張雅玲,方智振,2,賴鐘雄*
(1.福建農(nóng)林大學(xué)園藝植物生物工程研究所,福建福州350002;2福建省農(nóng)業(yè)科學(xué)院果樹研究所,福建福州3500013)
香蕉Ran家族基因的全基因組分析
張雅玲1,方智振1,2,賴鐘雄1*
(1.福建農(nóng)林大學(xué)園藝植物生物工程研究所,福建福州350002;2福建省農(nóng)業(yè)科學(xué)院果樹研究所,福建福州3500013)
摘要:Ran是一類在多種基本細(xì)胞活動中扮演者重要角色的小GTP酶。從香蕉基因組中鑒定出9個MuRan家族基因成員,并對其染色體分布、基因結(jié)構(gòu)、蛋白理化性質(zhì)、結(jié)構(gòu)域和系統(tǒng)進(jìn)化等進(jìn)行分析。結(jié)果表明:MuRan家族基因不均勻的分布在第1、4、5、6號等4條染色體上。MuRan蛋白與其它植物Ran蛋白的氨基酸序列都有很高的同源性,帶有GTP水解結(jié)構(gòu)域、RanGAP結(jié)合結(jié)構(gòu)域和酸性尾巴等Ran蛋白的典型結(jié)構(gòu)域,與擬南芥AtRan蛋白親緣關(guān)系較近。為進(jìn)一步研究香蕉MuRan家族基因的生物學(xué)功能提供參考。
關(guān)鍵詞:香蕉;基因組;Ran;生物信息學(xué)
Ran(ras-like nuclear GTP-binding protein)是一種廣泛存在于真核生物中且極為保守的小GTP酶,在多種基本細(xì)胞活動中扮演者重要的角色[1-3]。大量研究結(jié)果均表明植物Ran與動物Ran具有相似的功能,在核質(zhì)轉(zhuǎn)運(yùn)和細(xì)胞分裂等過程中發(fā)揮著重要作用[4-10]。此外,Ran與其結(jié)合蛋白RanBP可能與植物激素敏感性、光信號轉(zhuǎn)導(dǎo)、脅迫響應(yīng)和抗病性有關(guān)。反義表達(dá)AtRanBP1c可提高轉(zhuǎn)基因植株根系對生長素的敏感性[11]。茉莉酸可誘導(dǎo)水稻OsRAN2的表達(dá)[12]。Li等[13]研究發(fā)現(xiàn)低磷處理可影響玉米根系中Ran B1蛋白的表達(dá)。擬南芥根系Ran-1蛋白參與鹽脅迫響應(yīng)[14]。超表達(dá)OsRAN2可改變水稻
對鹽脅迫的敏感性[4]。熱脅迫和低溫脅迫可影響植物Ran蛋白的表達(dá)[15-19]。Yoshimura等[20]發(fā)現(xiàn)2個野生西瓜根系Ran蛋白與干旱脅迫響應(yīng)有關(guān)。Zhai等[21]發(fā)現(xiàn)長期積水可導(dǎo)致作用于Ran的miRNA的表達(dá)發(fā)生變化。不同光源可通過光敏色素介導(dǎo)的信號轉(zhuǎn)導(dǎo)途徑引起Ran基因的差異表達(dá)[5]。RanGAP2沉默可破壞Rx介導(dǎo)的抗性[22-23],Tameling等[24]進(jìn)一步研究發(fā)現(xiàn)RanGAP2參與調(diào)控NB-LRR免疫受體Rx的核質(zhì)分布,Rivas[25]提出RanGAP2通過調(diào)控Rx的核質(zhì)分布參與植物防御的信號轉(zhuǎn)導(dǎo)。這意味著Ran-GTP調(diào)控的核孔組分與植物免疫反應(yīng)的控制有關(guān)。由此可見,Ran蛋白在植物的生長發(fā)育過程中扮演著極為重要的角色。
香蕉(Musaspp.)是全球廣泛種植的熱帶果樹,也是重要的經(jīng)濟(jì)作物和糧食作物。病蟲、低溫、干旱、光照不足和鹽漬等脅迫嚴(yán)重影響香蕉的產(chǎn)量和品質(zhì)。近年來,研究者在香蕉抗性和作用機(jī)理及其品種改良方面取得了一定的進(jìn)展,但對Ran的研究較少,尚未見從全基因組水平對Ran家族基因進(jìn)行分析和研究。香蕉基因組測序工作的完成為基因家族的分析奠定了基礎(chǔ)。本研究基于香蕉基因組數(shù)據(jù)庫和生物信息學(xué)手段對香蕉全基因組Ran家族基因進(jìn)行分析,旨在為進(jìn)一步研究Ran家族基因在香蕉生長發(fā)育過程中的作用與機(jī)制提供了有力的科學(xué)依據(jù)。
