,
(南華大學附屬第一醫(yī)院神經(jīng)內(nèi)科,湖南 衡陽 421001)
·文獻綜述·
小膠質細胞受體與阿爾茨海默病
謝恒,游詠*
(南華大學附屬第一醫(yī)院神經(jīng)內(nèi)科,湖南 衡陽 421001)
阿爾茨海默病(AD)是一種以認知與其它機能進行性減退為主要特征的神經(jīng)系統(tǒng)退行性病變。越來越多的證據(jù)表明,炎癥反應在AD的病理進程中起了重要的作用。小膠質細胞為腦內(nèi)固有吞噬細胞,可表達多種受體;β-淀粉樣蛋白(Aβ)通過與上述受體的相互作用促進小膠質細胞的活化,刺激炎癥反應產(chǎn)生。本文就近年來關于小膠質細胞受體在AD發(fā)生發(fā)展中的作用作一綜述。
小膠質細胞受體; 阿爾茨海默病; β-淀粉樣蛋白; 炎癥反應
阿爾茨海默病(Alzheimer’s disease,AD)是一種以認知與其它機能進行性減退為主要特征的神經(jīng)系統(tǒng)退行性病變。隨著社會發(fā)展,生活方式轉變,人口老年化進程加速;AD日益成為一個突出的醫(yī)學與社會問題,給家庭與社會帶來沉重的負擔。據(jù)世界衛(wèi)生組織的統(tǒng)計,目前全世界超過3500萬AD患者,并且這個數(shù)字仍呈上升趨勢[1]。AD的特征性病理改變主要包括β-淀粉樣蛋白(Amyloid β-protein Aβ)的沉積導致的老年斑、tau蛋白異常聚集形成纖維纏結及神經(jīng)元缺失和膠質細胞增生[2]。截止目前,AD的具體發(fā)病機制尚不是很清楚,可能的機制包括Aβ級聯(lián)假說、Tau 蛋白假說、神經(jīng)血管假說、細胞周期調(diào)節(jié)蛋白障礙、氧化應激、炎癥反應、線粒體功能障礙等。近年來愈來愈多的研究表明,Aβ沉積誘導的炎癥反應是導致AD發(fā)生發(fā)展的重要病因;在AD模型動物及AD患者腦內(nèi)老年斑周圍及核心均可見大量的小膠質細胞聚集,提示小膠質細胞聚集是對Aβ沉積的反應,其機制可能是通過Aβ與膠質細胞受體結合而使其激活并表達相關細胞因子,進而促發(fā)AD的病理進程。本文就Aβ激活小膠質細胞受體誘導的級聯(lián)反應及其在AD發(fā)生發(fā)展中的作用作一綜述。
小膠質細胞占腦內(nèi)神經(jīng)膠質細胞族群的5%~10%,在正常人的中樞神經(jīng)系統(tǒng)中呈靜息狀態(tài)[3]。在病理條件下,活化的小膠質細胞質發(fā)生形態(tài)學的改變,并產(chǎn)生多種細胞因子和炎癥趨化因子,從而對周圍的細胞產(chǎn)生影響。研究發(fā)現(xiàn),小膠質細胞可通過清除Aβ沉積、啟動吞噬細胞活性及釋放毒性細胞介質從而在AD發(fā)生發(fā)展進程中起著重要的作用。在體外,Aβ可激活小膠質細胞進而誘導促炎癥因子的釋放,如白介素類(1L-1、1L-2、1L-6、1L-8)、腫瘤壞死因子(TNF-a)、趨化因子、炎癥因子、活性氧和氮族等,上述促炎癥因子均可導致神經(jīng)元損傷[4-5]。小膠質細胞可表達多種受體如Toll樣受體、補體受體、Fc受體、清道夫受體、CD36、晚期糖基化終產(chǎn)物受體等[6-7];這些受體相互協(xié)同共同參與對Aβ識別、內(nèi)化與清除及小膠質細胞激活功能。
