賀丹
摘 ? ?要: 在高職院校中,數(shù)學(xué)建模思想能夠激發(fā)出學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,不斷提高自我創(chuàng)新的意識和解決實(shí)際問題的能力。數(shù)學(xué)建模思想對于培養(yǎng)學(xué)生的聯(lián)想能力、創(chuàng)造能力和思維能力,以及對提高學(xué)生解決問題的能力具有重要的意義。本文通過對數(shù)學(xué)建模思想的介紹,分析高職數(shù)學(xué)教學(xué)的現(xiàn)狀及提高教學(xué)效率的方式。
關(guān)鍵詞: 數(shù)學(xué)建模 ? ?高職數(shù)學(xué) ? ?教學(xué)模式
高職學(xué)校對于數(shù)學(xué)的教學(xué)不僅是要讓學(xué)生掌握基本的理論知識,更重要的是要讓學(xué)生掌握實(shí)際的數(shù)學(xué)應(yīng)用能力,解決生活中的實(shí)際問題。隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展,數(shù)學(xué)思想已經(jīng)逐漸融入到工程技術(shù)中,很多學(xué)校已經(jīng)開展了數(shù)學(xué)建模這門課程。我國的大多數(shù)學(xué)院也相繼將數(shù)學(xué)建模作為理科專業(yè)的必修課程之一,不斷促進(jìn)學(xué)生知識、能力和綜合素質(zhì)的共同發(fā)展,實(shí)現(xiàn)高職教育的目標(biāo)。
1.數(shù)學(xué)建模思想的意義
數(shù)學(xué)建模是指用數(shù)學(xué)符號將要求從定量角度進(jìn)行研究分析的實(shí)際問題以公式的形式表述出來,再通過進(jìn)一步計(jì)算得到相關(guān)結(jié)果,用該結(jié)果解決實(shí)際問題,即通過建立數(shù)學(xué)模型和求解的整個過程。數(shù)學(xué)建模是符合學(xué)生認(rèn)知發(fā)展過程的,在數(shù)學(xué)建模中,學(xué)生通過對具體的假設(shè)、研究,對問題進(jìn)行深入思考,最終得到結(jié)論,再根據(jù)實(shí)際情況應(yīng)用到具體問題中。整個過程經(jīng)歷了提出問題、試探問題、提出猜想假設(shè)、驗(yàn)證問題及得出結(jié)論,整個過程符合學(xué)生認(rèn)知發(fā)展的規(guī)律。數(shù)學(xué)建模思想的應(yīng)用有助于幫助學(xué)生提高對數(shù)學(xué)的重視程度,調(diào)動學(xué)生學(xué)習(xí)的主動性,讓學(xué)生的創(chuàng)造力得到更大的發(fā)揮。數(shù)學(xué)建模的應(yīng)用對提高教師的教學(xué)水平也有所幫助,能夠幫助教師更好地對學(xué)生進(jìn)行教學(xué),由此擴(kuò)大教師在學(xué)生中的影響力。教學(xué)建模的思想應(yīng)用還有利于提高學(xué)生參加競賽的綜合能力,吸引更多學(xué)生參加此類競賽活動。
2.建模思想對能力的培養(yǎng)
數(shù)學(xué)建模思想很多是由實(shí)際問題的一般思維進(jìn)行轉(zhuǎn)變才能成為抽象的數(shù)學(xué)問題的,這要求對數(shù)學(xué)建模要抓住重點(diǎn),從具體問題中抽象出問題的本質(zhì)。因此,建模思想對于培養(yǎng)學(xué)生將具體問題經(jīng)過抽象和簡化用數(shù)學(xué)語言表達(dá)的能力具有重要的意義。在高職數(shù)學(xué)教學(xué)中,有很多的數(shù)學(xué)模型,這些數(shù)學(xué)模型為幫助學(xué)生解決實(shí)際問題提供了便利的方法,同時也為創(chuàng)建新的數(shù)學(xué)模型提供了基礎(chǔ)依據(jù)。
數(shù)學(xué)建模是將數(shù)學(xué)理論知識和實(shí)際應(yīng)用聯(lián)系起來的重要紐帶,能夠幫助學(xué)生不斷探索數(shù)學(xué)中的奧妙,以此提高學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高學(xué)生實(shí)際應(yīng)用數(shù)學(xué)的能力和解決實(shí)際問題的能力。運(yùn)用數(shù)學(xué)建模解決實(shí)際問題的過程中,要根據(jù)已知條件的變化,靈活運(yùn)用新方法和新途徑促進(jìn)學(xué)生綜合運(yùn)用能力和創(chuàng)新思維的發(fā)展。
3.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用
3.1利用教學(xué)內(nèi)容滲透數(shù)學(xué)建模思想