1材料與方法
1.1材料
試驗基因組序列來自香蕉基因組數(shù)據(jù)庫(http://banana-genome.cirad.fr)、擬南芥信息資源數(shù)據(jù)庫TAIR(http://www.arabidopsis.org/)和Phytozome(http://www.phytozome.net/)。
1.2方法
根據(jù)香蕉基因組數(shù)據(jù)庫中Ran家族基因cDNA序列和對應(yīng)的全基因組序列,采用Gene Structure Display Server(http://gsds.cbi.pku.edu.cn)進(jìn)行基因結(jié)構(gòu)圖的繪制。Ran蛋白的氨基酸數(shù)目、分子量和理論等電點(diǎn)采用ExPaSy的在線Protparam軟件(http://web.expasy.org/protparam/)進(jìn)行分析。香蕉與擬南芥Ran蛋白序列的比對分析采用DNAMAN8軟件進(jìn)行。香蕉Ran蛋白與擬南芥、毛果楊、葡萄和水稻Ran蛋白序列的比對用MEGA5軟件自帶的ClustalW進(jìn)行,并采用鄰接算法(Neighbor-Joining)進(jìn)行系統(tǒng)進(jìn)化樹構(gòu)建,Bootstrap值設(shè)為1000。
2結(jié)果與分析
2.1香蕉基因組Ran家族基因鑒定及在染色體上的分布
以擬南芥AtRan1的氨基酸序列為種子序列,在香蕉全基因組數(shù)據(jù)庫中進(jìn)行Blast檢索,結(jié)果顯示香蕉基因組中Ran家族基因注釋為GTP-binding nuclear protein Ran。故以GTP-binding nuclear protein Ran為檢索詞進(jìn)行檢索,共檢索到9個Ran基因,并依次命名為MuRan1-MuRan9(表1)。采用Protparam軟件對9個Ran基因編碼的蛋白的長度、分子量和等電點(diǎn)進(jìn)行分析發(fā)現(xiàn),MuRan7編碼的蛋白最長,由476個氨基酸組成;MuRan6編碼的蛋白最短,由246個氨基酸組成;根據(jù)等電點(diǎn)分析結(jié)果可以看出,MuRan1、MuRan7和MuRan9編碼的蛋白為酸性蛋白,其余的均為堿性蛋白。根據(jù)香蕉基因組數(shù)據(jù)庫的定位結(jié)果,MuRan9的定位未知,其余8個MuRan基因分別位于1號、4號、5號和6號染色體上,其中1號染色體分布最多,有3個Ran基因;4號染色體分布最少,僅有1個Ran基因;5號和6號染色體均分布了2個Ran基因(表1)。根據(jù)全基因組信息及相關(guān)文獻(xiàn)表明,擬南芥、毛果樣和葡萄基因組中Ran家族均為4個成員,水稻基因組中Ran家族僅有2個成員。香蕉基因組中Ran家族成員明顯多于其他植物。這意味著香蕉Ran家族的成員及其功能可能較其他植物復(fù)雜,Ran家族基因可能在香蕉的生長發(fā)育過程中具有十分重要的作用。
表1 香蕉基因組Ran家族成員
2.2香蕉基因組Ran家族基因的結(jié)構(gòu)
采用Gene Structure Display Server(http://gsds.cbi.pku.edu.cn/)繪制出香蕉、擬南芥、水稻、毛果樣和葡萄Ran家族基因的結(jié)構(gòu)圖。香蕉Ran家族9個基因MuRan1-MuRan9的外顯子數(shù)目依次分別為7、9、8、9、9、7、11、7和9(圖1)。擬南芥Ran家族4個基因AtRan1、AtRan2、AtRan3和AtRan4的外顯子數(shù)目均為5、5、8和6;水稻Ran家族2個基因Os06g39875和Os05g49890的外顯子數(shù)目均為7和8;葡萄Ran家族4個基因GSVIVT01015482001、GSVIVT01017234001、GSVIVT01035804001和GSVIVT01035805001的外顯子數(shù)目均為8、8、9和9;毛果楊Ran家族4個基因Potri.018G030700.1、Potri.006G250300、Potri.006G250400.1和Potri.018G030900.1的外顯子數(shù)目均為7、7、8和8。香蕉Ran家族基因的外顯子數(shù)與擬南芥AtRan3與水稻、葡萄和毛果楊Ran家族基因的外顯子數(shù)較為接近。根據(jù)香蕉基因組數(shù)據(jù)庫的功能注釋結(jié)果,MuRan1、MuRan2、MuRan3、MuRan4、MuRan5、MuRan6、MuRan7和MuRan8編碼的蛋白均注釋為Ran3。以上結(jié)果表明,香蕉Ran家族基因可能與擬南芥AtRan3的親緣關(guān)系較近。