TLRs是膜蛋白家族一員,可以識別多種病原體表面各種不同模式分子,是非特異性免疫反應中一類重要的模式識別受體;此外TLRs還可以識別損傷相關模式分子。在哺乳動物中,目前描述的共有12種TLRs在各種細胞中表達,包括小膠質細胞和星形膠質細胞[8-9]。在 APP23轉基因AD小鼠腦內(nèi)Aβ斑塊區(qū)域腦組織中可以檢測到TLR2、TLR4、TLR5、TLR7與TLR9高水平的mRNA的表達[10]。激活TLRs可觸發(fā)不同的信號轉導通路進而導致促炎癥因子的產(chǎn)生,同時參與Aβ攝取與清除。
TLR4不僅能被脂多糖(Lipopolysaccharide LPS)激活也能識別多種內(nèi)源與外源性分子。研究顯示,TLR4在小膠質細胞活化過程中發(fā)揮著重要作用;其中Aβ刺激誘導的小膠質細胞活化依賴于TLR4與CD14及骨髓分化蛋白2的功能捆綁。體外實驗表明,經(jīng)LPS激活TLR4的小膠質細胞其對Aβ的攝取明顯增加;而在脂多糖應答缺陷的小鼠體內(nèi)顯示Aβ負荷增加,表明了TLR4參與了Aβ的清除過程[11]。此外,TLR4基因突變的AD模型小鼠腦內(nèi)Aβ水平明顯升高且表現(xiàn)出空間學習能力損傷[12]。最近的一項研究表明,TLR4受體激動劑單脂質A不僅可誘導小膠質細胞輕微的炎癥反應同時可增強小膠質細胞對Aβ的攝取,其機制可能與P38的活化及SR-AI 的表達相關[13]。
TLR2同樣參與了Aβ刺激誘導的小膠質細胞活化及后續(xù)的炎癥反應。在AD 模型大鼠和AD病人腦中均可見TLR2 mRNA表達水平顯著增加[14]。TCR2受體缺失的AD模型大鼠表現(xiàn)出空間與非空間記憶損傷[15]。在Aβ刺激條件下,TLR2受體敲除的小鼠小膠質細胞中TNF-α,iNOSβ,IL-1,IL-6、CD68的表達顯著下調(diào)[16]。此外,Aβ42和TLR2共存于小膠質細胞上,肽聚糖誘導的TLR2激活可增加小膠質細胞對Aβ的攝取[17]。TLR9是TLRs家族另一個成員,當小膠質細胞受Aβ刺激時其表達也會上調(diào)。TLR9的激動劑非甲基化胞嘧啶鳥嘌呤(cytosine phosphate guanine,CpG)可激活小膠質細胞增加其對Aβ的攝取[18]。側腦室注射CpG可改善轉基因AD模型小鼠認知功能損傷[19]。上述研究結果表明,TLRs在AD的發(fā)生發(fā)展進程中扮演著雙重角色;一方面,TLRs激活觸發(fā)的炎癥反應可以導致神經(jīng)毒性作用,另一方面,TLRs激活也能促使小膠質細胞對Aβ攝取進而加速Aβ的清除。
補體系統(tǒng)是對微生物誘導的炎癥反應作出免疫應答,并使其易感性消退的一類膜蛋白質類[20]。在AD病人中若干的補體蛋白與相應的mRNA出現(xiàn)了上調(diào),可能與Aβ誘導的炎癥反應、老年斑的形成以及Aβ吞噬過程相關。補體系統(tǒng)的激活主要有3個途徑:經(jīng)典途徑、旁路途徑和MBL途徑。Aβ可激活經(jīng)典與旁路途徑導致C3活化、C5a的產(chǎn)生及膜攻擊復合體的形成。補體系統(tǒng)移除傳染性病原體是通過活化多種受體來完成的,這些受體包括CR1(CD35)、CR2(CD21)、CR3(CD11b/CD18)、CR4 (CD11c/CD18)和C5aR(CD88和C5L2)。
CR1是一種跨膜受體,主要的作用是調(diào)節(jié)補體的級聯(lián)反應;CR1可以結合補體因子C3b和C4b。AD 病人腦脊液中可見CR1水平顯著增加[21]。最近一項全基因組關聯(lián)性研究顯示,CR1突變與遲發(fā)性AD發(fā)生風險密切關聯(lián)。小膠質細胞的活化可以增加CR1的表達,而活化的CR1可進一步誘導神經(jīng)元的凋亡,其機制可能與活性氧、TNF-a 和1L-B的生成增加相關[22]。CR1在紅細胞上的表達參與了外周Aβ的清除,提示CR1可能與AD病人Aβ的清除有關[23]。基因多態(tài)性研究也顯示了CR1與AD發(fā)生風險之間的關聯(lián)[24]。
