;采用抗干擾性能測(cè)試系統(tǒng)測(cè)量表征磁片抗干擾的標(biāo)簽讀寫距離;研究影響FeSiAl粉體材料磁性能的主要因素,并分析了其作用機(jī)理。結(jié)果表明,采用高低速兩步法高能球磨處理,能有效提高薄片狀FeSiAl材料的徑厚比;氫還原退火處理能有效提高飽和磁化強(qiáng)度和磁導(dǎo)率,降低矯頑力和磁損耗;制備的片狀FeSiAl材料在13.56 MHz頻率附近具有優(yōu)異的近場(chǎng)通信抗電磁干擾性能。
熔體快淬;FeSiAl;行星式高能球磨;氫還原退火;近場(chǎng)通信抗電磁干擾
由無線射頻識(shí)別(RFID)及互聯(lián)互通技術(shù)整合演變而來的近場(chǎng)通信(NFC)技術(shù),目前主要應(yīng)用于 13.56 MHz頻率,能在大約20 cm距離內(nèi)建立設(shè)備之間的連接;如通過與手機(jī)結(jié)合可完成電子支付等重要功能。但由于系統(tǒng)周邊通常存在的近場(chǎng)噪聲源可能對(duì)NFC系統(tǒng)的安全性、穩(wěn)定性和靈敏度產(chǎn)生不利影響,迫切需要高性能軟磁材料用以屏蔽近場(chǎng)噪聲源的電磁干擾。
目前使用的軟磁屏蔽材料主要有鐵氧體和鐵磁金屬兩大系列,其中典型的鐵氧體材料如NiZn、MnZn鐵氧體,具有較高的磁導(dǎo)率和電阻率,但由于Snoek極限的限制使鐵氧體材料很難應(yīng)用于更高頻段。鐵磁金屬材料具有高的飽和磁化強(qiáng)度,能突破Snoek極限限制,且晶格結(jié)構(gòu)相對(duì)簡(jiǎn)單,沒有類似鐵氧體磁性次格子間的磁矩相互抵消作用,其磁性一般比鐵氧體材料更強(qiáng)[1?3]。FeSiAl軟磁合金具有高飽和磁化強(qiáng)度和高的高頻磁導(dǎo)率,適用于高頻抗電磁干擾領(lǐng)域[4]。目前制備FeSiAl合金的方法主要有水霧化法、氣霧化法、機(jī)械合金化法和熔體快淬法,不同工藝制備的材料形貌差異顯著[5?7]。薄片狀材料相比其它形貌材料一般具有更高的高頻磁導(dǎo)率[8];且當(dāng)厚度小于趨膚深度時(shí),可以有效減小渦流影響。熔體快淬法容易獲得非晶或納米晶結(jié)構(gòu)的快淬帶料,且通過進(jìn)一步的高能球磨處理易變成薄片狀顆粒[9];而機(jī)械合金化法雖能形成薄片狀合金材料,但一般工藝周期長,制備效率低。行星式高能球磨工藝參數(shù)變化對(duì)FeSiAl合金材料的形貌和磁性能影響較大,王智祥、付偉等[10?11]通過對(duì)球磨參數(shù)的正交試驗(yàn)和方差分析,發(fā)現(xiàn)轉(zhuǎn)速對(duì)粉體形貌影響顯著,球磨時(shí)間和球料比對(duì)形貌影響相對(duì)較小。另一方面,高能球磨處理也易產(chǎn)生較大內(nèi)應(yīng)力,從而降低材料的軟磁性能,周娟等[12]通過高能球磨處理Fe基軟磁粉末,發(fā)現(xiàn)隨球磨時(shí)間延長,其飽和磁化強(qiáng)度基本不變,但矯頑力明顯增大。一般可通過退火工藝以改善其磁性能,唐傳明等[13]對(duì)片狀FeSiAl材料進(jìn)行退火處理,發(fā)現(xiàn)適當(dāng)溫度的退火處理可以提高飽和磁化強(qiáng)度,降低矯頑力。本文作者以13.56 MHz頻率的近場(chǎng)通信系統(tǒng)抗金屬電磁干擾的性能要求為目標(biāo),以FeSiAl為基本磁性組元,綜合運(yùn)用熔體快淬工藝、行星式高能球磨處理工藝和氫還原退火工藝,研制具有高徑厚比(片狀顆粒平面方向的平均尺寸與厚度的比值)、高飽和磁化強(qiáng)度、高磁導(dǎo)率、低損耗的軟磁性能優(yōu)異的Fe基近場(chǎng)噪聲源屏蔽材料。
1.1 Fe基合金制備
