鄧海燕,曾俊義,魏云峰,,王夢(mèng)洪,,鄭澤琪,,張 婉,文 通
(南昌大學(xué) 第一附屬醫(yī)院 1.心血管內(nèi)科; 2.江西省高血壓病研究所, 江西 南昌 330006)
研究論文
microRNA-1誘導(dǎo)大鼠骨髓間充質(zhì)干細(xì)胞向心肌樣細(xì)胞分化過程中Notch信號(hào)分子的表達(dá)變化
鄧海燕1,曾俊義2*,魏云峰1,2,王夢(mèng)洪1,2,鄭澤琪1,2,張 婉2,文 通1
(南昌大學(xué) 第一附屬醫(yī)院 1.心血管內(nèi)科; 2.江西省高血壓病研究所, 江西 南昌 330006)
目的探討微小RNA-1對(duì)大鼠骨髓間充質(zhì)干細(xì)胞向心肌樣細(xì)胞分化的影響及分化過程中Notch信號(hào)分子的表達(dá)變化。方法全骨髓貼壁培養(yǎng)法分離培養(yǎng)大鼠MSCs并進(jìn)行流式細(xì)胞學(xué)鑒定,miR-1慢病毒載體感染大鼠MSCs(MSCsmiR-1)按培養(yǎng)時(shí)間將細(xì)胞分成4組:對(duì)照組、培養(yǎng)4、6和15 d組;光鏡下觀察細(xì)胞形態(tài)變化,qPCR檢測(cè)miR-1及心肌細(xì)胞特異性基因GATA-4、cTnI、α-actin表達(dá),免疫熒光檢測(cè)cTnI表達(dá),Western blot檢測(cè)α-actin表達(dá);qPCR檢測(cè)Notch信號(hào)通路相關(guān)基因的表達(dá)變化。結(jié)果原代大鼠MSCs呈長(zhǎng)梭形、漩渦狀生長(zhǎng),98%以上細(xì)胞表達(dá)CD44和CD29,不足1%的細(xì)胞表達(dá)CD45。MSCsmiR-1中miR-1表達(dá)水平持續(xù)上升,同時(shí)伴隨心肌特異性基因GATA-4、cTnI和α-actin的表達(dá)逐漸增強(qiáng),感染4 d后可見cTnI在部分MSCsmiR-1中表達(dá),同時(shí)可檢測(cè)到α-actin在MSCsmiR-1中表達(dá);MSCsmiR-1向心肌樣細(xì)胞分化過程中,Notch信號(hào)分子Jagged1、Notch1、Notch3和Hey2表達(dá)水平逐漸下調(diào),于15 d時(shí)下調(diào)幅度最大。結(jié)論傳導(dǎo)miR-1至大鼠MSCs中可促使其向心肌樣細(xì)胞的分化;且分化過程中伴隨著Notch信號(hào)分子Jagged1-Notch1/Notch3-Hey2表達(dá)水平下調(diào)。
miR-1;骨髓間充質(zhì)干細(xì)胞;心肌樣細(xì)胞;Notch
微小RNA(microRNAs,miRNAs)作為生命過程中一類重要的調(diào)控因子成為近年來的一大研究熱點(diǎn)。研究表明, miRNAs在一系列生物學(xué)行為比如干細(xì)胞增殖、干細(xì)胞分化中起著非常重要的作用[1]。在眾多miRNAs中存在一類肌相關(guān)miRNAs,包括miR-1、miR-133、miR-206和miR-499等,其中以肌特異性miR-1的生物學(xué)作用尤為引人關(guān)注[2- 3]。目前認(rèn)為,miR-1主要存在于脊椎動(dòng)物的心臟組織中,在機(jī)體的心臟發(fā)育及心肌細(xì)胞的分化成熟過程中發(fā)揮著重要的調(diào)控作用[4]。因此,本研究通過miR-1慢病毒載體感染大鼠(mesenchymel stem cells,MSCs),探討miR-1對(duì)MSCs向心肌樣細(xì)胞分化的影響及分化過程中notch信號(hào)分子的表達(dá)變化,以期闡明MSCs向心肌樣細(xì)胞分化的相關(guān)機(jī)制。
1.1 材料