補體因子C3 是補體系統(tǒng)的重要成份,通過與CR3的相互作用誘導對病原體的吞噬。臨床研究發(fā)現(xiàn)CR3與老年斑共存于AD患者腦內(nèi),且AD患者小膠質細胞CR3表達顯著上調(diào)[25]。CR3可通過與清道夫受體A的協(xié)同作用參與對Aβ的攝取和清除[26]。此外,CR3也參與Aβ刺激誘導的小膠質細胞活化及隨后自由基的產(chǎn)生。
C5a是補體激活過程中產(chǎn)生的一種強促炎癥反應分子。CD88是C5a的受體,主要表達在免疫細胞包括小膠質細胞表面;CD88是一種趨化性受體,其功能與小膠質細胞的聚集與活化有關,CD88的激活可導致炎癥細胞因子、活性氧、生物活性胺類及其它炎癥介質的產(chǎn)生[27]。在AD模型小鼠,可觀察到Aβ斑塊附近的小膠質細胞上CD88表達水平顯著上升[28]。此外,CD88拮抗劑可顯著性減少AD模型小鼠Aβ斑塊形成與膠質細胞活化,同時改善場景記憶損傷[29]。
FcRs與免疫球蛋白恒定域結合,不同免疫球白及其亞型均有相對應的FcRs。小膠質細胞可表達所有FcRs類型。主動與被動免疫研究表明,抗Aβ抗體可影響AD模型動物Aβ清除及認知功能減退[30-32];在抗Aβ抗體存在條件下,小膠質細胞中FcRs激活介導了對Aβ的吞噬作用[30,32]。然而也有研究發(fā)現(xiàn),在抗Aβ抗體存在條件下Aβ的清除并不依賴于FcRs激活介導的吞噬作用[33],表明除了FcRs介導的吞噬作用外還存在不依賴于FcRs的通路,該通路也介導了在抗Aβ抗體存在條件下對Aβ斑塊的清除作用[34]。臨床數(shù)據(jù)表明AD患者腦脊液中IgG水平明顯升高;有人認為在AD病理狀態(tài)下血腦屏障功能受損進而使得免疫球白進入中樞引起后續(xù)反應;也有人認為可能存在血腦屏障內(nèi)的免疫球白合成途徑。因此,關于FcRs在AD發(fā)生發(fā)展中的作用及機制尚有待進一步研究。
FPRs為七次跨膜、G蛋白偶聯(lián)受體,其功能主要是參與宿主防御病原體及某些內(nèi)源性分子。人類主要存在兩種FPRs,即FPR1與FPRL1;小鼠也表達兩種FPRs,即FPR1與FPR2。其中,F(xiàn)PRL1可與幾種宿主源性趨化激動劑相互作用,包括HIV-1包膜蛋白,血清淀粉樣蛋白A和Aβ42[35-37]。在單核吞噬細胞,F(xiàn)PRL1和FPR2參與Aβ42誘導的IL-1β和超氧化物的分泌過程[35,38]。Aβ可誘導轉染FPRL1的HEK293細胞遷移和鈣動員[35];過表達FPRL1的HEK293細胞可內(nèi)吞Aβ42/FPRL1復合體入胞進而導致胞內(nèi)Aβ42/FPRL1復合體的聚集[39]。進一步實驗結果表明,F(xiàn)PRL1與 FPR2均參與對Aβ42內(nèi)吞過程調(diào)節(jié)[39]。LPS處理不僅可刺激FPR2在小膠質細胞的表達增加也可以引起小膠質細胞的鈣動員及對Aβ42的趨化反應[40]。此外,干擾素處理也可增加小膠質細胞FPR2表達水平及Aβ42誘導的細胞遷移[41]。上述結果表明,內(nèi)源或外源性因子可通過調(diào)節(jié)小膠質細胞質FPRs的表達進而調(diào)制機體對Aβ的反應,提示FPRs可能參與AD的病理進程。