采用純度>99.5%的Fe、Si、Al為原料,按組成成分為Fe84.5Si5.5Al10(質(zhì)量分?jǐn)?shù))的配比要求,首先利用真空感應(yīng)熔煉爐將其熔煉成合金錠,破碎后裝入真空快淬爐中,通過熔體快淬工藝制備FeSiAl快淬帶料。然后按球料比20:1分別將FeSiAl快淬帶料、鋼球及適量無水乙醇加入到不銹鋼球磨罐中,在QXQM-20型變頻行星式球磨機(jī)進(jìn)行適當(dāng)時(shí)間的高能球磨扁平化處理(高低速兩步法高能球磨處理:高轉(zhuǎn)速為200 r/min,低轉(zhuǎn)速為150 r/min),不同試樣對(duì)應(yīng)的工藝參數(shù)如表1所列。
表1 不同試樣的行星式球磨處理工藝參數(shù)
1.2 后處理工藝
將高能球磨處理后的薄片狀FeSiAl材料置于真空干燥箱中干燥,選取試樣S3、S4、S5、S6為原料,進(jìn)而在真空管式爐(型號(hào)為SK-G06143-2)中進(jìn)行后續(xù)氫還原退火處理,所得材料試樣編號(hào)分別為S3H、S4 H、S5 H、S6 H。
1.3 測(cè)試與表征
采用QUANTA-200型掃描電子顯微鏡觀察FeSiAl試樣形貌;利用PPMS-9T型綜合物性測(cè)量系統(tǒng)測(cè)量試樣的室溫磁性;按橡膠基材與薄片狀FeSiAl材料1:6的質(zhì)量比,用雙輥煉塑機(jī)均勻混合并壓制成厚度約為0.2 mm的柔性磁片試樣;采用傳輸/反射 法[14],借助AV3629矢量網(wǎng)絡(luò)分析儀掃頻測(cè)量系統(tǒng),測(cè)量磁片試樣的磁導(dǎo)率;采用抗電磁干擾性能測(cè)試系統(tǒng),通過測(cè)量磁片試樣置于金屬基材上時(shí)系統(tǒng)對(duì)標(biāo)簽的抗干擾讀寫距離來表征材料的抗干擾能力。
2.1 SEM形貌分析
圖1所示為經(jīng)不同高能球磨處理工藝參數(shù)得到的FeSiAl試樣的SEM形貌照片??梢?,僅經(jīng)高速球磨14 h處理所得的試樣S1粒度較細(xì),但扁平化不均勻;僅經(jīng)低速球磨14 h處理的試樣S2扁平化效果明顯,但顆粒尺寸較大。試樣S3、S4、S5和S6都先經(jīng)6 h的高速高能球磨處理,再分別經(jīng)4、6、8 和10 h的低速球磨處理;明顯可見,試樣S5的顆粒徑厚比大且尺寸較均勻,橫向平均尺寸約50 μm,厚度約2 μm;而后續(xù)過長(試樣S6)或過短(試樣S3)的低速球磨處理時(shí)間都不利于獲得縱橫比大且尺寸較均勻的顆粒形貌。第一步6 h高速高能球磨使FeSiAl快淬料有效細(xì)化和塑性變形,第二步較低速的球磨處理則使細(xì)化的顆粒料進(jìn)一步扁平化;合理設(shè)計(jì)高速高能球磨和低速球磨的兩步處理時(shí)間則可以獲得尺寸較均勻且徑厚比大的FeSiAl顆粒材料;從而有利于提高材料的高頻磁導(dǎo) 率[15]。
2.2 室溫磁滯回線
圖2所示為經(jīng)不同球磨處理的試樣(S3、S4、S5、S6)和后續(xù)氫還原退火處理后的試樣(S3H、S4H、S5H、S6H)的FeSiAl材料的室溫磁滯回線。表2所列為飽和磁化強(qiáng)度s、矯頑力c。由圖可見試樣均呈現(xiàn)典型的軟磁材料特性。隨球磨處理時(shí)間增加,試樣的s減小,而c增大。主要由于球磨時(shí)間延長導(dǎo)致晶粒更加細(xì)化和非磁性氧化相含量增加,從而使s減??;另外,顆粒扁平變形使顆粒的形狀各向異性增強(qiáng),內(nèi)部晶格缺陷及應(yīng)力變大,從而使c增大[3]。經(jīng)氫還原退火處理而得的試樣S5H,其s提高至123.12 A?m2/kg,而c減小至18.0 Ω,軟磁性能得以明顯改善,源于氫還原處理能有效減少非磁性氧化相含量,消除晶體缺陷及應(yīng)力[16]。
圖1 經(jīng)不同球磨工藝參數(shù)處理所得FeSiAl材料試樣S1 ; S2 ; S3 ; S4 ;S5; S6的SEM照片
圖2 不同工藝條件制備的FeSiAl材料試樣的室溫磁滯回線