擬南芥、毛果楊、葡萄和水稻的Ran家族基因位點(diǎn)名稱如下:AtRan1(AT5G20010),AtRan2(AT5G20020), AtRan3(AT5G55190),AtRan4(AT5G55080),Potri1(Potri.018G030700.1),Potri2(Potri.006G250300),Potri3(Potri.006G250400.1),Potri4(Potri.018G030900.1),Vv1(GSVIVT01015482001),Vv2(GSVIVT01017234001), Vv3(GSVIVT01035804001),Vv4(GSVIVT01035805001),Os1(Os05g49890),Os2(Os06g39875)Locus names of Ran family genes in Arabidopsis thaliana,Populus trichocarpa,Vitis vinifera and Oryza sativa are as follows:AtRan1(AT5G20010),AtRan2(AT5G20020), AtRan3(AT5G55190),AtRan4(AT5G55080),Potri1(Potri.018G030700.1),Potri2(Potri.006G250300),Potri3(Potri.006G250400.1),Potri4(Potri.018G030900.1),Vv1(GSVIVT01015482001),Vv2(GSVIVT01017234001), Vv3(GSVIVT01035804001),Vv4(GSVIVT01035805001),Os1(Os05g49890),Os2(Os06g39875)圖1 香蕉、擬南芥、毛果楊、葡萄和水稻的Ran家族基因結(jié)構(gòu)示意圖Fig.1 Schematics of the structures of Ran family genes in Musa acuminata,Arabidopsis thaliana,Populus trichocarpa,Vitis vinifera and Oryza sativa
2.3香蕉基因組Ran蛋白的序列比對和系統(tǒng)進(jìn)化分析
GTP結(jié)合與水解結(jié)構(gòu)域(G1-G5)以粗線表示。RanGAP結(jié)合結(jié)構(gòu)域和酸性C末端區(qū)域分別以星號和三角形表示。Conserved GTP binding and hydrolysis domains(G1-G5) were indicated by bold lines.The effector-binding domain(RanGAP-binding) and the acidic C-terminal region(acidic tail) are indicated with asterisks and triangles,respectively.圖2 香蕉與擬南芥Ran蛋白序列比對分析Fig.2 Multiple alignments of Ran sequences from banana and Arabidopsis
圖3 香蕉、擬南芥、毛果楊、葡萄和水稻Ran蛋白系統(tǒng)進(jìn)化樹Fig.3 Phylogenic tree of Ran proteins in Musa acuminata,Arabidopsis thaliana,Populus trichocarpa,Vitis vinifera and Oryza sativa