SRs為細胞表面受體,主要參與細胞粘附和配體內(nèi)吞過程。中樞神經(jīng)系統(tǒng)中 SRs主要有兩類:SR-A與CD36;SR-A主要表達在小膠質細胞和星形膠質細胞,而CD36主要表達在小膠質細胞和內(nèi)皮細胞上。已有的實驗結果表明,SRs 可通過與Aβ結合促進Aβ內(nèi)化引發(fā)炎癥反應參與AD病理進程[42]。
SR-A有三個亞型:SR-AI,SR AⅡ和SR AⅢ。SR-AI最初被描述為一個乙?;牡兔芏戎鞍资荏w;現(xiàn)在已經(jīng)知道,SR-AI可以與多種配體結合,如微生物配體、乙?;兔芏戎鞍住?nèi)毒素和Aβ等[43-45]。在AD患者腦組織老年斑附近的已激活的小膠質細胞上可檢測到SR-AI 表達[44]。隨后證據(jù)顯示,SR-AI可通過與Aβ結合促進Aβ內(nèi)化和清除[44,46-47]。
CD36是一種B型清道夫受體,存在包括小膠質細胞在內(nèi)的多種類型的細胞中。已有的研究結果表明,CD36參與多種疾病的病理進程如AD、動脈粥樣硬化和瘧疾等。其中,CD36在AD病理進程中的作用主要表現(xiàn)在CD36可以影響Aβ刺激誘導的小膠質細胞聚集與激活過程[48- 49]。比如,在CD36受體缺陷小鼠中Aβ刺激誘導的小膠質細胞中細胞因子和趨化因子表達顯著降低[49]。因此有人認為抑制Aβ與CD36結合可能是阻斷Aβ誘導病理進程的一個有效靶點。
RAGE是免疫球蛋白超級家族成員受體,是一種多配體受體;除晚期糖基化終末產(chǎn)物外,RAGE還可以與多種配體結合如Aβ、神經(jīng)軸突生長因子、S100蛋白、 淀粉p 肽以及甲狀腺素轉移酶等[50]。RAGE在內(nèi)皮細胞、巨噬細胞、平滑肌細胞和神經(jīng)元中均有表達;在中樞神經(jīng)系統(tǒng),RAGE主要存在于神經(jīng)元、小膠質細胞以及構成血腦屏障的內(nèi)皮細胞上[51]。在AD 患者腦中,Aβ與RAGE 結合可促使小膠質細胞向淀粉樣斑塊遷移并激活核因子kB (Nuclear factor kB NF-κB)繼而引起后續(xù)炎癥反應[52]。RAGE與Aβ相互作用亦可激活蛋白激酶、c-Jun氨基末端激酶和ERK激酶[53],這些信號通路的激活可促進內(nèi)皮基質金屬蛋白酶2的生成,而后者與血管炎癥反應產(chǎn)生密切相關。進一步實驗證據(jù)表明,通過RAGE與Aβ相互作用誘導的小膠質細胞活化涉及p38MAPK信號轉導途徑[54]。目前,正在發(fā)展以阻斷RAGE與Aβ相互作用為靶點的治療AD的小分子藥物。
AD發(fā)生發(fā)展的炎癥反應機制是近年來的研究熱點。小膠質細胞受體在Aβ與小膠質細胞活化及后續(xù)炎癥反應之間扮演了重要角色。本文列舉了幾種小膠質細胞受體及其在AD發(fā)病中的作用,為AD的治療提供了新的思路。在今后研究中,需要進一步詳細闡明小膠質細胞受體介導AD病理進程的分子機制及不同受體間的相互作用,為設計新的靶向藥物提供理論依據(jù)。
[1] Wortmann M.Dementia:a global health priority - highlights from an ADI and World Health Organization report[J].Alzheimers Res Ther,2012,4(5):40.
[2] Price DL,Tanzi RE,Borchelt DR,et al.Alzheimer’s disease:genetic studies and transgenic models[J].Annu Rev Genet,1998,32:461-493.
