国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

南京地區(qū)一次灰霾天氣的微脈沖激光雷達(dá)觀測(cè)分析

2014-12-14 06:58嚴(yán)國梁韓永翔張祥志湯莉莉趙天良南京信息工程大學(xué)氣象災(zāi)害預(yù)報(bào)預(yù)警與評(píng)估協(xié)同創(chuàng)新中心中國氣象局氣溶膠與云降水重點(diǎn)開放實(shí)驗(yàn)室江蘇南京0044江蘇省環(huán)境監(jiān)測(cè)中心江蘇南京006貴州省氣象局貴州貴陽55000
中國環(huán)境科學(xué) 2014年7期
關(guān)鍵詞:消光灰霾氣溶膠

嚴(yán)國梁,韓永翔*,張祥志,湯莉莉,趙天良,王 瑾 (.南京信息工程大學(xué)氣象災(zāi)害預(yù)報(bào)預(yù)警與評(píng)估協(xié)同創(chuàng)新中心,中國氣象局氣溶膠與云降水重點(diǎn)開放實(shí)驗(yàn)室,江蘇 南京 0044;.江蘇省環(huán)境監(jiān)測(cè)中心,江蘇 南京006;.貴州省氣象局,貴州 貴陽 55000 )

南京地區(qū)一次灰霾天氣的微脈沖激光雷達(dá)觀測(cè)分析

嚴(yán)國梁1,韓永翔1*,張祥志2,湯莉莉2,趙天良1,王 瑾3(1.南京信息工程大學(xué)氣象災(zāi)害預(yù)報(bào)預(yù)警與評(píng)估協(xié)同創(chuàng)新中心,中國氣象局氣溶膠與云降水重點(diǎn)開放實(shí)驗(yàn)室,江蘇 南京 210044;2.江蘇省環(huán)境監(jiān)測(cè)中心,江蘇 南京210036;3.貴州省氣象局,貴州 貴陽 550002 )

利用微脈沖激光雷達(dá)(MPL)對(duì)2012年10月南京地區(qū)的一次灰霾天氣進(jìn)行了不間斷觀測(cè),結(jié)合地面氣象要素和PM10、PM2.5質(zhì)量濃度資料分析了此次污染過程顆粒物質(zhì)量濃度、氣象要素、氣溶膠垂直方向光學(xué)特性和混合層高度(MLH)日變化趨勢(shì)以及相關(guān)性并與 11月11~12日非灰霾天氣做了消光系數(shù)和 MLH的比較.結(jié)果表明,本次灰霾天氣顆粒物濃度與近地面消光系數(shù)日變化較相似,基本上呈現(xiàn)夜間高午后低的趨勢(shì);灰霾期間MLH峰值滯后于地面溫度峰值2h,MLH與PM2.5呈現(xiàn)負(fù)相關(guān)關(guān)系,兩者相關(guān)系數(shù)為-0.57;霾天MLH遠(yuǎn)低于非灰霾天;霾期間近地面消光系數(shù)大部分時(shí)刻大于1.0km-1,遠(yuǎn)大于非霾日0.1~0.25km-1范圍的消光系數(shù).

灰霾;微脈沖激光雷達(dá);混合層高度;消光系數(shù)

隨著工業(yè)化、城市化的迅速發(fā)展,國內(nèi)各大城市在近些年頻繁遭受灰霾污染影響.而作為長(zhǎng)江三角洲經(jīng)濟(jì)體北部中心的南京,亦是國內(nèi)灰霾污染最為嚴(yán)重的地區(qū)之一.灰霾的頻繁發(fā)生不但對(duì)人的身體健康產(chǎn)生危害,而且對(duì)氣候變化、環(huán)境等產(chǎn)生重大的影響[1-3].

