康東升,王 妹,羅 婧
(中南民族大學 數(shù)學與統(tǒng)計學學院,武漢 430074)
帶有Hardy位勢項和Sobolev臨界指數(shù)的非齊次橢圓方程組解的存在性
康東升,王 妹,羅 婧
(中南民族大學 數(shù)學與統(tǒng)計學學院,武漢 430074)
運用Ekeland變分原理和Hardy不等式方法,討論了一類帶有Hardy位勢項和Sobolev臨界指數(shù)的非齊次橢圓方程組,證明了在參數(shù)滿足一定約束條件時該方程組至少存在一個解.
非齊次橢圓方程組;Sobolev臨界指數(shù);Ekeland變分原理
(1)
(2)
對于?(u,v)∈H2,記:
J(u,v):=E(u,v)-(2*-1)F(u,v).
Λ:={(u,v)∈H2;〈I′(u,v),(u,v)〉=0}=
{(u,v)∈H2;E(u,v)-F(u,v)-
Λ+:={(u,v)∈Λ;J(u,v)>0}.
Λ0:={(u,v)∈Λ;J(u,v)=0}.
Λ-:={(u,v)∈Λ;J(u,v)<0}.
(3)
其中E(u,v):=
設(shè)方程組(1)的能量泛函為:
(4)
稱(u,v)∈H2是方程組(1)的解,如果(u,v)∈H2滿足:
(u,v)≠(0,0),〈I′(u,v),(φ,φ)〉=0,?(φ,φ)∈H2.
下面給出相關(guān)參數(shù)的假設(shè)條件如下:
E(u,v)≥
(5)
近年來,帶Hardy位勢項和Sobolev指數(shù)的這類問題引起學者們的廣泛關(guān)注,相關(guān)的研究結(jié)果大量出現(xiàn)[2-7].其中有學者討論一類含f(x)滿足一定條件下解的存在性問題[8-10].這類結(jié)果加深了我們對于橢圓方程的認識,同時也促進我們研究其他的方程,相關(guān)的新結(jié)果也不斷出現(xiàn)[11-17]. 本文主要結(jié)果見定理1.
定理1 假設(shè)條件(M1)和(M2)成立,且f(x),g(x)∈L∞(Ω),f(x)?0,g(x)?0,則方程組(1)在H2中至少有一個解存在.
引理1 設(shè)f(x)?0,g(x)?0,條件(M1)、(M2)成立,則有:
引理2 假設(shè)條件(M1)、(M2)成立,則對于?(u,v)∈Λ,(u,v)≠(0,0),有:
E(u,v)-(2*-1)F(u,v)≠0
(6)
證明 證明過程與文獻[8]相似.
引理3 設(shè)f(x)?0,g(x)?0,滿足條件(M1)、(M3),則對任意的(u,v)∈Λ,J(u,v)≠0,存在ε>0和可微函數(shù)t=t(α,β)>0,(α,β)∈H2,‖α‖+‖β‖<ε,使得t(0,0)=1,t(α,β)(u-α,v-β)∈Λ,并且有:
〈t′(0,0),(α,β)〉=
(2*-1)F(u,v)].
證明 證明過程仿照文獻[9]可得到.
引理4 設(shè)條件(M1)、(M2)成立,則對于(3)式而言存在一個極小化序列{(un,vn)}?Λ,使得:
‖β-vn‖),?(α,β)∈Λ.
證明 首先證明I是有界的.對于(u,v)∈Λ,有:
所以有:
(7)
下一步需要找到c0的一個上界,令(φ,φ)∈H2是以下方程組的弱解:
對于f?0,g?0有:
由引理1,可得到一個t0=t0(φ,φ),使得(t0φ,t0φ)∈Λ和J(t0φ,t0φ)>0成立.從而:
因此有:
c0≤I(t0φ,t0φ)<0.
(8)
再對極小化問題(3)運用Ekeland變分原理,可得到一個滿足引理4中條件(i)、(ii)的極小化序列(un,vn)∈Λ.證畢.
引理5 設(shè)條件(M1)、(M2)成立,{(un,vn)}?Λ是通過引理4獲得的極小化序列,且B:={(u,v)∈H2;F(u,v)=1}.如果下列極小化問題:
(9)
成立,則有:
‖I′(un,vn)‖(H2)-1→0,n→∞.
證明 當n充分大時,由(8)式有:
因此:
(10)
且un≠0,vn≠0.再由(8)、(10)式有:
(11)
因此{(un,vn)}有界.
因此δ1→0,δ2→0有:
‖I′(un,vn)‖.
