劉雪蘭 許發(fā)芝 (安徽農(nóng)業(yè)大學(xué)安徽省人獸共患病重點(diǎn)實(shí)驗(yàn)室,合肥 230036)
恒定鏈(Invariant chain,Ii)屬于Ⅱ型跨膜糖蛋白,在MHCⅡ類分子與抗原肽復(fù)合物的裝配過程中發(fā)揮重要作用。在內(nèi)質(zhì)網(wǎng)中,Ii 在calnexin 輔助下形成三聚體,然后與MHCⅡ類分子的α 和β 鏈形成九聚體,占據(jù)Ⅱ類分子的抗原肽結(jié)合槽,阻止內(nèi)源性抗原肽的結(jié)合,與MHCⅡ類分子聚合后將其靶向定位到內(nèi)體中。此外,Ii 還能與MHCⅠ類分子結(jié)合,輔助MHCⅠ類分子進(jìn)行抗原的交叉呈遞[1]。早在1993 年,Saito 等[2]就發(fā)現(xiàn)Ii 不同程度地表達(dá)在人腎細(xì)胞癌(renal cell cancer,RCC)中而不表達(dá)在正常腎小管細(xì)胞中。除此之外,Ii 還高表達(dá)在胃癌、胰腺癌、淋巴白細(xì)胞病等腫瘤細(xì)胞表面[3-5]。Ii 在腫瘤細(xì)胞中的高表達(dá)現(xiàn)象表明,除了輔助MHC Ⅱ和MHCⅠ類分子呈遞抗原外,Ii 與腫瘤細(xì)胞免疫逃逸有關(guān)。本文就Ii 在腫瘤細(xì)胞中高表達(dá)對(duì)腫瘤免疫的影響及其對(duì)禽類腫瘤免疫逃逸研究的提示進(jìn)行綜述。
在幽門螺旋桿菌誘發(fā)的胃癌組織中,Ii 表達(dá)的上調(diào)與胃癌細(xì)胞的增殖、腫瘤大小和腫瘤血管生成有關(guān)[6]。Jun 等[7]發(fā)現(xiàn)表達(dá)Ii 的非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)細(xì)胞具有較高的體外侵襲性和體內(nèi)的轉(zhuǎn)移性。具有較高神經(jīng)侵襲能力的胰腺癌細(xì)胞系CaPan1 和CaPan2,Ii 的轉(zhuǎn)錄水平和蛋白表達(dá)水平都明顯提高[4]。同樣現(xiàn)象也出現(xiàn)在乳腺癌、慢性淋巴白血病等癌細(xì)胞中,預(yù)示Ii與腫瘤細(xì)胞免疫逃逸有關(guān)[8,9]。
保護(hù)性T 細(xì)胞免疫建立在抗原被有效呈遞的基礎(chǔ)上。在正常細(xì)胞中,作為MHCⅡ類分子的重要伴侶,Ii 在抗原遞呈過程中發(fā)揮著重要作用。此外,研究結(jié)果表明,以Ii 為免疫載體,連接腫瘤、病毒等抗原肽的嵌合體疫苗能夠增強(qiáng)機(jī)體的T 淋巴細(xì)胞參與的免疫,有效增強(qiáng)機(jī)體的抗腫瘤、抗病毒效應(yīng)[10-13]。
然而,Ii 在多種腫瘤細(xì)胞表面的高表達(dá)很顯然對(duì)腫瘤免疫并非發(fā)揮有效的輔助作用。腫瘤抗原是在細(xì)胞內(nèi)產(chǎn)生的內(nèi)源性抗原,Ii 在腫瘤細(xì)胞表面表達(dá)不僅沒有起到輔助MHCⅠ和MHCⅡ類分子對(duì)腫瘤抗原進(jìn)行遞呈,相反,Ii 過表達(dá)通過抑制宿主免疫達(dá)到逃避細(xì)胞毒性T 細(xì)胞的攻擊,而當(dāng)去除Ii 時(shí)則可以提高腫瘤抗原的遞呈[14-16]。
目前,Ii 輔助腫瘤抗原逃逸的機(jī)制雖然尚未明確,但是相關(guān)研究可以部分揭示其潛在的機(jī)制。Rangel 等[17]報(bào)道了在卵巢癌等癌細(xì)胞中,細(xì)胞膜上Ii 大量表達(dá)時(shí),HLA-DR(MHCⅡ類分子)沒有發(fā)揮增強(qiáng)腫瘤免疫原性的正常效應(yīng),而是在細(xì)胞中表達(dá)HLA-DR α 鏈并減少HLA-DR β 鏈的表達(dá)(盡管可以檢測(cè)到β 鏈的轉(zhuǎn)錄水平),由此導(dǎo)致了腫瘤細(xì)胞表達(dá)了比例較高的尚未成熟的HLA-DR,即使同時(shí)應(yīng)用了MHCⅡ類分子反式激活因子CIITA 也難以激活抗腫瘤免疫[18]。這種抑制效應(yīng),Thompson等[19]在乳腺癌細(xì)胞系HLA-DR-MCF10 中得到了驗(yàn)證。當(dāng)共轉(zhuǎn)染MHCⅡ和CD80 而不轉(zhuǎn)染Ii 時(shí),腫瘤抗原疫苗能夠激活CD4+Th1 淋巴細(xì)胞[20]。Ke等[15]通過siRNA 干擾Ii 表達(dá),結(jié)果發(fā)現(xiàn)DCs 的抗癌能力明顯提高,腫瘤增長(zhǎng)受到抑制。Ii 在腫瘤細(xì)胞中過表達(dá)與MHCⅡ類分子關(guān)系并不近,相反Ii 表達(dá)水平變化時(shí)常伴隨著MHCⅠ類分子表達(dá)的異常變化。