李亞紅,徐志鵬
(1 中南民族大學(xué) 教育學(xué)院,武漢 430074;2 廣州軍區(qū)武漢總醫(yī)院 神經(jīng)內(nèi)科, 武漢 430070)
恐懼記憶的DNA甲基化機(jī)制研究進(jìn)展
李亞紅1,徐志鵬2
(1 中南民族大學(xué) 教育學(xué)院,武漢 430074;2 廣州軍區(qū)武漢總醫(yī)院 神經(jīng)內(nèi)科, 武漢 430070)
綜述了在恐懼記憶發(fā)生過程中DNA甲基化可能的作用機(jī)制,指出了中樞神經(jīng)系統(tǒng)DNA甲基化的改變可以調(diào)控基因轉(zhuǎn)錄和海馬神經(jīng)發(fā)生,甚至通過精子DNA甲基化水平的改變傳遞給后代,從而參與恐懼記憶的表觀遺傳修飾.臨床研究表明:人類確實(shí)存在創(chuàng)傷后應(yīng)激障礙的代際遺傳現(xiàn)象,結(jié)合分子生物學(xué)的研究成果.探討了未來有望在創(chuàng)傷后應(yīng)激障礙等精神疾病診治上取得的進(jìn)展.
恐懼記憶;DNA甲基化;海馬神經(jīng)發(fā)生
恐懼是機(jī)體一種自我保護(hù)的防御性情緒過程,在人類的生存及對(duì)環(huán)境的適應(yīng)中具有重要的作用.但是,恐懼情緒的過分表達(dá),則可能導(dǎo)致相應(yīng)的心理障礙,如:創(chuàng)傷后應(yīng)激障礙(PTSD)、焦慮癥、恐懼癥等[1].DNA甲基化是一種重要的表觀遺傳修飾方式,最新研究表明,恐懼記憶可引起腦內(nèi)DNA甲基化改變,并且遺傳給后代[2].恐懼記憶的表觀遺傳機(jī)制是近年來認(rèn)知神經(jīng)科學(xué)研究的熱點(diǎn)問題之一.深入探究恐懼記憶的DNA甲基化機(jī)制,能夠?yàn)椴±硇钥謶值木C合防治提供理論依據(jù).本文從恐懼記憶與DNA甲基化、DNA甲基化參與海馬神經(jīng)發(fā)生的調(diào)控以及DNA甲基化介導(dǎo)恐懼記憶的遺傳等方面展開闡述,并對(duì)未來的研究方向進(jìn)行展望.
表觀遺傳修飾是指不改變DNA序列、可遺傳地對(duì)堿基和組蛋白的化學(xué)修飾方式,DNA甲基化是一種主要的表觀遺傳修飾方式[3].DNA甲基化是由DNA甲基轉(zhuǎn)移酶(Dnmt)介導(dǎo)將5′-CG-3′(CpG)序列胞嘧啶(C)轉(zhuǎn)化為5-甲基胞嘧啶(5-mC),并通過募集和結(jié)合甲基化結(jié)合蛋白,染色質(zhì)出現(xiàn)壓縮并進(jìn)一步募集轉(zhuǎn)錄抑制因子導(dǎo)致基因表達(dá)沉默.DNA甲基化在大多數(shù)真核生物中廣泛存在,主要參與基因轉(zhuǎn)錄調(diào)控、基因印記、轉(zhuǎn)座子沉默和X染色體失活等重要的生物學(xué)過程[4].