由(11)式,對于某個常數(shù)C>0,有:
因而有:
定理1的證明 設(shè)條件(M1)、(M2)成立.由引理4和引理5,可得到一個滿足下列條件的極小化序列(un,vn)∈Λ:
由引理4中(ii)有:
〈I′(u0,v0),(α,β)〉=0,?(α,β)∈H2.
如此(u0,v0)就是方程組(1)的一個弱解,且(u0,v0)∈Λ.因此:
故而有(un,vn)→(u0,v0),且:
對于?ε∈(0,1),fε=(1-ε)f,?η∈(0,1),gη=(1-η)g滿足條件(M2),記:
(12)
I(u,v)+ε‖f‖H-1‖u‖+η‖g‖H-1‖v‖≤
I(u,v)+εC4+ηC5,
(13)
其中C4,C5為正常數(shù).令f=fε,g=gη,由(6)、(13)式有:
cε,η≤c0+εC4+ηC5.
當n→∞,取εn→0,ηn→0,使得在H2空間里對于某個(u0,v0)∈H2,有:
由(12)式有:
〈I′(u0,v0),(α,β)〉=0,?(α,β)∈H2.
從而有:
I(u0,v0)≤c0,(u0,v0)∈Λ.
進而有I(u0,v0)=c0.因此(uεn,vηn)→(u0,v0).定理1證畢.
[1] 陸文端. 微分方程中的變分方法[M]. 北京: 科學出版社, 2003: 1-112.
[2] Caffarelli L,Kohn R,Nirenberg L.First order interpolation inequality with weights[J]. Compos Math, 1984, 53(3): 259-275.
[3] Kang D. Systems of elliptic equations involving multiple critical nonlinearities and different Hardy-type terms inN[J]. J Math Anal Appl, 2014, 420: 917-929.
[4] Kang D. Elliptic systems involving critical nonlinearities and different Hardy-type terms[J]. J Math Anal Appl, 2014, 420: 930-941.
[5] Fan H, Liu X. Existence results for degenerate elliptic equations with critical cone Sobolev exponents[J]. Acta Mathematica Scientia, 2014, 34B(6): 1907-1921.
[6] Deng Z. Existence of symmetric solutions for singular semilinear elliptic systems with critical Hardy-Sobolev exponents[J]. Nonlinear Analysis: Real World Applications, 2013, 14: 613-625.
[7] Lin H. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent[J]. Nonlinear Analysis, 2012, 75: 2660-2671.
[8] 康東升, 劉 殊, 黃 燕. 帶有臨界Hardy-Sobolev指數(shù)且含多個Hardy奇異項的非齊次橢圓方程解的存在性[J]. 中南民族大學學報: 自然科學版, 2009, 28(2): 104-108.
[9] Kang D, Deng Y. Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy exponents[J]. Nonlinear Analysis, 2005, 60: 729-753.
[10] Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent[J]. Analyse Nonlineaire, 1992,9(3): 281-304.
[11] Kang D, Yu J. Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters[J]. Applied Mathematics Letters, 2015,46: 77-82.
[12] Jannelli E. The role played by space dimension in elliptic critical problems[J]. J Differential Equations, 1999, 156(2): 407-426.
[13] Kang D. On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms[J]. Nonlinear Anal, 2008, 68(5): 1973-1985.
[14] Kang D, Pang S. The existence of positive solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Appl Math Lett, 2004, 17(4): 411-416.
[15] Sandeep K. On the first eigenfunction of a perturbed Hardy-Sobolev operator[J]. Nonlinear Differential Equations Appl, 2003, 10(2): 223-253.
[16] Smets D. Nonlinear Schrodinger equations with Hardy potential and critical nonlinearities [J]. Trans Arner Math Soc, 2005, 357(7): 2909-2938.
[17] Terracini S. On positive solutions to a class of equations with a singular coefficient and critical exponent[J]. Adv Differential Equations, 1996, 2(1): 241-264.
Existence of Solutions to Inhomogeneous Elliptic Systems Involving Hardy-Type Terms and Critical Sobolev Exponents
Kang Dongsheng, Wang Mei, Luo Jing
(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)
In the paper, an inhomogeneous elliptic system is investigated,which involves Hardy-type terms and critical Sobolev exponents. The existence of at least one solution to the system is verified by the Ekeland varuational principle and the Hardy inequality, when the parameters satisfy certain constraints.
inhomogeneous elliptic systems; critical Sobolev exponent; Ekeland varuational principle
2015-07-22
康東升(1967-),男,教授,博士,研究方向:偏微分方程,E-mail: dongshengkang@scuec.edu.cn
國家民委科研基金資助項目(12ZNZ004);中南民族大學研究生創(chuàng)新基金資助項目(2015sycxjj128)
O175
A
1672-4321(2015)04-0109-05