一些腫瘤表面常常出現(xiàn)MHCⅠ不表達(dá)或表達(dá)水平很低[21,22],但是Jiang 等[23]通過免疫組化實(shí)驗(yàn)觀察了人結(jié)腸癌和正常結(jié)腸的上皮細(xì)胞中Ii 與MHCⅡ類分子的表達(dá),結(jié)果發(fā)現(xiàn)在前者中隨著癌變程度從低到高,伴隨著Ii 表達(dá)直線上升,而MHCⅡ類分子沒有明顯變化,使用該方法在正常細(xì)胞中沒有檢測(cè)到Ii 和MHCⅡ類分子的顯著表達(dá)。在成熟的DC 中,當(dāng)胞內(nèi)MHCⅡ類分子表達(dá)量明顯下降時(shí),Ii 含量仍然很高[24]。相反,Liu 等[25]分析了多種癌細(xì)胞中Ii 分子的表達(dá),發(fā)現(xiàn)了Ii 表達(dá)的上調(diào)并伴隨著MHCⅠ類分子表達(dá)水平的升高,在癌癥病人血清中含有較高水平的MHC Ⅰ類分子[26]。Ke等[15]通過siRNA 干擾Ii 表達(dá)后發(fā)現(xiàn)DCs 抗癌能力的明顯提高,通過流式細(xì)胞技術(shù)分析后得到除CD4+T 淋巴細(xì)胞(主要識(shí)別MHC Ⅱ-抗原肽復(fù)合物)升高以外,CD8+T 淋巴細(xì)胞(主要識(shí)別MHCⅠ-抗原肽復(fù)合物)被激活的比例也明顯升高。此外,研究結(jié)果證實(shí),Ii 能夠輔助MHCⅠ類分子在細(xì)胞表面的表達(dá),即使在Ii△20(缺少內(nèi)體定位序列的Ii 突變體)中,也不影響I 類分子的遷移[27]。Van 等[28]也發(fā)現(xiàn)如果Ii 被沉默則導(dǎo)致細(xì)胞表面MHCⅠ類分子表達(dá)的降低。
由此表明,Ii 輔助腫瘤免疫逃逸可能并非僅通過調(diào)控MHCⅡ類分子,很可能通過某種機(jī)制與細(xì)胞中MHC Ⅰ類分子相互作用,參與了腫瘤的免疫耐受。
近年來圍繞Ii 的相關(guān)研究進(jìn)一步揭示其經(jīng)典的輔助抗原遞呈功能,Ii 還能作為信號(hào)分子的研究結(jié)果受到了關(guān)注。Ii 作為結(jié)合巨噬細(xì)胞遷移抑制因子(MIF)和幽門螺旋桿菌(Helicobacter pylori,H.pylori)的受體[29,30],激活NF-κB 因子,誘導(dǎo)了促炎因子IL-8 的釋放,而長(zhǎng)期慢性炎癥可能導(dǎo)致腫瘤的發(fā)生。此外,MIF 與Ii 結(jié)合后能夠影響TLR 受體參與的免疫通路。已經(jīng)證實(shí),在被敲除MIF 基因的小鼠體內(nèi),直腸癌組織中檢測(cè)不到TLR4 的表達(dá),而在敲除該基因的小鼠體內(nèi)可以檢測(cè)到TLR4[31]。在卵巢癌中,TLR4 已經(jīng)被證實(shí)能夠促進(jìn)腫瘤生長(zhǎng)[32]。除TLR4 外,腫瘤微環(huán)境中TLR9 信號(hào)也促進(jìn)了腫瘤放療后的復(fù)發(fā)[33]。在小鼠Lewis 肺癌(LCC)中,可以檢測(cè)到TLR 1~6 和TLR9 等組成性表達(dá),在受到淋巴細(xì)胞刺激后,TLR4 會(huì)明顯增高,可能參與了腫瘤逃逸[34]。部分TLR 受體參與的免疫通路與MHCⅠ類分子和MHCⅡ類分子均有關(guān)[35,36]。而腫瘤細(xì)胞中Ii 高表達(dá)是否與TLR 等受體有關(guān)尚不清楚,有待于進(jìn)一步研究。
腫瘤細(xì)胞Ii 的異常表達(dá)促使人們加深對(duì)Ii 功能的認(rèn)識(shí)。腫瘤細(xì)胞表面的Ii 與腫瘤細(xì)胞質(zhì)中的Ii發(fā)揮著不同的生物效應(yīng)。盡管人們已經(jīng)發(fā)現(xiàn),表達(dá)在腫瘤細(xì)胞表面的Ii 并非像在正常細(xì)胞的胞漿中那樣輔助抗原遞呈而是起到相反的作用,從而揭示了Ii 與腫瘤細(xì)胞免疫逃逸有關(guān),但是其調(diào)控機(jī)制還尚未明晰,還有許多問題有待探討。為什么除去Ii后可以提高腫瘤細(xì)胞的抗原遞呈能力或患瘤動(dòng)物的免疫應(yīng)答,而Ii 作為載體與腫瘤抗原肽連接卻可以提高免疫應(yīng)答?腫瘤細(xì)胞膜表面Ii 究竟通過何種機(jī)制抑制了胞內(nèi)MHC 分子對(duì)腫瘤抗原的遞呈,從而輔助了腫瘤抗原的免疫逃逸,這些均需進(jìn)一步研究。隨著免疫信號(hào)分子和免疫調(diào)控網(wǎng)絡(luò)的深入研究,相信能夠揭示Ii 與腫瘤免疫逃逸的相關(guān)機(jī)制。