DNA甲基化在哺乳動(dòng)物基因組內(nèi)大約占1%,甲基化位點(diǎn)多位于啟動(dòng)子和CpG島(即CpG高度聚集的結(jié)構(gòu)).當(dāng)啟動(dòng)子DNA低甲基化時(shí),有利于啟動(dòng)子結(jié)合轉(zhuǎn)錄因子,促進(jìn)基因的轉(zhuǎn)錄.當(dāng)啟動(dòng)子DNA高甲基化時(shí),抑制啟動(dòng)子與轉(zhuǎn)錄因子的結(jié)合,阻遏基因的轉(zhuǎn)錄.正常組織中約有70%~90%的CpG位點(diǎn)處于甲基化狀態(tài),CpG島甲基化可直接導(dǎo)致相關(guān)基因的沉默.當(dāng)啟動(dòng)子區(qū)有CpG島基因正常轉(zhuǎn)錄時(shí),CpG島一般不會(huì)發(fā)生DNA甲基化現(xiàn)象.但在長期不表達(dá)基因的啟動(dòng)子區(qū),CpG島維持較高的DNA甲基化水平[5].在原生殖細(xì)胞中,正常表達(dá)的啟動(dòng)子區(qū),沒有CpG島基因的轉(zhuǎn)錄起始位點(diǎn)附近,其CpG二核苷酸多保持低甲基化水平.在精子細(xì)胞、干細(xì)胞表達(dá)以及組織特異性表達(dá)基因多處于較高甲基化水平,在卵子細(xì)胞和正常體細(xì)胞中基因的甲基化處于較低水平[6].
恐懼記憶是一種常見的海馬依賴性情感記憶,恐懼記憶的鞏固與增強(qiáng)形成恐懼情緒[7].有研究發(fā)現(xiàn),應(yīng)激誘發(fā)的神經(jīng)精神類疾病與機(jī)體下丘腦-垂體-腎上腺軸(HPA)的功能異常密切相關(guān)[8],而促腎上腺皮質(zhì)激素釋放激素(CRH)、糖皮質(zhì)激素(GC)及其受體啟動(dòng)子的甲基化在心理應(yīng)激反應(yīng)中發(fā)揮著重要作用[9].人類早期創(chuàng)傷記憶可以引起DNA甲基化的變化,并導(dǎo)致相關(guān)基因表達(dá)發(fā)生改變,表明DNA甲基化是對(duì)環(huán)境應(yīng)激反應(yīng)的重要表觀遺傳調(diào)節(jié)因子[10].臨床研究發(fā)現(xiàn),創(chuàng)傷后應(yīng)激障礙(PTSD)患者總體DNA甲基化水平增強(qiáng),其中TPRCLEC9A、APC5、ANXA2和TLR8基因出現(xiàn)明顯甲基化現(xiàn)象[11].與正常對(duì)照組相比,兒童期曾遭受嚴(yán)重虐待患者海馬中有362個(gè)啟動(dòng)子出現(xiàn)甲基化變化,其中248個(gè)為超甲基化改變,114個(gè)為去甲基化改變,而Alsin(ALS2)基因超甲基化并且轉(zhuǎn)錄下降與恐懼反應(yīng)密切相關(guān)[12].
腦內(nèi)DNA甲基化在恐懼記憶的形成、固化和維持過程中均扮演重要的角色.動(dòng)物研究發(fā)現(xiàn),成年大鼠在經(jīng)歷恐懼刺激后海馬區(qū)Dnmt基因表達(dá)水平出現(xiàn)顯著上調(diào),引起記憶抑制基因PP1快速甲基化和轉(zhuǎn)錄沉默,同時(shí)伴有突觸塑形性基因reelin的去甲基化和轉(zhuǎn)錄激活,而應(yīng)用Dnmt抑制劑則可阻斷上述變化,并且抑制恐懼記憶的形成與固化[13].在情境恐懼實(shí)驗(yàn)中,實(shí)驗(yàn)大鼠鈣調(diào)磷酸酶(CaN)基因至少在刺激后1個(gè)月內(nèi)仍表現(xiàn)出較高的甲基化水平,如果在訓(xùn)練29 d后將Dnmt抑制劑注射到大鼠腦內(nèi)前扣帶回,則可引起CaN表達(dá)下降和破壞記憶的保持[14].有研究發(fā)現(xiàn)恐懼記憶模型大鼠的DNA甲基化表現(xiàn)出腦區(qū)差異性,其背側(cè)海馬CA1區(qū)腦源性神經(jīng)生長因子(BDNF)是甲基化明顯增強(qiáng),腹側(cè)海馬CA3區(qū)甲基化降低,而內(nèi)側(cè)額葉皮層和基底外側(cè)杏仁核BDNF甲基化無明顯改變,表明恐懼刺激可能通過誘導(dǎo)特定腦區(qū)DNA甲基化導(dǎo)致海馬功能異常[15].進(jìn)一步研究發(fā)現(xiàn),通過藥物手段可抑制DNA甲基化過程,從而能夠改變突觸可塑性和恐懼記憶[16].小鼠DNA損傷誘導(dǎo)蛋白45β(Gadd45β)基因敲除后,可降低其海馬齒狀回腦源性神經(jīng)生長因子 (BDNF) 、成纖維細(xì)胞生長因子1(FGF1)啟動(dòng)子甲基化水平,同時(shí)小鼠表現(xiàn)出的條件性恐懼記憶明顯減低[17].