采用DNAMAN軟件對香蕉與擬南芥Ran蛋白序列進(jìn)行比對分析發(fā)現(xiàn),香蕉基因組中預(yù)測的Ran蛋白與擬南芥Ran蛋白高度同源(圖2)。除MuRan9外,其余香蕉MuRan蛋白均具有完整的GTP結(jié)合與水解結(jié)構(gòu)域、RanGAP結(jié)合結(jié)構(gòu)域和酸性C末端區(qū)域等典型的Ran蛋白功能結(jié)構(gòu)域,且極為保守(圖2)。此外,從圖2中可以看出香蕉基因組中預(yù)測的Ran蛋白N端較擬南芥Ran蛋白多出一段長度不等的多肽。采用NCBI的Blastp對這些蛋白的N端部分序列進(jìn)行分析發(fā)現(xiàn),除了MuRan7與其他植物的鈣調(diào)素結(jié)合蛋白有較高的同源性外,其余MuRan蛋白N端部分序列均為找到同源序列。
采用Mega 5的臨位相連法對香蕉Ran蛋白與擬南芥、毛果楊、葡萄和水稻Ran蛋白的進(jìn)化關(guān)系進(jìn)行分析,結(jié)果表明除MuRan5外,其余MuRan蛋白與擬南芥AtRan3、3個毛果楊Ran蛋白(Potri.006G250400、Potri.018G030700、Potri.018G030900)以及4個葡萄Ran蛋白的親緣關(guān)系較近(圖3)。
3結(jié)論與討論
小GTP酶Ran與動物和酵母的細(xì)胞分裂調(diào)控密切相關(guān)[26-27],并且參與微管動態(tài)、染色體排列以及核膜組裝等過程[1]。研究表明Ran在細(xì)胞周期調(diào)控中的功能可能相當(dāng)保守[10,28-30]。大量研究證據(jù)表明Ran在植物生長發(fā)育和脅迫響應(yīng)過程中發(fā)揮著重要作用。目前,植物Ran的研究較少,相關(guān)的研究主要集中在動物上。大量植物基因組測序的完成,為從全基因組水平上研究植物Ran家族基因提供了條件。
本研究從香蕉全基因組中鑒定得到了9個MuRan基因,數(shù)量明顯多于其他物種。與其他小G蛋白不同的是,Ran家族基因的成員數(shù)較少,人類和裂殖酵母中均只有1個Ran基因[31],擬南芥基因組中存在4個Ran基因[32]。香蕉中Ran家族基因的數(shù)量可能與其經(jīng)歷了3次全基因組復(fù)制有關(guān)[33]。同時,這也暗示著Ran基因在香蕉中具有重要的作用。香蕉Ran蛋白的序列與擬南芥、水稻、毛果楊和葡萄進(jìn)行序列比對和系統(tǒng)進(jìn)化分析結(jié)果表明Ran家族高度保守。但值得注意的是,與其他植物的Ran蛋白相比,香蕉Ran蛋白的N端多出一段長度不等的多肽,且這些多肽序列在NCBI數(shù)據(jù)庫中未能找到同源序列。這可能與在香蕉基因組基因預(yù)測過程中將Ran基因的上游序列納入編碼區(qū)序列有關(guān)或者香蕉Ran家族基因進(jìn)化出了新的功能。導(dǎo)致這一結(jié)果的真正原因還有待進(jìn)一步研究。
Chen等[18]分析了不同脅迫下水稻OsRAN2的表達(dá)模式,發(fā)現(xiàn)低溫可顯著影響OsRAN2的表達(dá)。Paul and Kumar[19]研究發(fā)現(xiàn)低溫可導(dǎo)致茶葉休眠組織和旺盛生長的組織中CsRan2表達(dá)量上升,而室溫條件下休眠組織中CsRan2表達(dá)量下降。Chen等[18]研究發(fā)現(xiàn)超表達(dá)OsRAN2可顯著提高水稻轉(zhuǎn)基因植株的抗寒性。這些研究表明,Ran家族基因與植物對低溫脅迫的響應(yīng)有關(guān)。香蕉全基因組中MuRan基因MuRan1-MuRan8編碼的蛋白均與其他植物的Ran蛋白高度同源,具有典型的結(jié)構(gòu)域。因此,香蕉Ran蛋白的功能可能與其他植物Ran蛋白的功能相似,參與低溫脅迫的響應(yīng)。MuRan9編碼的蛋白與其他香蕉Ran蛋白和植物的Ran蛋白存在較大的差異,具體功能還有待進(jìn)一步研究。
參考文獻(xiàn):
[1]Clarke P R,Zhang C.Spatial and temporal coordination of mitosis by Ran GTPase[J].Nature Reviews Molecular Cell Biology,2008,9(6):464-477.