經(jīng)過近10年的研究,對(duì)于國內(nèi)灰霾的發(fā)生時(shí)間、污染源及其與風(fēng)速、相對(duì)濕度、能見度、逆溫層等氣象因素的關(guān)系已有了較深的認(rèn)識(shí)[4-9].然而,因早期技術(shù)限制,對(duì)于霾期間大氣垂直方向上污染特征的研究較少.已有研究表明[7-8],當(dāng)污染源排放確定后,大氣混合層高度對(duì)灰霾是否發(fā)生及輕重有重大影響.由于早期的研究中混合層高度多為探空實(shí)驗(yàn)獲得,而傳統(tǒng)探空實(shí)驗(yàn)存在時(shí)間分辨率較差的缺陷,限制了對(duì)混合層影響灰霾天氣的理解.

激光雷達(dá)因?yàn)榭梢蕴綔y(cè)到不同高度大氣氣溶膠的強(qiáng)弱信號(hào),使得研究氣溶膠垂直分布特征及 MLH變化特征多了一種技術(shù)手段.目前許多學(xué)者利用激光雷達(dá)對(duì)大氣氣溶膠及混合層高度進(jìn)行了研究分析,如李成才等[12]利用 MODIS衛(wèi)星和微脈沖激光雷達(dá)分析了珠江三角洲地區(qū)一次污染的氣溶膠光學(xué)厚度分布特征和消光系數(shù)廓線的演變;賀千山等[13]于2002年3~10月在北京大學(xué)利用微脈沖激光雷達(dá)分析了混合層高度及結(jié)構(gòu)的演化,并提出了一種新的反演混合層的方法;毛敏娟等[14]2005年7月在南京城區(qū)利用激光雷達(dá)對(duì)城市邊界層高度日變化及地面氣象環(huán)境對(duì)邊界層的影響進(jìn)行了初步分析;王苑等[15]利用微脈沖激光雷達(dá)對(duì)上海浦東 2008年 12月~2010年11月霾期間氣溶膠消光特性進(jìn)行了分析;西藏、香河、蘭州、壽縣、西安、廣州等地學(xué)者亦利用激光雷達(dá)對(duì)氣溶膠垂直分布和邊界層高度進(jìn)行了分析[16-21].但研究中關(guān)于灰霾天氣的分析較少且沒有將大氣混合層高度與灰霾天氣期間地面污染物濃度有機(jī)地聯(lián)系起來.因此,本文利用微脈沖激光雷達(dá)對(duì)南京地區(qū)的一次灰霾天氣和后期一個(gè)非霾日進(jìn)行了不間斷觀測(cè),結(jié)合霾天地面氣象要素和PM10、PM2.5質(zhì)量濃度資料,探討霾天氣過程大氣氣溶膠消光系數(shù)垂直分布特征、MLH變化特征以及MLH同PM2.5的關(guān)系,有助于對(duì)灰霾天氣的形成機(jī)制與污染特征的進(jìn)一步認(rèn)識(shí).

1 數(shù)據(jù)來源與處理方法

本文所使用數(shù)據(jù)來源于南京市鼓樓區(qū)的江蘇省環(huán)境監(jiān)測(cè)中心,灰霾天氣氣象要素?cái)?shù)據(jù)由地面自動(dòng)氣象站采集而來;顆粒物質(zhì)量濃度利用顆粒物檢測(cè)儀得到,微脈沖激光雷達(dá)資料則來自SigmaMPL公司生產(chǎn)的MPL-4B-IDS系列微脈沖激光雷達(dá),采取 30m垂直分辨率、30s一個(gè)廓線進(jìn)行不間斷采集.

1.1 氣溶膠消光系數(shù)反演

反演氣溶膠消光系數(shù)采用Fernald提出的遠(yuǎn)端求解方法[22].該方法需要事先知道某一高度處氣溶膠的消光系數(shù)或后向散射系數(shù),之后按照下面公式從參考高度 hc往下不斷求解不同高度 h的氣溶膠后向散射系數(shù)βa(h):

式中:a、b分別表示氣溶膠和空氣分子;X(h)表示標(biāo)準(zhǔn)化后向散射信號(hào);Sa是氣溶膠消光系數(shù)與后向散射系數(shù)的比值,中緯度地區(qū)取值范圍為20~70[23],本文中Sa取值50;Sb則是空氣分子的消光后向散射比,取值為8π/3.參考高度hc在白天范圍為 3~6km,夜晚為 6~10km.βa(hc)則根據(jù)設(shè)定的散射比 1+βa(hc)/βb(hc)=1.01進(jìn)行取值.