海馬是成年神經(jīng)發(fā)生最活躍、介導(dǎo)恐懼刺激反應(yīng)最重要的腦區(qū)之一,海馬神經(jīng)發(fā)生障礙與恐懼記憶形成密切相關(guān)[18].DNA甲基化參與調(diào)控海馬神經(jīng)發(fā)生,并在長期記憶形成過程中發(fā)揮關(guān)鍵性作用[13].
3.1 恐懼記憶形成與海馬神經(jīng)發(fā)生
海馬、杏仁核和內(nèi)側(cè)前額葉皮層等邊緣系統(tǒng),以及其相關(guān)的神經(jīng)環(huán)路是恐懼記憶形成與鞏固的神經(jīng)基礎(chǔ)[19].在恐懼記憶形成過程中,大鼠的海馬、杏仁核可以觀察到長時(shí)程增強(qiáng)(LTP)現(xiàn)象,說明恐懼記憶形成與海馬、杏仁核的突觸可塑性密切相關(guān)[20].海馬的腹側(cè)區(qū)將恐懼刺激信息傳導(dǎo)至杏仁體的B神經(jīng)核,再向杏仁核的中央核進(jìn)行投射,最后傳導(dǎo)至控制恐懼反應(yīng)表現(xiàn)的相關(guān)腦干區(qū)域,從而控制機(jī)體的恐懼反應(yīng)[21].
海馬神經(jīng)發(fā)生是指海馬齒狀回形成新生神經(jīng)元,并且整合到神經(jīng)環(huán)路的生物學(xué)過程.海馬神經(jīng)發(fā)生主要包括以下4個(gè)階段:神經(jīng)干細(xì)胞和祖細(xì)胞的增殖、新神經(jīng)細(xì)胞移行至齒狀回顆粒細(xì)胞層、神經(jīng)細(xì)胞分化為成熟的神經(jīng)元、神經(jīng)元整合到神經(jīng)環(huán)路并發(fā)揮生物功能[22].應(yīng)激刺激可引起海馬錐體神經(jīng)元的樹突萎縮,降低海馬齒狀回前體細(xì)胞的增殖,從而損害海馬的神經(jīng)發(fā)生[23].相反,在條件性恐懼記憶的消退過程中,海馬神經(jīng)細(xì)胞的增殖和存活明顯增強(qiáng)[24].臨床研究證實(shí),創(chuàng)傷后應(yīng)激障礙和抑郁癥患者的海馬體積顯著縮小,表明其海馬萎縮現(xiàn)象較為明顯.以上研究證實(shí),恐懼記憶形成與海馬神經(jīng)發(fā)生障礙密切相關(guān).