在數(shù)學(xué)教學(xué)中,教師要根據(jù)教材的情況和學(xué)生的實(shí)際情況,將兩者相聯(lián)系,讓學(xué)生能夠運(yùn)用數(shù)學(xué)建模思想尋找解決問題的辦法,解決實(shí)際問題。在教學(xué)中,教師要向?qū)W生灌輸數(shù)學(xué)建模思想,利用具體模型設(shè)置和假設(shè)情景,把數(shù)學(xué)知識和實(shí)際生活相聯(lián)系,幫助學(xué)生更好地理解數(shù)學(xué)實(shí)際內(nèi)容,提高知識應(yīng)用能力。比如在高職數(shù)學(xué)對定積分概念進(jìn)行教學(xué)時,就可以通過介紹曲邊梯形的面積求法,讓學(xué)生學(xué)會分割、求和、取極限的定積分模型思想,然后再進(jìn)行思考,求物體的體積、質(zhì)量等。如果學(xué)生發(fā)現(xiàn)解決這些問題的數(shù)學(xué)模型的思想基本相同,就會不斷拓展新思路解決其他問題。運(yùn)用這種方式,能夠加深學(xué)生對概念的理解,拓展學(xué)習(xí)思維,強(qiáng)化教學(xué)效果。在學(xué)習(xí)定理公式的時候,也可以引進(jìn)數(shù)學(xué)建模思想,通過提出問題、假設(shè)問題,要求學(xué)生計(jì)算求值,再根據(jù)值的正負(fù)情況求出方程式的根,根據(jù)根值與區(qū)間的關(guān)系,引導(dǎo)學(xué)生想出零點(diǎn)定理的概念總結(jié)。
3.2利用實(shí)際問題滲透教學(xué)建模思想
教師在數(shù)學(xué)建模教學(xué)或布置作業(yè)時,要與實(shí)際的生活相聯(lián)系,讓學(xué)生在實(shí)際問題的解決中學(xué)會運(yùn)用建模思想。比如在問題的設(shè)置上,可以利用身邊熟悉的事物進(jìn)行提問,讓學(xué)生從熟悉的環(huán)境中找到合適的解決方法。這不僅能夠幫助學(xué)生更好地理解知識概念,還與學(xué)生以后的工作有著緊密的聯(lián)系。通過在實(shí)際問題中滲透教學(xué)建模思想,讓學(xué)生掌握基本的理論知識,提高知識應(yīng)用能力。此外,教師在課外作業(yè)的布置上也要運(yùn)用數(shù)學(xué)建模思想解決實(shí)際的問題,讓學(xué)生能夠有效利用所學(xué)的數(shù)學(xué)知識分析解決生活中的問題,從而提高知識應(yīng)用能力,培養(yǎng)出學(xué)生的創(chuàng)新思維,提高高職數(shù)學(xué)建模教學(xué)的效率。
3.3提高數(shù)學(xué)建模思想在教材編寫中的應(yīng)用
目前高職數(shù)學(xué)的教材基本都是按照本科教材進(jìn)行編排的,重視理論而忽視了應(yīng)用。高職學(xué)生大多數(shù)對理論的興趣不大,對實(shí)際應(yīng)用能夠產(chǎn)生一定的興趣,并較好地進(jìn)行掌握。所以編寫出一本適合高職培養(yǎng)的目標(biāo)教材是十分重要的,既能滿足高職數(shù)學(xué)建模思想的可持續(xù)發(fā)展要求,又能充分滿足學(xué)生的要求,實(shí)現(xiàn)高職的培養(yǎng)目標(biāo)。在高職數(shù)學(xué)教材的編寫上,要重視學(xué)生的實(shí)際水平,不但要讓學(xué)生能夠?qū)W到相應(yīng)的知識,還要為以后的學(xué)習(xí)打好基礎(chǔ),培養(yǎng)學(xué)生的創(chuàng)造力和進(jìn)一步深造的能力。教師要把數(shù)學(xué)建模思想方法運(yùn)用到教材中,讓學(xué)生帶著問題學(xué)習(xí),把講授的知識點(diǎn)和數(shù)學(xué)建模思想有機(jī)結(jié)合,提高學(xué)生掌握實(shí)際問題的能力,徹底讓學(xué)生擺脫數(shù)學(xué)乏味論的問題,能夠?qū)λ鶎W(xué)內(nèi)容學(xué)以致用。
4.提高高職數(shù)學(xué)教學(xué)數(shù)學(xué)建模思想的方式
4.1教師要重視引導(dǎo)
高職教師需要認(rèn)識到講授知識并不是教學(xué)的終極目標(biāo),更主要的是培養(yǎng)學(xué)生的應(yīng)用和創(chuàng)新能力。其教學(xué)目的應(yīng)當(dāng)是通過科學(xué)的數(shù)學(xué)思維方式培養(yǎng)學(xué)生分析問題、解決問題的能力,提高他們自主學(xué)習(xí)的意識。高職學(xué)生的整體知識水平并不是很高,對于很多問題都不能深入地進(jìn)行思考,遇到難題也沒有繼續(xù)深入研究的動力,缺乏自主創(chuàng)新的意識和獨(dú)立思考的能力。所以教師需要重視引導(dǎo)的作用,引導(dǎo)學(xué)生的思維向更廣闊的方向發(fā)展,讓學(xué)生能夠用數(shù)學(xué)思維看待周圍的事物,仔細(xì)觀察、分析各種事物之間的聯(lián)系和存在的數(shù)學(xué)模型,并且能夠通過數(shù)學(xué)語言描述事物間的聯(lián)系,進(jìn)而用求知的方式解決事物間的實(shí)際問題。教師的引導(dǎo)對于學(xué)生而言有啟迪作用,能夠激發(fā)學(xué)生的求知欲,對數(shù)學(xué)問題產(chǎn)生興趣,在實(shí)際教學(xué)中是一種重要的教學(xué)手段。