[3] Liu B.Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease[J].AAPS J,2006,8(3):E606-621.
[4] Van Eldik LJ,Thompson WL,Ralay Ranaivo H,et al.Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases:function-based and target-based discovery approaches[J].Int Rev Neurobiol,2007,82:277-296.
[5] Zaheer A,Zaheer S,Thangavel R,et al.Glia maturation factor modulates beta-amyloid-induced glial activation,inflammatory cytokine/chemokine production and neuronal damage[J].Brain Res,2008,1208:192-203.
[6] Fernandez PL,Britton GB,Rao KS.Potential immunotargets for Alzheimer’s disease treatment strategies[J].J Alzheimers Dis,2013,33(2):297-312.
[7] Crehan H,Hardy J,Pocock J.Microglia,Alzheimer’s disease,and complement[J].Int J Alzheimers Dis,2012,2012:983640.
[8] Lehnardt S.Innate immunity and neuroinflammation in the CNS:the role of microglia in Toll-like receptor-mediated neuronal injury[J].Glia,2010,58(3):253-263.
[9] Hanke ML,Kielian T.Toll-like receptors in health and disease in the brain:mechanisms and therapeutic potential[J].Clin Sci (Lond),2011,121(9):367-387.
[10] Frank S,Copanaki E,Burbach G J,et al.Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice[J].Neurosci Lett,2009,453(1):41-44.
[11] Tahara K,Kim H D,Jin J J,et al.Role of toll-like receptor signalling in Abeta uptake and clearance[J].Brain,2006,129(Pt 11):3006-3019.
[12] Song M,Jin J,Lim J E,et al.TLR4 mutation reduces microglial activation,increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease[J].J Neuroinflammation,2011,8:92.
[13] Michaud J P,Halle M,Lampron A,et al.Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology[J].Proc Natl Acad Sci U S A,2013,110(5):1941-1946.
[14] Chen K,Iribarren P,Hu J,et al.Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide[J].J Biol Chem,2006,281(6):3651-3659.
[15] Richard KL,Filali M,Prefontaine P,et al.Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease[J].J Neurosci,2008,28(22):5784-5793.
[16] Jana M,Palencia CA,Pahan K.Fibrillar amyloid-beta peptides activate microglia via TLR2:implications for Alzheimer’s disease[J].J Immunol,2008,181(10):7254-7262.
[17] Liu S,Liu Y,Hao W,et al.TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation[J].J Immunol,2012,188(3):1098-1107.
[18] Iribarren P,Chen K,Hu J,et al.CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1-42 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2[J].FASEB J,2005,19(14):2032-2034.
[19] Doi Y,Mizuno T,Maki Y,et al.Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid {beta} neurotoxicity in in vitro and in vivo models of Alzheimer’s disease[J].Am J Pathol,2009,175(5):2121-2132.
[20] Walport MJ.Complement.Second of two parts[J].N Engl J Med,2001,344(15):1140-1144.
[21] Daborg J,Andreasson U,Pekna M,et al.Cerebrospinal fluid levels of complement proteins C3,C4 and CR1 in Alzheimer’s disease[J].J Neural Transm,2012,119(7):789-797.
[22] Crehan H,Hardy J,Pocock J.Blockage of CR1 prevents activation of rodent microglia[J].Neurobiol Dis,2013,54:139-149.
[23] Rogers J,Li R,Mastroeni D,et al.Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes[J].Neurobiol Aging,2006,27(12):1733-1739.
[24] Brouwers N,Van Cauwenberghe C,Engelborghs S,et al.Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites[J].Mol Psychiatry,2012,17(2):223-233.
[25] Strohmeyer R,Ramirez M,Cole G J,et al.Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer’s disease brain[J].J Neuroimmunol,2002,131(1-2):135-146.
[26] Fu H,Liu B,Frost J L,et al.Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Abeta by microglia[J].Glia,2012,60(6):993-1003.
[27] Woodruff T M,Ager R R,Tenner A J,et al.The role of the complement system and the activation fragment C5a in the central nervous system[J].Neuromolecular Med,2010,12(2):179-192.