3.2 DNA甲基化調(diào)控海馬神經(jīng)發(fā)生
大量研究表明,DNA 甲基化參與海馬神經(jīng)發(fā)生的調(diào)控過程.DNA損傷誘導(dǎo)蛋白45β(Gadd45β)通過調(diào)控DNA的去甲基化水平,明顯影響成年神經(jīng)干細(xì)胞增殖和神經(jīng)元樹突發(fā)育的生物過程,從而調(diào)控環(huán)境應(yīng)激因素引起的成年海馬神經(jīng)發(fā)生[25].當(dāng)改變小鼠腦內(nèi)DNA甲基化水平時(shí),其海馬神經(jīng)的發(fā)生受到明顯影響,并且會(huì)引起學(xué)習(xí)記憶功能的改變[26].在對(duì)DNA甲基轉(zhuǎn)移酶1(Dnmt1)基因敲除鼠的神經(jīng)元前體細(xì)胞進(jìn)行培養(yǎng)時(shí),發(fā)現(xiàn)其子代細(xì)胞死亡較為快速,表明Dnmt1活性降低導(dǎo)致的低甲基化,可使神經(jīng)干細(xì)胞分化功能出現(xiàn)明顯障礙,從而干擾新生神經(jīng)元的存活[27].甲基化CpG結(jié)合蛋白2 (MeCP2)基因突變后,可以導(dǎo)致神經(jīng)發(fā)育性疾病Rett綜合征,其主要病理改變?yōu)榇竽X皮層廣泛的錐體細(xì)胞樹突數(shù)目減少、突觸形成不良等[28].
目前研究認(rèn)為,DNA甲基化在調(diào)節(jié)神經(jīng)干細(xì)胞的分裂和增殖中發(fā)揮重要作用,而DNA甲基化總體水平降低是神經(jīng)元分化的結(jié)果[29].在神經(jīng)元分化過程中,DNA去甲基化對(duì)起主要作用基因的去抑制起關(guān)鍵性的作用,DNA去甲基化可以誘導(dǎo)神經(jīng)細(xì)胞分化為各類功能的神經(jīng)元[30].
恐懼記憶可以通過DNA甲基化方式進(jìn)行遺傳.有研究發(fā)現(xiàn)[2],小鼠在遭受電擊等手段后,對(duì)苯乙酮可產(chǎn)生條件性恐懼記憶,繁殖的第二代及第三代小鼠均表現(xiàn)出對(duì)苯乙酮的恐懼反應(yīng),相應(yīng)嗅球出現(xiàn)結(jié)構(gòu)性改變,并且苯乙酮感受基因Olfr151的CpG島甲基化水平明顯減低,這些現(xiàn)象表明,恐懼記憶可以通過DNA甲基化遺傳給子代.同時(shí),將對(duì)苯乙酮敏感的雄性小鼠精子進(jìn)行體外受精,孕育的小鼠仍會(huì)表現(xiàn)出對(duì)苯乙酮的恐懼反應(yīng),其相應(yīng)精子的苯乙酮感受基因具有較少的甲基化標(biāo)記,從而導(dǎo)致發(fā)育過程中苯乙酮?dú)馕兜氖荏w基因高表達(dá).進(jìn)一步實(shí)驗(yàn)表明,這一恐懼記憶也可以從親本向子代進(jìn)行傳遞.
人類的創(chuàng)傷恐懼記憶存在代際傳遞現(xiàn)象.早期應(yīng)激會(huì)導(dǎo)致子代患多種精神疾病易感性升高,從而引起應(yīng)激反應(yīng)和某些行為的改變.有研究對(duì)689名一戰(zhàn)經(jīng)歷者的后代進(jìn)行跟蹤調(diào)查,發(fā)現(xiàn)約有35%的后代會(huì)出現(xiàn)PTSD的臨床癥狀[31].代際傳遞的癥狀表現(xiàn)在認(rèn)知和情感這兩個(gè)方面,認(rèn)知層面包括對(duì)災(zāi)難的預(yù)期效應(yīng)、對(duì)災(zāi)難重演的恐懼反應(yīng)、對(duì)死亡的侵襲感受和對(duì)災(zāi)難經(jīng)驗(yàn)的替代性分享等,在情感方面主要表現(xiàn)為迫害性的夢魘、毀滅性的焦慮、哀悼相關(guān)的躁狂心境、面對(duì)未解決沖突的愧疚感等.已有研究證實(shí),這種創(chuàng)傷記憶代際傳遞現(xiàn)象與DNA甲基化密切相關(guān)[10, 11].DNA甲基化遺傳在一定程度上可以幫助后代避免特定的傷害性刺激,同時(shí)也可能明顯增加恐懼癥或創(chuàng)傷后應(yīng)激障礙等疾病的發(fā)病風(fēng)險(xiǎn).