式(1)中假設(shè)氣溶膠消光后向散射比Sa=σa(h)/βa(h),根據(jù)下面公式:

即可求得不同高度的氣溶膠消光系數(shù).

1.2 MLH反演方法

大氣 MLH 采用梯度法[24]進(jìn)行反演.由下式可計(jì)算出不同高度的信號(hào)變化率(RCS):

式中:X(h)為不同高度 NRB信號(hào);d(h)表示 MPL的垂直分辨率為30m.由于大氣逆溫的存在,邊界層內(nèi)與其上方自由對(duì)流層的氣溶膠含量相差較大,此處的變化率應(yīng)為最小.通過計(jì)算可以得到RCSmin(h),該值所對(duì)應(yīng)的高度即為 MLH.MLH做小時(shí)平均處理.

2 結(jié)果分析

根據(jù)氣象行業(yè)標(biāo)準(zhǔn)《灰霾的觀測(cè)和預(yù)報(bào)等級(jí)》[10]的定義,在排除其他如沙塵、煙霧、吹雪等天氣現(xiàn)象造成的視程障礙后,能見度低于10km,相對(duì)濕度小于 95%時(shí),就可判斷為灰霾.2012年10月27日8:00至29日15:00,能見度小于5km,濕度在39.9~89.5%范圍,從10月27日8:00開始,PM2.5質(zhì)量濃度大于 GB3095(2012)二級(jí)標(biāo)準(zhǔn) 75μg/m3[11],其中絕大部分時(shí)刻高于150μg/m3,所以該次污染為典型的灰霾天氣;而2012年11月11日7:00~12日7:00能見度均大于10km,該時(shí)間段為非灰霾天氣.

2.1 灰霾期間顆粒物質(zhì)量濃度分析

如圖1所示,從27日5:00開始,顆粒物質(zhì)量濃度迅速攀升,在27日11:00PM10和PM2.5皆達(dá)到第一個(gè)峰值.午后,顆粒物濃度開始下降,至 27日17:00,PM10下降到 189μg/m3,隨后 PM2.5也降至第一個(gè)谷值,濃度為137μg/m3.隨著夜晚的到來,顆粒物濃度開始上升,至28日1:00,PM10達(dá)到該次污染過程最大值366μg/m3,隨后迅速下降;PM2.5則升至22:00開始趨于平緩.28日03:00開始,顆粒物濃度再次升高,直到 28日 11:00,顆粒物濃度均保持在較高的位置,PM10在28日10:00則達(dá)到本次污染過程次大值.隨后顆粒物濃度變化同27日較為相似,開始下降進(jìn)入夜晚后再次上升,28日20:00達(dá)到峰值后快速下降并趨于平緩,但顆粒物濃度仍較高,PM10在 250μg/m3附近,PM2.5則在 160μg/m3以上.29日15:00開始,降雨出現(xiàn),顆粒物質(zhì)量濃度快速下降,至 29日 21:00,顆粒物濃度已降至70μg/m3以下,結(jié)束本次污染過程.

圖1 顆粒物質(zhì)量濃度變化Fig.1 Variations in the concentrations of PM小圖為PM2.5/PM10比值

由圖 1發(fā)現(xiàn),本次污染過程顆粒物濃度變化呈現(xiàn)明顯的日變化,即夜間保持在較高值,早晨開始升高,10:00左右達(dá)到峰值.午后顆粒物濃度出現(xiàn)下降夜晚又開始攀升.

本次污染過程中 PM10同PM2.5質(zhì)量濃度變化趨勢(shì)十分一致.圖 1中小圖顯示,從27日9:00至29日15:00,PM2.5/PM10比值在0.52~0.86之間,該時(shí)間段平均值為0.73,細(xì)顆粒物的比例相當(dāng)高,因此本次污染是一次細(xì)顆粒物污染,這也是灰霾天氣的明顯特征.