[28] Ager R R,Fonseca M I,Chu S H,et al.Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer’s disease[J].J Neurochem,2010,113(2):389-401.
[29] Fonseca M I,Ager R R,Chu S H,et al.Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease[J].J Immunol,2009,183(2):1375-1383.
[30] Bard F,Cannon C,Barbour R,et al.Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease[J].Nat Med,2000,6(8):916-919.
[31] Janus C,Pearson J,Mclaurin J,et al.A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease[J].Nature,2000,408(6815):979-982.
[32] Wilcock DM,Dicarlo G,Henderson D,et al.Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation[J].J Neurosci,2003,23(9):3745-3751.
[33] Das P,Howard V,Loosbrock N,et al.Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma-/- knock-out mice[J].J Neurosci,2003,23(24):8532-8538.
[34] Bacskai BJ,Kajdasz ST,Mclellan ME,et al.Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy[J].J Neurosci,2002,22(18):7873-7878.
[35] Le Y,Gong W,Tiffany H L,et al.Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor,FPR-like-1[J].J Neurosci,2001,21(2):RC123.
[36] Le Y,Li B,Gong W,et al.Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors[J].Immunol Rev,2000,177:185-194.
[37] Lee MS,Yoo SA,Cho CS,et al.Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis[J].J Immunol,2006,177(8):5585-5594.
[38] Tiffany HL,Lavigne MC,Cui YH,et al.Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2,a G protein-coupled receptor expressed in phagocytes and brain[J].J Biol Chem,2001,276(26):23645-23652.
[39] Yazawa H,Yu Z X,Takeda,et al.Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages[J].FASEB J,2001,15(13):2454-2462.
[40] Cui Y H,Le Y,Gong W,et al.Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells[J].J Immunol,2002,168(1):434-442.
[41] Chen K,Iribarren P,Huang J,et al.Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand[J].J Immunol,2007,178(3):1759-1766.
[42] Murgas P,Godoy B,Von Bernhardi R.Abeta potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture[J].Neurotox Res,2012,22(1):69-78.
[43] Coller S P,Paulnock D M.Signaling pathways initiated in macrophages after engagement of type A scavenger receptors[J].J Leukoc Biol,2001,70(1):142-148.
[44] Hickman S E,Allison E K,El Khoury J.Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice[J].J Neurosci,2008,28(33):8354-8360.
[45] Kodama T,Reddy P,Kishimoto C,et al.Purification and characterization of a bovine acetyl low density lipoprotein receptor[J].Proc Natl Acad Sci U S A,1988,85(23):9238-9242.
[46] Husemann J,Loike J D,Anankov R,et al.Scavenger receptors in neurobiology and neuropathology:their role on microglia and other cells of the nervous system[J].Glia,2002,40(2):195-205.
[47] Yang C N,Shiao Y J,Shie F S,et al.Mechanism mediating oligomeric Abeta clearance by naive primary microglia[J].Neurobiol Dis,2011,42(3):221-230.
[48] Bornemann K D,Wiederhold K H,Pauli C,et al.Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice[J].Am J Pathol,2001,158(1):63-73.
[49] El Khoury J B,Moore K J,Means T K,et al.CD36 mediates the innate host response to beta-amyloid[J].J Exp Med,2003,197(12):1657-1666.
[50] Schmidt A M,Yan S D,Yan S F,et al.The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses[J].J Clin Invest,2001,108(7):949-955.
[51] Chen X,Walker D G,Schmidt A M,et al.RAGE:a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease[J].Curr Mol Med,2007,7(8):735-742.
[52] Lue L F,Walker D G,Brachova L,et al.Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease:identification of a cellular activation mechanism[J].Exp Neurol,2001,171(1):29-45.
[53] Du H,Li P,Wang J,et al.The interaction of amyloid beta and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells[J].Cell Mol Neurobiol,2012,32(1):141-147.
[54] Origlia N,Righi M,Capsoni S,et al.Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction[J].J Neurosci,2008,28(13):3521-3530.
10.15972/j.cnki.43-1509/r.2015.01.026
2014-09-06;
2014-10-20
*通訊作者,E-mail:652797262@qq.com.
R741
A
(此文編輯:蔣湘蓮)