[2]Hetzer M,Gruss O J,Mattaj I W.The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly[J].Nature Cell Biology,2002,4(7):E177-E184.
[3]Joseph J.Ran at a glance[J].Journal of Cell Science,2006,119(17):3481-3484.
[4]Zang A,Xu X,Neill S,et al.Overexpression ofOsRAN2 in rice andArabidopsisrenders transgenic plants hypersensitive to salinity and osmotic stress[J].Journal of Experimental Botany,2010,61(3):777-789.
[5]Lee Y,Kim M H,Kim S K,et al.Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins[J].Planta,2008,228(1):215-224.
[6]Lü S,Fan Y,Jin C.Overexpression of a Ran GTPase homologous gene,FaRanfrom tall fescue,in transgenicArabidopsis[J].Biologia Plantarum,2011,55(2):331-334.
[7]Wang X,Xu Y,Han Y,et al.Overexpression ofRAN1 in rice and arabidopsis alters primordial meristem,mitotic progress,and sensitivity to auxin[J].Plant Physiology,2006,140(1):91-101.
[8]Wang X,Han Y,Chen C B,et al.Wheat RAN1 affects microtubules integrity and nucleocytoplasmic transport in fission yeast system[J].Acta Botanica Sinica,2004,46(8):940-947.
[9]Yano A,Kodama Y,Koike A,et al.Interaction between Methyl CpG-Binding protein and Ran GTPase during cell division in tobacco cultured cells[J].Annals of Botany,2006,98(6):1179-1187.
[10]Ach R A,Gruissem W.A small nuclear GTP-binding protein from tomato suppresses aSchizosaccharomycespombecell-cycle mutant[J].Proceedings of the National Academy of Sciences of the United States of America,1994,91(13):5863-5867.
[11]Kim S H,Arnold D,Lloyd A,et al.Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress[J].Plant Cell,2001,13(12):2619-30.
[12]Miché L,Battistoni F,Gemmer S,et al.Upregulation of jasmonate-inducible defense proteins and differential colonization of roots ofOryzasativacultivars with the endophyteAzoarcussp.[J].Molecular Plant-Microbe Interactions,2006,19(5):502-511.
[13]Li K,Xu C,Zhang K,et al.Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize(ZeamaysL.) plants[J].Proteomics,2007,7(9):1501-1512.
[14]Jiang Y,Yang B,Harris N S,et al.Comparative proteomic analysis of NaCl stress-responsive proteins inArabidopsisroots[J].Journal of Experimental Botany,2007,58(13):3591-3607.
[15]Ferreira S,Hjern K,Larsen M,et al.Proteome profiling ofPopuluseuphraticaOliv.upon heat stress[J].Annals of Botany,2006,98(2):361-377.
[16]Xu C,Huang B.Root proteomic responses to heat stress in twoAgrostisgrass species contrasting in heat tolerance[J].Journal of Experimental Botany,2008,59(15):4183-4194.
[17]Xu C,Huang B.Differential proteomic response to heat stress in thermalAgrostisscabraand heat-sensitiveAgrostisstolonifera[J].Physiologia Plantarum,2010,139(2):192-204.
[18]Chen N,Xu Y,Wang X,et al.OsRAN2,essential for mitosis,enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress[J].Plant,Cell & Environment,2011,34(1):52-64.
[19]Paul A,Kumar S.Responses to winter dormancy,temperature,and plant hormones share gene networks[J].Functional & Integrative Genomics,2011,11(4):659-664.