2.2 氣象條件分析

圖2 氣象要素變化Fig.2 Variations in the concentrations of meteorological elements

風(fēng)速是影響灰霾發(fā)生一個(gè)重要的氣象參數(shù),本次灰霾天氣過程中風(fēng)速在0.1~0.3m/s范圍內(nèi),較其他研究小于 3m/s[7-9]的風(fēng)速更小.由于風(fēng)速非常小,使得氣流運(yùn)動(dòng)緩慢,阻礙了地面污染物質(zhì)的水平有效擴(kuò)散,是發(fā)生嚴(yán)重的灰霾天氣的重要原因之一.灰霾發(fā)生時(shí)的溫度、濕度受風(fēng)速的影響非常微小,使它們呈現(xiàn)出更加接近自身變化的曲線.由圖2可見,溫度呈現(xiàn)出近乎正弦的曲線變化,白天隨著太陽輻射的增強(qiáng),溫度逐漸升高, 15:00地面溫度達(dá)到最大值,隨后開始下降,至次日早上 7:00溫度降到低谷,之后由于太陽輻射加強(qiáng),溫度再次上升.濕度同溫度存在明顯的負(fù)相關(guān),溫度較高時(shí),有利于底層大氣中水汽蒸發(fā)上升,使得濕度逐漸下降,而隨著溫度的逐漸降低,濕度則開始升高,因此在濕度較高的條件下,往往伴隨著低溫,此種環(huán)境有利于大氣中細(xì)粒子的吸濕增長(zhǎng),而此次灰霾天氣過程主要由細(xì)粒子組成,細(xì)粒子通過吸濕增長(zhǎng)為較大的粒子,進(jìn)而影響能見度.研究表明0.6~1.4μm細(xì)粒子具有較強(qiáng)的光散射能力[7],諸多因素使大氣能見度同濕度呈現(xiàn)出負(fù)相關(guān)關(guān)系.

2.3 灰霾過程MLH與溫度、PM2.5對(duì)比分析

圖3a表明,灰霾期間MLH同地面溫度變化趨勢(shì)基本相同,只是 MLH的發(fā)展存在不同程度的滯后,而當(dāng) MLH較高時(shí)滯后效應(yīng)更為明顯.圖中,午后 15:00地面溫度達(dá)到最大值,2h后 MLH達(dá)到峰值.3d的MLH變化趨勢(shì)較為一致,早晨開始升高,在 17:00達(dá)到峰值后伴隨夜晚到來出現(xiàn)小幅下降,20:00左右大幅下落,夜間維持在較低高度,谷值為 0.4km.其原因是白天隨著太陽輻射的增強(qiáng),地表接收太陽輻射升溫,在地表與大氣間產(chǎn)生強(qiáng)的負(fù)溫度梯度,使得氣團(tuán)垂直運(yùn)動(dòng)加速,對(duì)流湍流運(yùn)動(dòng)增強(qiáng).同時(shí),因地表的不均勻和起伏,不同地表升溫不同,隨著太陽輻射的增強(qiáng),溫差越來越大,由風(fēng)切變產(chǎn)生的湍流也相應(yīng)增強(qiáng),它們共同作用使混合層高度升高.午后隨著太陽輻射逐漸減弱,溫度降低,無論是對(duì)流湍流還是風(fēng)切變產(chǎn)生的湍流都開始逐漸下降,相應(yīng)地混合層高度也隨之降低.到了夜間,對(duì)流湍流逐漸消失,而風(fēng)切變產(chǎn)生的湍流也因地面溫差減小而減弱,混合層高度下降到低點(diǎn).因太陽輻射先影響地面溫度,然后湍流向上輸送感熱與潛熱,低處空氣團(tuán)要影響到混合層上部區(qū)域需要一定的時(shí)間,故而使得MLH的峰值滯后于溫度峰值.