Fig.2 The room temperature hysteresis loops of samples treated by different preparation conditions (Note: S3, S4, S5and S6—Samples of ball milled; S3H, S4H, S5Hand S6H—Samples of the hydrogen reduction annealing treated using S3, S4, S5and S6respectively)
表2 不同工藝條件所得材料試樣的磁性能
2. 3 高頻磁導(dǎo)率(′)
圖3所示為用上述不同的FeSiAl粉體做填料制備的磁片試樣(亦用S3、S4、S5、S6、S5H表示)在10~ 100 MHz頻段的復(fù)磁導(dǎo)率頻譜??梢姡S頻率增加,各試樣高頻率導(dǎo)率′總體呈減小趨勢(shì),磁損耗″則呈增大趨勢(shì);且在同頻率點(diǎn),各試樣按′值大小排序?yàn)镾5H、S5、S6、S4、S3,這與上述對(duì)各試樣的軟磁性能測(cè)量分析結(jié)果反映的情況吻合。在高于40 MHz的頻段,′較高的試樣對(duì)應(yīng)的″也相對(duì)較高。在13.56 MHz處,未經(jīng)氫還原退火處理的試樣中,S5的′最大,達(dá)14.75,而各試樣的″差別不大;與上述對(duì)不同參數(shù)的兩步球磨處理工藝獲得試樣的形貌分析和靜態(tài)磁性的分析結(jié)果符合,即良好的扁平片狀形貌、顆粒均勻度和軟磁性能有利于提高材料的高頻磁導(dǎo)率[17?20]。試樣S5的FeSiAl原料粉經(jīng)氫還原退火處理后制備的磁片試樣S5H,其′進(jìn)一步提高至16.16,且″降低至0.17;主要源于氫還原退火處理可有效減少FeSiAl粉體材料中的氧含量,即非磁性相含量減少,從而使材料的飽和磁化強(qiáng)度增大,同時(shí)也降低內(nèi)應(yīng)力和晶格缺陷的影響,從而減弱磁化過程中對(duì)疇壁的釘扎作用,使磁導(dǎo)率得以提高[21]。采用讀卡器對(duì)上述磁片試樣的抗干擾讀寫距離進(jìn)行測(cè)量,所得的結(jié)果如表3所列,可見試樣S5H的讀寫距離最大,即抗干擾能力最好。
圖3 不同磁片試樣在10~100 MHz頻段的復(fù)磁導(dǎo)率頻譜
表3 試樣在13.56 MHz的復(fù)磁導(dǎo)率
1) 綜合使用熔體快淬工藝和高低速兩步球磨處理工藝可以制備出高徑厚比、粒徑尺寸較均勻的薄片狀FeSiAl顆粒材料。
2) 采用氫還原退火工藝對(duì)薄片狀FeSiAl材料進(jìn)行處理,可以減少材料中的非磁性氧化相含量,也有利于消除材料的內(nèi)應(yīng)力和缺陷,從而有利于降低矯頑力c和磁損耗″,提高材料的飽和磁化強(qiáng)度s和高頻磁導(dǎo)率′。
3) FeSiAl快淬帶料先經(jīng)6 h的200 r/min的高速球磨和后續(xù)8 h的150 r/min的低速球磨,扁平化效果好,顆粒的橫向平均尺寸約50 μm,厚度約2 μm;按1:6的膠料比制得的磁片在13.56 MHz頻率的′達(dá)14.75,″為0.24。
4) 扁平化良好的FeSiAl料再經(jīng)后續(xù)的氫還原退火處理,s可提高至123.12 A?m2/kg,c則降低至 18.0 Oe,′提高至16.16,″降低至0.17,抗電磁干擾性能得以明顯增強(qiáng)。綜合采用熔體快淬工藝、行星式高能球磨處理工藝和氫還原退火工藝制備的薄片狀FeSiAl材料,能應(yīng)用于13.56 MHz的高頻近場(chǎng)通信系統(tǒng)的抗電磁干擾領(lǐng)域。
[1] TONG G X, WU W H, QIAO H, et al. Enhanced electro-magnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2~18 GHz ranges [J]. Journal of Alloys and Compounds, 2011, 509(2): 451?456.