[1]Basha G,Omilusik K,Chavez-Steenbock A,et al.A CD74-dependent MHC class I endolysosomal cross-presentation pathway[J].Nat Immunol,2012,13(3):237-245.
[2]Saito T,Tomita Y,Kimura M,et al.Expression of HLA class II antigen-associated invariant chain on renal cell cancer[J].Nihon Hinyokika Gakkai zasshi,1993,84(6):1036-1040.
[3]Tamori Y,Tan XD,Nakagawa K,et al.Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma[J].Oncol Rep,2005,14(4):873-877.
[4]Koide N,Yamada T,Shibata R,et al.Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain(CD74)as a possible molecule involved in perineural invasion in pancreatic cancer[J].Clin Res,2006,12 (8):2419-2426.
[5]Van Luijn MM,Westers TM,Chamuleau MED,et al.Class II-associated invariant chain peptide expression represents a novel parameter for flow cytometric detection of acute promyelocytic leukemia[J].Am J Pathol,2011,179(5):2157-2161.
[6]Keates S,Keates AC,Nath S,et al.Transactivation of the epidermal growth factor receptor by cag+Helicobacter pylori induces upregulation of the early growth response gene Egr-1 in gastric epithelial cells[J].Gut,2005,54(10):1363-1369.
[7]Jun Hyun Jung,Johnson Hannah,Bronson Roderick T.The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation[J].Cancer Res,2012,72(15),3764-3774.
[8]Greenwood C,Metodieva G,Al-Janabi K.Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer[J].J Proteomics,2012,75(10):3031-3040.
[9]Shachar I,Haran M.The secret second life of an innocent chaperone:the story of CD74 and B cell/chronic lymphocytic leukemia cell survival[J].Leukemia & Lymphoma,2011,52 (8):1446-1454.
[10]Gupta P,Goldenberg DM,Rossi EA,et al.Dual-targeting immunotherapy of lymphoma:potent cytotoxicity of anti-CD20/CD74 bispecific antibodies in mantle cell and other lymphomas[J].Blood,2012,119(16):3767-3778.
[11]Alinari L,Christian B,Baiocchi RA.Novel targeted therapies for mantle cell lymphoma[J].Oncotarget,2012,3(2):203-211.
[12]Xu M,Lu X,Sposato M,et al.Ii-Key/HPV16 E7 hybrid peptide immunotherapy for HPV16+cancers[J].Vaccine,2009,27(34):4641-4647.