從理論上講,若污染排放一定,大氣混合層高度越高,相當(dāng)于容納同樣污染物的容積越大,使得單位體積內(nèi)的污染物濃度越小,反之,亦然.另外,MLH是反映垂直擴(kuò)散的一個(gè)重要參數(shù),當(dāng)MLH較高時(shí)大氣垂直擴(kuò)散能力強(qiáng),導(dǎo)致地面污染物向上擴(kuò)散,使地面觀測(cè)的污染物指標(biāo)如PM10和PM2.5濃度變低;MLH較低時(shí)則相反.大氣混合層高度可通過容納污染物的容積和垂直擴(kuò)散對(duì)灰霾是否發(fā)生及輕重有重大的影響.圖 3b表明MLH和PM2.5濃度呈現(xiàn)出明顯的負(fù)相關(guān)關(guān)系,相關(guān)系數(shù)為-0.57,通過了 α=0.01顯著性水平檢驗(yàn),當(dāng)MLH較低時(shí),對(duì)應(yīng)的PM2.5處于相對(duì)高值,反之PM2.5值則較低.

圖3 MLH與溫度、PM2.5對(duì)比Fig.3 Comparision of MLH with temperature and PM2.5

2.4 氣溶膠消光系數(shù)、MLH反演結(jié)果分析

2.4.1 灰霾過程氣溶膠消光系數(shù)分析 由圖 4a發(fā)現(xiàn),大氣低層氣溶膠消光系數(shù)存在明顯日變化,變化趨勢(shì)同地面顆粒物濃度較為相似,27、28日夜間~上午,消光系數(shù)保持較高水平,消光值基本在 1.0km-1以上,部分時(shí)刻超過 2.0km-1,午后降為0.5~1.0km-1范圍,夜晚再次升高.同 27、28 日相比,29日MLH和消光系數(shù)的最大區(qū)別在于當(dāng)日白天MLH上升緩慢,至15:00MLH只有0.55km左右,而午后的消光值未出現(xiàn)下降,仍保持高值.夜間消光值高主要的原因應(yīng)該是夜間濕度大,細(xì)粒子吸濕增長(zhǎng)快速,加上太陽輻射減少,溫度低,致使 MLH維持較低水平,導(dǎo)致污染物聚集在近地面不易擴(kuò)散,從而出現(xiàn)這一現(xiàn)象;而上午消光值仍較大應(yīng)該是人類活動(dòng)所致,上午 MLH較之夜間雖有上升但仍未發(fā)展完全,高度不高,加上人類活動(dòng)開始,不斷向大氣排放氣溶膠,使得消光能維持高水平;午后,溫度升高,大氣湍流增強(qiáng),MLH持續(xù)上升,使得容納地面污染物的容積擴(kuò)大及大氣垂直擴(kuò)散能力提高,以致消光系數(shù)快速下降.而29日午后消光值較大的原因可能同29日上午至午后 1.8~2.3km 上空低云的存在有關(guān),它阻礙地面接收太陽輻射,導(dǎo)致地面溫度升至13時(shí)然后開始下降,混合層得不到充分發(fā)展,從而使得污染物聚集在低層大氣導(dǎo)致氣溶膠消光系數(shù)維持高值.

2.4.2 霾與非霾天消光系數(shù)、MLH對(duì)比分析選取2012年11月11日07:00~12日07:00非灰霾天來反演消光系數(shù),由圖 4b看出,非灰霾天消光系數(shù)具有明顯日變化特征.白晝時(shí)段氣溶膠消光值較小,幾乎在0.18km-1以下,其中大部分低于0.15km-1.夜間消光系數(shù)開始增大,從 18:00至次日07:00,MLH內(nèi)消光基本在0.15km-1以上,特別是0.6km到MLH這一高度區(qū)間,消光系數(shù)大多數(shù)在 0.2~0.23km-1.