[2] ZHOU T D, ZHOU P H, LIANG D F, et al. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching [J]. Journal of Alloys and Compounds, 2009, 484(1): 545?549.
[3] YOSHIDA S, ANDO S, SHIMADA Y, et al. Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging [J]. Journal of Applied Physics, 2003, 93(10): 6659?6661.
[4] LIU J, MA T, TONG H, et al. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(8): 940?944.
[5] 王 鮮, 龔榮洲, 何燕飛, 等. 扁平化 Fe-Si-Al 合金粉末的磁特性[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 34(5): 77?79. WANG Xian, GONG Rong-zhou, HE Yan-fei, et al. Magnetic properties of flattened Fe-Si- Al alloy powders [J].Huazhong University of Science and Technology (Natural Science Edition), 2006, 34(5): 77?79.
[6] WANG X, GONG R, LI P, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes [J]. Materials Science and Engineering: A, 2007, 466(1): 178?182.
[7] LIU J, FENG Y B, QIU T. Synthesis, characterization, and microwave absorption properties of Fe-40wt%Ni alloy prepared by mechanical alloying and annealing [J]. Journal of Magnetism and Magnetic Materials, 2011, 323(23): 3071?3076.
[8] LAGARKOV A N, ROZANOV K N. High-frequency behavior of magnetic composites [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2082?2092.
[9] 劉東華, 劉詠, 黃伯云, 等. 高能球磨霧化鐵基合金粉末的組織與性能[J]. 粉末冶金材料科學(xué)與工程, 2008, 13(4): 223?228. LIU Dong-hua, LIU Yong, HUANG Bai-yun, et al. High-energy mechanical milling of atomized iron-based powder [J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13(4): 223?228.
[10] 王智祥, 劉 峰, 劉利雅, 等. 機(jī)械合金化工藝對(duì)高硅鋁合金混合粉體粒徑及形貌的影響[J]. 粉末冶金工業(yè), 2013, 23(2): 6?10. WANG Zhi-xiang, LIU Feng, LIU Li-ya, et al. Effects of mechanical alloying on mixed powder particle size and morphology of high-silicon aluminum alloy [J].Powder Metallurgy Industry, 2013, 23(2): 6?10.
[11] 付 偉, 陳體軍, 陳玉獅, 等. 球磨工藝對(duì) Al-7Si-1Mg 合金半固態(tài)組織的影響[J]. 特種鑄造及有色合金, 2013, 33(7): 616?621. FU Wei, CHEN Ti-jun, CHEN Yu-shi, et al. Effects of ball-milling process parameters on the microstructure of semi-solid Al-7Si-1Mg alloy powder block [J]. Special Casting and Nonferrous Alloys, 2013, 33(7): 616?621.
[12] 周 娟, 劉華山, 肖于德, 等. 高能球磨對(duì)霧化Fe基軟磁粉末結(jié)構(gòu)及性能的影響[J]. 粉末冶金材料科學(xué)與工程, 2013, 18(2): 211?216. ZHOU Juan, LIU Hua-shan, XIAO Yu-de, et al. Effect of high energy ball milling on structures and properties of atomizing Fe-based soft magnetic powders [J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(2): 211?216.