4.2重視合作的力量
教師除了積極引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模思想外,還要讓學(xué)生學(xué)會用合作的方式提升自己的思維水平。合作可以利用整體的功能彌補(bǔ)一個人思維的狹隘面,解決思考單一問題,促進(jìn)學(xué)生多方面、多角度地思考問題。合作讓學(xué)生能夠盡快找到合適的角色,通過互幫互助的方式共同提高,加快問題的解決。在合作中,學(xué)生能夠準(zhǔn)確利用自己熟悉擅長的環(huán)節(jié)幫助提高整體的成績和思維水平,切實(shí)加強(qiáng)團(tuán)隊(duì)的整體水平和綜合素質(zhì)。團(tuán)體合作還能讓每個學(xué)生都參與進(jìn)去,都有展示和鍛煉自己的機(jī)會,從而增強(qiáng)自信心,提高學(xué)習(xí)能力,培養(yǎng)良好的溝通能力,促進(jìn)學(xué)生之間的團(tuán)結(jié)合作,幫助提高學(xué)生的交往能力。重視合作的力量,能夠幫助學(xué)生發(fā)現(xiàn)自己的特長和特點(diǎn),增強(qiáng)信心,提高自我探索精神,同時合作中產(chǎn)生的競爭也能激發(fā)學(xué)生對數(shù)學(xué)問題進(jìn)行深入探究。
4.3重視數(shù)學(xué)建模過程
數(shù)學(xué)建模的最終目標(biāo)并不是解決了什么樣的問題、獲得了什么樣的結(jié)論,而是在建模過程中學(xué)生能夠通過自己的努力,不斷進(jìn)行實(shí)踐和自我否定,最終找到解決具體問題的有效方式。數(shù)學(xué)建模過程也是一個學(xué)習(xí)的過程和一個不斷提升自我的過程,所以教師要重視數(shù)學(xué)建模的過程,讓學(xué)生感受到實(shí)踐過程的魅力,根據(jù)學(xué)生的基本狀況和不同的特點(diǎn),綜合利用學(xué)生的特長和優(yōu)點(diǎn)提高他們解決實(shí)際問題的能力,讓學(xué)生感受到數(shù)學(xué)的意義,體會到發(fā)現(xiàn)數(shù)學(xué)的樂趣,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和思維習(xí)慣。教師通過引導(dǎo)學(xué)生,也要讓學(xué)生重視數(shù)學(xué)建模的過程,從數(shù)學(xué)建模中發(fā)現(xiàn)學(xué)習(xí)的樂趣,產(chǎn)生學(xué)好數(shù)學(xué)的信心和動力,并且通過不斷深造發(fā)展,能夠在數(shù)學(xué)建模中發(fā)揮自己的才能,展現(xiàn)出自己擅長的一面,在建模和交流中獲得感受和啟發(fā)。
結(jié)語
高職院校開設(shè)數(shù)學(xué)建模課程是具有一定意義的,要將建模思想應(yīng)用到數(shù)學(xué)教學(xué)中,教師就必須適應(yīng)當(dāng)前的教學(xué)環(huán)境,由傳統(tǒng)的傳授模式轉(zhuǎn)變?yōu)閯?chuàng)造性地傳輸方式。教師要不斷提高自我教學(xué)水平,不斷充實(shí)自己,用正確的方式引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)、實(shí)踐。教學(xué)中只有通過不斷創(chuàng)新,根據(jù)教學(xué)的實(shí)際情況提高學(xué)生的數(shù)學(xué)知識應(yīng)用能力,這樣才能不斷提高學(xué)習(xí)效率,幫助學(xué)生為以后的學(xué)習(xí)和工作打下堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn):
[1]吳靜.數(shù)學(xué)建模思想在高職數(shù)學(xué)教學(xué)中的融入對策[J].才智,2014(05).
[2]王中興.數(shù)學(xué)建模思想在高職數(shù)學(xué)教學(xué)中的應(yīng)用[N].遼寧高職學(xué)報,2011,13(02).
[3]李建杰.數(shù)學(xué)建模思想與高職數(shù)學(xué)教學(xué)[N].河北師范大學(xué)學(xué)報,2013,15(06).