圖4 霾與非霾天消光系數(shù)、MLH變化及差值分布Fig.4 Variations of aerosol extinction coefficient,MLH during the haze ,non-haze and difference

由圖4發(fā)現(xiàn),非霾天MLH日變化趨勢(shì)與霾天較為一致,但非霾天 MLH明顯高于霾天同期的高度.而從消光系數(shù)來看,非霾天 MLH以下高度的消光系數(shù)較小,幾乎都在 0.1~0.25km-1這一范圍,遠(yuǎn)遠(yuǎn)小于灰霾期間消光系數(shù),可見該時(shí)間段城市上空污染物少,空氣較好.從消光差值分布圖4c看出:霾天MLH內(nèi)消光差值皆為正值,絕大部分差值在 0.25~2.0km-1范圍,而非霾天的消光系數(shù)基本在0.25km-1以下,由此可知,霾天氣溶膠消光系數(shù)大多數(shù)時(shí)刻遠(yuǎn)大于非霾天,說明霾天大氣中污染顆粒含量較高,污染嚴(yán)重;區(qū)間a~d為消光差值較大時(shí)段,區(qū)間內(nèi) MLH以下高度的差值基本在1.0km-1以上,部分時(shí)段更是大于1.5km-1,而區(qū)間 e~f為小消光差值時(shí)段,MLH 內(nèi)差值在0.25~0.75km-1范圍.大差值時(shí)段基本集中在凌晨和上午,小差值時(shí)段則從午后 16:00前后持續(xù)到MLH出現(xiàn)大幅度下降的時(shí)刻;29日午后差值較特殊,此時(shí)消光差值較大,這應(yīng)是受低云影響所致;出現(xiàn)較大差值時(shí)段MLH基本低于0.75km,小差值時(shí)段MLH則在該高度以上,可見MLH高度應(yīng)是影響消光差值的一個(gè)重要因素.

分別從圖4c中a~d區(qū)間選取一個(gè)消光差值較大的時(shí)刻(圖 4c中 h~k),繪出灰霾天與非灰霾天相同時(shí)刻的消光系數(shù)廓線用于分析不同天氣狀況垂直方向上的消光區(qū)別(圖略).發(fā)現(xiàn)非灰霾天廓線上消光系數(shù)相差不大,只有 0.15km-1的波動(dòng),而灰霾天消光系數(shù)廓線變化則十分明顯,從0.27km高度開始,氣溶膠消光系數(shù)隨著高度上升逐漸增加,在混合層內(nèi)某一高度達(dá)到最大值后開始小幅減小,當(dāng)?shù)竭_(dá)MLH后,消光值大幅度下降,減小到與非霾天消光值相當(dāng).

3 結(jié)論

3.1 灰霾過程中 PM10同 PM2.5變化趨勢(shì)一致,呈現(xiàn)出明顯的日變化.灰霾主要由小于 2.5μm的細(xì)顆粒物造成.在靜風(fēng)條件下,灰霾期間溫度日變化近乎正弦曲線,濕度與溫度、大氣能見度呈現(xiàn)明顯負(fù)相關(guān)關(guān)系.

3.2 灰霾天氣顆粒物濃度與近地面消光系數(shù)日變化較相似,基本上呈現(xiàn)夜間高午后低的趨勢(shì).霾天 MLH變化趨勢(shì)與地面溫度相似但略有滯后,峰值滯后于地面溫度峰值2h.MLH與PM2.5存在負(fù)相關(guān)關(guān)系,相關(guān)系數(shù)為-0.57.

3.3 霾天MLH遠(yuǎn)低于非灰霾天,消光系數(shù)方面,霾天近地面消光系數(shù)大部分時(shí)刻大于1.0km-1,遠(yuǎn)大于非霾日0.1~0.25km-1范圍的消光系數(shù).

[1]Ramana V, Crutzen P J, Lelieveld J, et al. Indian ocean experiment:An integrate analysis of the climate forcing and effects of the great Indo-Asian haze [J]. Journal of Geophysical Research, 2001,106(22):371-398.

[2]唐傲寒,趙菁嫻,韓文軒,等.北京地區(qū)灰霾特征研究進(jìn)展 [J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013,18(3):185-191.