[13]Zinckgraf JW,Sposato M,Zielinski V,et al.Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination[J].Vaccine,2009,27 (39):5393-5401.
[14]Chornoguz O,Gapeev A,O'Neill MC,et al.Major histocom-patibility complex class II+invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients[J].Mol Cell Proteomics,2012,11(11):1457-1467.
[15]Ke S,Chen XH,Zhu ZG,et al.Silencing invariant chains of dendritic cells enhances anti-tumor immunity using small-interfering RNA[J].Chin Med J(Engl),2010,123(22):3193-3199.
[16]Van Luijn MM,van den Ancker W,Chamuleau MED,et al.Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4 (+)T cells[J].Cancer Res,2011,71 (7):2507-2517.
[17]Rangel LB,Agarwal R,Sherman-Baust CA,et al.Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers[J].Cancer Biol Ther,2004,3(10):1021-1027.
[18]Rickard S,Ono SJ.Invariant chain(+)N2a neuroblastoma cells stably expressing the class II MHC transactivator CIITA fail to stimulate anti-tumor immunity[J].Exp Mol Pathol,2008,85(3):147-154.
[19]Thompson JA,Srivastava MK,Bosch JJ.The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4(+)T lymphocytes[J].Cancer Immunol Immun,2008,57(3):389-398.
[20]Ilkovitch D,Ostrand-Rosenberg S.MHC class II and CD80 tumor cell-based vaccines are potent activators of type 1 CD4(+)T lymphocytes provided they do not coexpress invariant chain[J].Cancer Immunol Immun,2004,53(6):525-532.
[21]Hasmim M,Badoual C,Vielh P,et al.Expression of EPHRINA1,SCINDERIN and MHC class Imolecules in head and neck cancers and relationship with the prognostic value of intratumoral CD8(+)T cells[J].BMC Cancer,2013,13:592.
[22]Baba T,Shiota H,Kuroda K,et al.Clinical significance of human leukocyte antigen loss and melanoma-associated antigen 4 expression in smokers of non-small cell lung cancer patients[J].Int J Clin Oncol,2013,18(6):997-1004.
[23]Jiang Z,Xu M,Savas L,et al.Invariant chain expression in colon neoplasms[J].Virchows Arch,1999,435(1):32-36.
[24]Landsverk Ole JB,Ottesen Anett H,Berg-Larsen Axel,et al.Differential regulation of MHC II and invariant chain expression during maturation of monocyte-derived dendritic cells[J].J Leukoc Biol,2012,91(5):729-737.
[25]Liu XD,Wang XJ,Capek HL,et al.Effect of invariant chain on major histocompatibility complex class I molecule expression and stability on human breast tumor cell lines[J].Cancer Immunol Immun,2009,58(5):729-736.
[26]Zhao J,Guo Y,Yan Z,et al.Soluble MHC I and soluble MIC molecules:potential therapeutic targets for cancer[J].Int Rev Immunol,2011,30(1):35-43.
[27]Reber AJ,Turnquist HR,Thomas HJ,et al.Expression of invariant chain can cause an allele-dependent increase in the surface expression of MHC class I molecules[J].Immunogenetics,2002,54(2):74-81.
[28]Van Luijn MM,van de Loosdrecht AA,Lampen MH,et al.Promiscuous binding of invariant chain-derived CLIP peptide to distinct HLA-I molecules revealed in leukemic cells[J].PLoS One,2012,7(4):e34649.
[29]Langham R,Kretzler M,Nair V.The MIF receptor CD74 in diabetic podocyte injury[J].J Am Soc Nephrol,2009,20(2):353-362.
[30]Beswick EJ,Pinchuk IV,Minch K,et al.The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production[J].Infect Immun,2006,74:1148-1155
[31]Ohkawara T,Takeda H,Miyashita K,et al.Regulation of Tolllike receptor 4 expression in mouse colon by macrophage migration inhibitory factor[J].Histochem Cell Biol,2006,125:575-582.
[32]Kelly MG,Alvero AB,Chen R,et al.TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer[J].Cancer Res,2006,66(7):3859-3868.
[33]Gao C,Kozlowska A,Nechaev S.TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy[J].Cancer Research,2013,73(24):7211-7221.
[34]Li C,Li HX,Jiang K.TLR4 signaling pathway in mouse Lewis lung cancercells promotes the expression of TGF-beta 1 and IL-10 and tumor cells migration[J].Bio-med Mater Eng,2014,24(1):869-875.
[35]Xu S,Liu X,Bao Y,et al.constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway[J].Nat Immunol,2012,13(6):551-559.
[36]Liu X,Zhan Z,Li D,et al.Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk[J].Nat Immunol,2011,12(5):416-424.