恐懼記憶受表觀遺傳調(diào)節(jié),而DNA甲基化是其調(diào)節(jié)的重要方式之一.恐懼記憶可以引起腦內(nèi)DNA甲基化的改變,其DNA高甲基化水平可以抑制基因轉(zhuǎn)錄、降低海馬神經(jīng)發(fā)生,并且恐懼記憶能夠通過DNA甲基化方式遺傳給子代.雖然研究者們從表觀遺傳學(xué)角度對(duì)恐懼記憶展開了大量的研究,但至今仍然存在許多未解之謎,今后可在以下兩個(gè)方面開展研究.
首先,DNA甲基化多態(tài)性、差異基因與恐懼記憶的遺傳機(jī)制.恐懼記憶可通過DNA甲基化遺傳,這些差異大多是在全基因組模式上進(jìn)行的,未來可在DNA甲基化多態(tài)性和差異基因方面開展研究,如利用甲基化DNA免疫共沉淀篩選甲基化差異基因,采用亞硫酸鹽測序比較CRHR1、GR-1F和BDNF啟動(dòng)子甲基化水平等.同時(shí),通過生物學(xué)手段分別干預(yù)這些具體的甲基化基因,研究其對(duì)恐懼記憶的影響及其作用機(jī)制.
其次,不同恐懼消退方式對(duì)DNA甲基化的影響機(jī)制.恐懼消退主要包括藥理學(xué)干預(yù)和消退訓(xùn)練干預(yù)兩種方式.藥理學(xué)干預(yù)主要包括作利用γ-氨基丁酸能、谷氨酸能、膽堿能、腎上腺素能、多巴胺能和大麻素能系統(tǒng)的不同種類藥物,消退訓(xùn)練包括基于巴甫洛夫條件反射的傳統(tǒng)消退訓(xùn)練范式和基于記憶再鞏固模型的提取消退訓(xùn)練范式.這些干預(yù)方式的效果各異,今后可探討不同消退方式對(duì)子代恐懼記憶易感性的影響及其表觀遺傳學(xué)機(jī)制,為人們從基因-環(huán)境交互作用層面探討情感障礙的分子機(jī)制提供新的思路,最終為提高并鞏固 PTSD 治療效果提供新的實(shí)驗(yàn)依據(jù).
[1] Parsons R G,Ressler K J. Implications of memory modulation for post-traumatic stress and fear disorders [J]. Nature Neuroscience,2013,16(2):146-153.
[2] Dias B G,Ressler K J. Parental olfactory experience influences behavior and neural structure in subsequent generations [J]. Nature Neuroscience,2014,17(1): 89-96.
[3] Ehrlich M,Lacey M. DNA methylation and differentiation: silencing,upregulation and modulation of gene expression [J]. Epigenomics,2013,5(5):553-568.
[4] Keil K P,Vezina C M. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate [J]. Epigenomics,2015,7(3):413-425.
[5] Heller G,Babinsky V N,Ziegler B,et al. Genome-wide CpG island methylation analyses in non-small cell lung cancer patients [J]. Carcinogenesis,2013,34(3): 513-521.
[6] Farthing C R,Gabriella F,Ray Kit N,et al. Global mapping of DNA methylation in mouse promoters reveals epigentic reprogramming of pluripotency gene [J]. PLoS Genetics,2008,4(6): e1000116.
[7] Morgan M,Pfaff D. Effects of estrogen on activity and fear-related behaviors in mice [J]. Hormones and Behavior,2001,40(4):472-482.
[8] Kokras N,Dalla C,Sideris A C,et al. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity [J]. Neuropharmacology,2012,62(1):436-445.
[9] Wan Q,Gao K,Rong H,et al. Histone modifications of the Crhr1 gene in a rat model of depression following chronic stress [J]. Behavioural Brain Research,2014,271: 1-6.
[10] Malan-Müller S S,Hemmings S M J. Understanding posttraumatic stress disorder: insights from the methylome [J]. Genes,Brain and Behavior,2014,13:52-68.
[11] Smith A K,Conneely K N,Kilaru V,et al. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder [J]. Am J Med Genet B Neuropsychiatr Genet,2011,156B,700-708.