[3]王 靜,牛生杰,許 丹,等.南京一次典型霧霾天氣氣溶膠光學(xué)特性 [J]. 中國環(huán)境科學(xué), 2013,33(2):201-208.

[4]吳 兌.近 10年中國灰霾天氣研究綜述 [J]. 環(huán)境科學(xué)學(xué)報(bào),2012,32(2):257-269.

[5]童堯青,銀 燕,錢 凌,等.南京地區(qū)霾天氣特征分析 [J]. 中國環(huán)境科學(xué), 2007,27(5):548-588.

[6]王明潔,朱小雅,陳申鵬.1981~2010年深圳市不同等級(jí)霾天氣特征分析 [J]. 中國環(huán)境科學(xué), 2013,33(9):1563-1568.

[7]Kang Hanqing, Zhu Bin, Su Jifeng, et al. Analysis of a longlasting haze episode in Nanjing, China [J]. Atmospheric Research,2013,120:78–87.

[8]朱佳雷,王體健,邢 莉,等.江蘇省一次重霾污染天氣的特征和機(jī)理分析 [J]. 中國環(huán)境科學(xué), 2011,31(12):1943-1950.

[9]高 岑,王體健,吳建軍,等.2009年秋季南京地區(qū)一次持續(xù)性灰霾天氣過程研究 [J]. 氣象科學(xué), 2012,32(3):246-252.

[10]QX/T 113-2010 霾的觀測(cè)和預(yù)報(bào)等級(jí) [S].

[11]GB 3095-2012 環(huán)境空氣質(zhì)量標(biāo)準(zhǔn) [S].

[12]李成才,劉啟漢,毛節(jié)泰,等.利用MODIS衛(wèi)星和激光雷達(dá)遙感資料研究香港地區(qū)的一次大氣氣溶膠污染 [J]. 應(yīng)用氣象學(xué)報(bào),2004,15(6):641-651.

[13]賀千山,毛節(jié)泰.北京城市大氣混合層與氣溶膠垂直分布觀測(cè)研究 [J]. 氣象學(xué)報(bào), 2005,63(3):374-384.

[14]毛敏娟,姜維楣,吳曉慶,等.氣象激光雷達(dá)的城市邊界層探測(cè)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2006,26(10):1723-1728.

[15]王 苑,耿福海,陳勇航,等.基于微脈沖激光雷達(dá)的上海浦東地區(qū)不同強(qiáng)度霾研究 [J]. 中國環(huán)境科學(xué), 2013,33(1):21-29.

[16]劉 成,明 海,王 沛,等.西藏那曲和北京郊區(qū)對(duì)流層氣溶膠的微脈沖激光雷達(dá)測(cè)量 [J]. 光子學(xué)報(bào), 2006,35(9):1435-1439.

[17]夏俊榮,王普才,宗雪梅,等.利用激光雷達(dá)太陽光度計(jì)等多種遙感手段立體監(jiān)測(cè)一次沙塵事件 [J]. 大氣與環(huán)境光學(xué)學(xué)報(bào).2012,7(3):161-167.

[18]周 碧,張 鐳,曹賢潔,等.利用激光雷達(dá)資料分析蘭州遠(yuǎn)郊?xì)馊苣z光學(xué)特性 [J]. 高原氣象, 2011,30(4):1011-1017.

[19]丁 輝.利用微脈沖激光雷達(dá)(MPL)探測(cè)氣溶膠消光系數(shù)廓線和大氣MLH的初步研究 [D]. 南京:南京信息工程大學(xué), 2012.

[20]Yan Qing, Hua Dengxin, Wang Yufeng, et al. Observations of the boundary layer structure and aerosol properties over Xi’an using an eye-safe Mie scattering lidar [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013,122:97–105.

[21]黃祖照,董云升,劉建國,等.珠三角地區(qū)一次灰霾天氣過程激光雷達(dá)觀測(cè)與分析 [J]. 大氣與環(huán)境光學(xué)學(xué)報(bào), 2013,8(2):114-123.

