張 琳
(遵義師范學院計算機與信息科學學院,貴州 遵義563000)
聚類分析(cluster analysis)是一組將研究對象分為相對同質(zhì)的群組(clusters)的統(tǒng)計分析技術[1]。聚類分析方法具有簡單、直觀的特點,主要應用于探索性的研究,其中變量的選擇有較大的影響。
以學生的消費記錄為研究對象,使用聚類分析知識進行研究,主要使用K-Means算法[2]:
輸入:聚類個數(shù)k以及包含n個數(shù)據(jù)對象的數(shù)據(jù)集;輸出:滿足目標函數(shù)值最小的k個聚類。
(1)計算任意兩個數(shù)據(jù)對象間的距離d(xi,xj);
(2)計算每個數(shù)據(jù)對象的密度參數(shù),把處于低密度區(qū)域的點刪除,得到處于高密度區(qū)域的數(shù)據(jù)對象的集合D;
(3)把處于最高密度區(qū)域的數(shù)據(jù)對象作為第1個中心z1;
(4)把z1距離最遠的數(shù)據(jù)對象作為第2個初始中心z2,z2∈D;
(5)令 z3 為滿足 max(min(d(xi,z1), d(xi,z2)), i=1,2,…,n 的數(shù)據(jù)對象 xi,z3∈D;
(6)令 z3 為滿足 max(min(d(xi,z1), d(xi,z2)), d(xi,z3)), i=1,2,…,n 的數(shù)據(jù)對象 xi,z4∈D;
…
(7)令 zk 為滿足 max(min(d(xi,zj))), i=1,2,…,n, j=1,2,…,k-1 的 xi,zk∈D;
(8)從這k個聚類中心出發(fā),應用k-means聚類算法,得到聚類。
一般采用均方差作為目標測度函數(shù):其中E是數(shù)據(jù)集中所有對象的均方差之和;p是代表對象的空間中的一個點。
本文主要使用SPPS工具來進行聚類分析與研究。
SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務解決方案),是一種實現(xiàn)數(shù)據(jù)分析的多功能軟件[3]。
SPSS for Windows是一種運行在Windows系統(tǒng)下的社會科學統(tǒng)計軟件包,從1968年由美國斯坦福大學開發(fā)使用至今,在全球已經(jīng)擁有數(shù)以萬計的用戶,在通信、醫(yī)療、銀行、證券、保險、制造、商業(yè)、市場研究、科學教育等眾多的行業(yè)領域都得以有效的應用,目前,SPSS已成為世界上應用最廣泛的專業(yè)統(tǒng)計軟件之一。SPSS軟件包采用窗口操作界面,用戶操作使用方便,包括數(shù)據(jù)整理、分析過程、結果輸出等功能。面對龐大的數(shù)據(jù)量,SPSS軟件的功能不斷完善,其統(tǒng)計分析方法不斷充實,涵蓋面越來越廣,輸出數(shù)據(jù)表格圖文并貌,大大提高了統(tǒng)計分析工作的效率。
SPSS的基本功能包括數(shù)據(jù)管理、統(tǒng)計分析、圖表分析、輸出管理等,具體內(nèi)容包括描述統(tǒng)計、列聯(lián)分析,總體的均值比較、相關分析、回歸模型分析、聚類分析、主成份分析、時間序列分析、非參數(shù)檢驗等多個大類,每個類中還有多個專項統(tǒng)計方法。SPSS設有專門的繪圖系統(tǒng),可以根據(jù)使用者的需要將給出的數(shù)據(jù)繪制各種圖形,能夠滿足用戶的不同需求[4]。
聚類分析工具的應用:
1)打開SPSS軟件,并輸入數(shù)據(jù),設置變量名稱,在學生消費數(shù)據(jù)中選擇了三十名學生的月消費情況作為分析目標,如下圖所示為部分消費情況,其中男女各15名,將性別男、女處理為二值型數(shù)據(jù)分別標記為 1、2。
2)每個變量設置的部分格式:
(1)名稱:學號,類型:字符串,長度:11,對齊方式:左,測量單位:名稱;
表1 待處理的數(shù)據(jù)
(2)名稱:性別,類型:數(shù)值,長度:1,對齊方式:右,測量單位:名稱;
(3)名稱:月消費額,類型:數(shù)值,長度:6,對齊方式:右,測量單位:尺度;
(4)名稱:交易次數(shù),類型:數(shù)值,長度:5,對齊方式:右,測量單位:尺度。
3)選擇“分析”—“聚類分析”—“快速聚類K”進行分析,則在出現(xiàn)的界面中進行如下設置:
將”變量”設置為:性別、月消費額、交易次數(shù)。
將“方法”設置為:迭代與聚類。
將“聚類數(shù)目”設置為:2。
4)對“方法”、“迭代”選項進行設置,點擊“確定”即出現(xiàn)運算過程及相應結果:
(1)初始聚類中心
“1”類:性別為“2”(女),月消費額為 278.90,交易次數(shù)為 155。
“2”類:性別為“1”(男),月消費額為 520.10,交易次數(shù)為 171。
(2)迭代過程
在聚類中心的變化分別為63.006、51.977。
由于最大絕對坐標的變化是.000,當前迭代是2,最小距離是241.732,初始中心實現(xiàn)了最小的變化。
(3)最終聚類中心
“1”類:性別為“2”(女),月消費額為 341.33,交易次數(shù)為 164。
“2”類:性別為“1”(男),月消費額為 468.13,交易次數(shù)為 170。
從上述運算結果可看到30個觀測量都有效,并沒有丟失任何一個觀測量。最終,通過以上分析可以看出學生的消費情況可以分為兩類,第一類性別為2,即女生每月消費大概為341.33元,平均交易164次,而第二類性別為1,即男生每月消費大概為468.13元,平均交易170次。從上我們可以看出男生與女生的每月消費情況是不同的,男生消費較多,平均交易也自然的較多,針對食堂來說就應該針對男女生不同的特點,合理安排消費類別,促進學生進行消費。
總之,使用SPSS軟件中的聚類功能對校園一卡通數(shù)據(jù)進行分析,能有效地快速分析出學生消費的一些特征,對這部分知識的研究這里僅進行了粗略的分析,在今后的時間里再進行深入研究。
[1]李響.數(shù)據(jù)挖掘技術淺析[J].計算機光盤軟件與應用,2012(12):46.
[2]袁方,周志勇,宋鑫.初始聚類中心優(yōu)化的 k-means算法[J].計算機工程,2007,33(3):65-66.
[3]劉震.SPSS統(tǒng)計分析與應用[M].電子工業(yè)出版社,2011:4.
[4]陳良英.關于SPSS軟件在市場調(diào)查統(tǒng)計應用的研究[J].中小企業(yè)管理與科技,2008(11):19.