[13] 唐傳明, 馮永寶, 丘 泰. 扁平化及退火溫度對(duì)FeSiAl合金吸波性能的影響[J]. 電子元件與材料, 2013, 32(2): 43?47. TANG Chuan-ming, FENG Yong-bao, QIU Tai. Effects of flattening and annealing temperature on the microwave absorbing properties of FeSiAl alloys [J].Electronic Components and Materials, 2013, 32(2): 43?47.
[14] KIM S S, JO S B, GUEON K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band Frequencies [J]. IEEE Transaction on Magnetics, 1991, 27(6): 5462?5464.
[15] WEI J, ZHANG Z, WANG B, et al. Microwave reflection characteristics of surface-modified Fe50Ni50 fine particle composites [J]. Journal of Applied Physics, 2010, 108(12): 123908?123913.
[16] CHO H S, KIM A S, KIM S M, et al. Study of electromagnetic wave-absorbing materials made by a melt-dragging process [J]. Physica Status Solid (a), 2004, 201(8): 1942?1945.
[17] WEI J Q, WANG T, LI F S. Effect of shape of Fe3Al particles on their microwave permeability and absorption properties [J]. Journal of Magnetism and Magnetic Materials, 2011, 323(21): 2608?2612.
[18] MATSUMOTO M, MIYATA Y. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles [J]. IEEE Trans Magn, 1997, 33(6): 4459?4464.
[19] ONO H, YOSHIDA S, ANDO S. Improvement of the electromagnetic-noise suppressing features for Fe-Si -Al composite sheets by dc magnetic field biasing [J]. Journal of Applied Physics, 2003, 93(10): 6662?6664.
[20] KIM S S, KIM S T, YOON Y C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies [J]. Journal of Applied Physics, 2005, 97(10): 10F905.
[21] 鄧聯(lián)文, 馮則坤, 江建軍, 等. 納米晶Fe85Si1Al6Cr8扁平狀顆粒材料微波吸收特性[J]. 金屬學(xué)報(bào), 2006, 42(3): 321?324. DENG Lian-wen, FENG Ze-kun, JIANG Jian-jun, et al. Microwave absorbing capabity of Fe85Si1Al6Cr8nanocrystalline flakes [J]. Journal of Metal, 2006, 42(3): 321?324.
(編輯 高海燕)
Preparation of Fe-based soft-magnetic materials for anti- electromagnetic interference in near-field communication system
HU Lei-shan1, HU Zhao-wen1, DENG Lian-wen1, 2, WEN Rui1, ZHANG Yu1, TANG Lu1, LIU Sheng1
(1. School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
FeSiAl strips were prepared by melt-spun quenching method. FeSiAl strips were further flattened by high-energy planetary ball milling. Vacuum anneal furnace was used to perform the hydrogen reduction annealing for FeSiAl powders. The morphology and hystersis loops at room temperature were characterized by the scanning electron microscope (SEM) and the physical property measurement system (PPMS) respectively. The vector network analyzer was employed to measure complex permeability of the samples within 10 to 100 MHz frequency range. The reading distance of electronic label was measured by the anti-interference test system. The main factors and related mechanism influencing the magnetic properties of FeSiAl materials were also explored. The results show that, the aspect ratio of flaky FeSiAl particles can be effectively improved by two-step ball milling method with high velocity firstly and low velocity secondly. The saturation magnetization and permeability can be effectively improved, and the coercivity and magnetic loss can be reduced by the hydrogen reduction annealing treatment. Thus, the prepared FeSiAl materials present excellent anti-electromagnetic interference capability for the near-field communication system near 13.56 MHz.
melt-spun quenching; FeSiAl; planetary high-energy ball-milling; hydrogen reduction annealing; anti-electromagnetic interference of near-field communication
TG132.271
A
1673-0224(2015)6-894-06
中南大學(xué)超微結(jié)構(gòu)與超快過程湖南省重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目;粉末冶金國家重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目
2014-12-10;
2015-01-18
鄧聯(lián)文,教授,博士。電話:13787206916;E-mail:dlw626@163.com