[12] Labonte B,Suderman M,Maussion G,et al. Genome-wide epigenetic regulation by early-life trauma [J]. Arch Gen Psychiatry,2012,69,722-731.
[13] Miller C A,Sweatt J D. Covalent modification of DNA regulates memory formation [J]. Neuron,2007,53(6):857-869.
[14] Miller C A,Gavin C F,White J A,et al. Cortical DNA methylation maintains remote memory [J]. Nature Neuroscience,2010,13(6):664-666.
[15] Roth T L,Zoladz P R,Sweatt J D,et al. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder [J]. J Psychiatr Res,2011,45,919-926.
[16] Day J J,Sweatt J D. DNA methylation and memory formation [J]. Nature Neurosci,2010,13,1319-1323.
[17] Leach P T,Poplawski S G,Kenney J W,et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory [J]. Learn Mem,2012,19,319-324.
[18] Pan Y W,Storm D R,Xia Z. Role of adult neurogenesis in hippocampus-dependent memory,contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase [J]. Neurobiology of Learning and Memory,2013,105:81-92.
[19] Phillips R,LeDoux J. Differential contribution of amyg- dala and hippocampus to cued and contextual fear conditioning [J]. Behavioral Neuroscience,1992,106(2):274.
[20] Yaniv D,Vouimba R,Diamond D M,et al. Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles [J]. Neuroscience,2003,120(4):1125-1135.
[21] Segal M,Richter-Levin G,Maggio N. Stress-induced dynamic routing of hippocampal connectivity: A hypothesis [J]. Hippocampus,2010,20(12):1332-1338.
[22] Zhao C,Deng W,Gage F H. Mechanisms and functional implications of adult neurogenesis [J]. Cell,2008,132(4):645-660.
[23] Dranovsky A,Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants [J]. Biological Psychiatry,2006,59(12):1136-1143.
[24] Lin C H,Yeh S H,Lu H Y,et al. The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory [J]. The Journal of Neuroscience,2003,23(23):8310-8317.
[25] Ma D K,Jang M H,Guo J U,et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis [J]. Science,2009,323(5917):1074-1077.
[26] Zhao X,Ueba T,Christie B R,et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function [J]. Proc Natl Acad Sci,2003,100(11):6777-6782.
[27] Fan G,Beard C,Chen R Z,et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals [J]. The Journal of Neuroscience,2001,21(3):788-797.
[28] Feng J,Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders [J]. International Review of Neurobiology,2009,89:67-84.
[29] Costello J F. DNA methylation in brain development and gliomagenesis [J]. Front Bioscience,2003,8: S175-184.
[30] Okuse K,Mizuno N,Matsuoka I,et al. Induction of cholinergic and adrenergic differentiation in N-18 cells by differentiation agents and DNA demethylating agents [J]. Brain Research,1993,626: 225-233.
[31] Karenian H,Livaditis M,Karenian S,et al. Collective trauma transmission and traumatic reactions among descendants of Armenian refugees [J]. Int J Soc Psychiatry. 2011,57(4):327-337.
Progression on DNA Methylation of Fear Memory
Li Yahong1, Xu Zhipeng2
(1 School of Education, South-Central University for Nationalities, Wuhan 430074, China; 2 Department of Neurology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China)
This paper summarized the possible mechanism on the change of DNA methylation in fear memory. The scientists found that DNA methylation in central nervous system regulated the gene transcription and hippocampus neurogenesis. Furthermore, the same changes of DNA methylation in sperms inherited from parents to their offspring, and played an important role in the epigenetic modifications of fear memory. Clinical studies have shown that the symptoms of post‐traumatic stress disorder (PTSD) were transmitted across generations in human. Combining these molecular biology results, the paper discusses the possible methods for the diagnosis and treatment of PTSD in the future.
fear memory; DNA methylation; hippocampus neurogenesis
2013-11-03
李亞紅(1979-),女,副教授,博士研究生,研究方向:應(yīng)用心理學(xué),E-mail: liyahong003@sohu.com
湖北省自然科學(xué)基金資助項(xiàng)目(2014CFB223)
B8409
A
1672-4321(2015)04-0041-04