[22]Fernald F G.Analysis of atmospheric lidar observations:some comments [J]. Appl. Opt., 1984,23:652-653.

[23]Takamura T, Sasano Y, Hayasaka T. Tropospheric aerosol optical properties derived from lidar, sun photometer,and optical particle counter measurements [J]. Appl. Opt., 1994,33:7132-7140.

[24]Flamant C, Pelon J, Flamant P, et al. Lidar determination of the entranment zone thickness at the top of the unstable marine atmospheric boundary layer [J]. Boundary layer Meteorology,1997,83:247-284

Analysis of a haze event in Nanjing with micro-pulse lidar measurements.

YAN Guo-liang1, HAN Yong-xiang1*,ZHANG Xiang-zhi2, TANG Li-li2, ZHAO Tian-liang1, WANG Jin3(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.Jiangsu Environmental Monitoring Center, Nanjing 210036, China;3.Guizhou Meteorological Bureau, Guiyang 550002, China).China Environment Science, 2014,34(7):1667~1672

A haze event in Nanjing during October 2012 was intensively measured with micro pulse lidar (MPL). By combining the MPL-measurements with the observations of meteorology, PM10and PM2.5, we analyzed the variations of PM-concentrations, meteorological elements, vertical aerosol profiles with the optical property and mixing layer height(MLH)and their relations. The differences of extinction coefficients and MLH between the haze event and the non-haze period of November 11-12, 2012 were also comapared. The analysis show that the diurnal changes of PM-concentrations and extinction coefficients were in the relatively similar pattern with the high values in night and the low values in afternoon during the haze event. The peak of MLH lagged 2hours behind the peak of air temperature. There was a negative correlation between MLH and PM2.5during the haze event, correlation coefficient was -0.57. Compared to the non-haze period, the MLH was much lower during the haze event and most of the extinction coefficients exceeded 1.0km-1, which was much higher than the extinction coefficients from 0.1 to 0.25 km-1during the non-haze period.

haze;micro-pulse lidar;mixing layer height;extinction coefficient

X513

A

1000-6923(2014)07-1667-06

2013-10-21

國家自然科學(xué)基金項(xiàng)目(41375158,41075113);江蘇省其他項(xiàng)目(BE2012771,BK2012884,11KJA170002)

* 責(zé)任作者, 教授, han-yx66@126.com

嚴(yán)國梁(1988-),男,海南文昌人,南京信息工程大學(xué)大氣物理學(xué)院碩士研究生,主要從事大氣環(huán)境方面研究.發(fā)表論文1篇.

猜你喜歡
消光灰霾氣溶膠
基于飛機(jī)觀測(cè)的四川盆地9月氣溶膠粒子譜分析
固化促進(jìn)劑對(duì)聚酯/環(huán)氧粉末涂料消光性能的影響研究
基于CALIPSO 資料的東亞地區(qū)氣溶膠 垂直分布特征分析
偏光鏡法在寶石鑒別中的作用分析
合肥市灰霾時(shí)間特征分析及其對(duì)農(nóng)業(yè)生產(chǎn)的影響
活動(dòng)星系核中的塵埃消光性分析
云與氣溶膠光學(xué)遙感儀器發(fā)展現(xiàn)狀及趨勢(shì)
消光PVC樹脂聚合及加工性能研究
氣溶膠科學(xué)
重慶市區(qū)灰霾天氣變化及特征分析
浦北县| 凤庆县| 噶尔县| 玉林市| 余干县| 临汾市| 桐梓县| 安远县| 延安市| 东山县| 门头沟区| 阳山县| 平凉市| 隆化县| 东台市| 峡江县| 临朐县| 分宜县| 寻乌县| 松滋市| 云霄县| 新巴尔虎左旗| 荆门市| 光泽县| 东乌珠穆沁旗| 民权县| 林西县| 高雄县| 武冈市| 铁岭县| 昭平县| 深州市| 汕头市| 威宁| 西峡县| 甘洛县| 且末县| 行唐县| 那曲县| 汉中市| 田阳县|