[20]Yoshimura K,Masuda A,Kuwano M,et al.Programmed proteome response for drought avoidance/tolerance in the root of a C3 Xerophyte(wild watermelon) under water deficits[J].Plant and Cell Physiology,2008,49(2):226-241.
[21]Zhai L,Liu Z,Zou X,et al.Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings[J].Physiologia Plantarum,2012,147(2):181-193.
[22]Sacco M A,Mansoor S,Moffett P.A RanGAP protein physically interacts with the NB-LRR protein Rx,and is required for Rx-mediated viral resistance[J].The Plant Journal,2007,52(1):82-93.
[23]Tameling W I L,Baulcombe D C.Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance toPotatovirusX.[J].The Plant Cell Online,2007,19(5):1682-1694.
[24]Tameling W I L,Nooijen C,Ludwig N,et al.RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae,thereby dictating Rx function[J].The Plant Cell Online,2010,22(12):4176-4194.
[25]Rivas S.Nuclear dynamics during plant innate immunity[J].Plant Physiology,2012,158(1):87-94.
[26]Drivas G T,Shih A,Coutavas E,et al.Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line[J].Molecular and Cellular Biology,1990,10(4):1793-1798.
[27]Bischoff F R,Ponstingl H.Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1[J].Nature,1991,354(6348):80-82.
[28]Merkle T,Haizel T,Matsumoto T,et al.Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small,Ran-like GTP-binding protein[J].The Plant Journal,1994,6(4):555-565.
[29]Matsumoto T,Beach D.Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase[J].Cell,1991,66(2):347-60.
[30]Belhumeur P,Lee A,Tam R,et al.GSP1 and GSP2,genetic suppressors of the prp20-1 mutant in Saccharomyces cerevisiae:GTP-binding proteins involved in the maintenance of nuclear organization[J].Molecular and Cellular Biology,1993,13(4):2152-61.
[31]Jiang S Y,Ramachandran S.Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes[J].Physiological Genomics,2006,24(3):235-251.
[32]Haizel T,Merkle T,Pay A,et al.Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran inArabidopsis[J].The Plant Journal,1997,11(1):93-103.
[33]Dhont A,Denoeud F,Aury J M,et al.The banana(Musaacuminata) genome and the evolution of monocotyledonous plants[J].Nature,2012,488(7410):213-7.
許小向,蔣艷,洪艷平,等.紅巧梅花色苷樹脂靜態(tài)純化工藝研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報,2015,37(1):163-168.
Genome-Wide Analysis of TheRanGene Family
in Banana(Musaacuminata)
ZHANG Ya-ling1,FANG Zhi-zhen1,2,LAI Zhong-xiong1*
(1.Institute of Horticultural Biotechnology,Fujian Agriculture and Forestry University,Fuzhou 350002,China;2.Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,China)
Abstract:Ran is a kind of small GTPases that plays an important role in fundmental cellular activities.In the present study,9 MuRan family genes were identified in banana genome and their chromosome distribution,gene structure,physical and chemical characteristics,function domain and evolutionary relationship were analyzed.The results indicated that MuRan family genes were evenly distributed in 4 chromosomes.MuRan proteins showed high homology with Ran proteins from other plants and contained characteristic domains of Ran proteins,including GTP Hydrolysis domain,RanGAP-binding domain and acidic tail and were relatively closer with AtRan in phylogenetic relationship.
Key words:banana;genome;Ran;bioinformatics
作者簡介:張雅玲(1987—),女,碩士生,主要從事果樹生物技術(shù)研究,E-mail:451476856@qq.com;*通信作者:賴鐘雄,研究員,博士,E-mail:laizx01@163.com。
基金項目:國家香蕉產(chǎn)業(yè)體系專項資金(CARS-32-11)和福建省重大農(nóng)業(yè)科技平臺項目(2008N2001)
收稿日期:2014-04-14修回日期:2014-06-21
中圖分類號:S668.1
文獻(xiàn)標(biāo)志碼:A
文章編號:1000-2286(2015)01-0157-06