4周齡清潔級(jí)Wistar大鼠,體質(zhì)量100~150 g,雌雄不限[江西中醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心,許可證號(hào): SCXK(贛) 200520001]。α-MEM培養(yǎng)基和EDTA胰蛋白酶(Gibco公司),胎牛血清(Hyclone公司),倉鼠抗CD29單克隆抗體、小鼠抗CD44 單克隆抗體和小鼠抗CD45單克隆抗體(eBioscience公司),miR-1重組慢病毒載體(上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司),反轉(zhuǎn)錄試劑盒、qPCR檢測(cè)試劑盒和miRNA qRT-PCR檢測(cè)試劑盒(GeneCopoeia公司),兔抗心肌肌鈣蛋白I多克隆抗體(Santa Cruz公司),小鼠抗心肌肌動(dòng)蛋白α(武漢博士德公司),小鼠抗β-actin多克隆抗體(北京中杉金橋生物技術(shù)有限公司)。miR-1及U6引物來自GeneCopoeia公司(RmiRQP1188, RmiRQP9003)。
1.2 方法
1.2.1 大鼠MSCs分離、擴(kuò)增培養(yǎng)及鑒定:頸椎脫臼法處死大鼠,無菌條件下取出股骨和脛骨,剪除兩端干骺端,用含10%胎牛血清的α-MEM培養(yǎng)基沖洗骨髓腔,制成細(xì)胞懸液,以1×109/L接種于25 cm2培養(yǎng)瓶中, 放置37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。24 h后可見少量貼壁細(xì)胞,48 h后第1次換液去除非貼壁細(xì)胞,此后每3天換液1次,待貼壁細(xì)胞達(dá)到80%~90%匯合時(shí),0.25% EDTA胰蛋白酶消化傳代,培養(yǎng)至第3代時(shí)用于實(shí)驗(yàn)。實(shí)驗(yàn)前取適量第3代MSCs進(jìn)行流式細(xì)胞學(xué)檢測(cè),選取細(xì)胞表面標(biāo)志物CD29、CD44和CD45作為檢測(cè)指標(biāo),以確定細(xì)胞純度。
1.2.2 重組慢病毒載體感染大鼠MSCs及實(shí)驗(yàn)分組:預(yù)先構(gòu)建miR-1重組慢病毒載體,感染前1天將細(xì)胞以4×104/孔接種到12孔板中,并加入常規(guī)培養(yǎng)基培養(yǎng),當(dāng)細(xì)胞的匯合率約為30%時(shí)按感染復(fù)數(shù)(MOI)50進(jìn)行感染,同時(shí)加入終濃度為8 μg/mL的polybrene[5],放回培養(yǎng)箱孵育。24 h后更換正常培養(yǎng)基繼續(xù)培養(yǎng)。按培養(yǎng)時(shí)間將細(xì)胞分成對(duì)照組、培養(yǎng)4、6和15 d組。倒置熒光顯微鏡下觀察綠色熒光蛋白(GFP)表達(dá)情況,評(píng)價(jià)慢病毒感染效率。提取細(xì)胞總RNA,經(jīng)純度及濃度測(cè)定后行qPCR檢測(cè)miR-1,總RNA提取、cDNA合成及qPCR均按試劑說明書進(jìn)行。數(shù)據(jù)采集由ABI7500完成。miR-1的檢測(cè)以U6作內(nèi)參,以2-△△Ct比較miR-1表達(dá)水平。
1.2.3 檢測(cè)心肌特異性基因的表達(dá):取各組細(xì)胞進(jìn)行總RNA提取、cDNA合成及qPCR反應(yīng),分別按試劑說明書進(jìn)行。GATA-4:上游引物5′- CTGTGCCA ACTGCCAGACTA -3′,下游引物5′-AGATTCTTGGG CTTCCGTTT-3′,165 bp;α-actin:上游引物5′-AGCC ATGTACGTAGCCATCC-3′,下游引物5′-CTCTCAGC TGTGGTGGTGAA-3′,228 bp;cTnI:上游引物5′-CCT GCGTGGCAAGTTTAA-3′,下游引物5′-TTCCTTCTC AATGTCCTCCT-3′,94 bp;GAPDH:上游引物5′-CTC ATGACCACAGTCCATGC-3′,下游引物5′-TTCAGC TCTGGGATGACCTT-3′,155 bp。
1.2.4 細(xì)胞免疫熒光檢測(cè)cTnI的表達(dá):收集各組細(xì)胞爬片行細(xì)胞免疫熒光檢測(cè)。棄去培養(yǎng)液, PBS沖洗, 4%多聚甲醛4 ℃固定20 min, 1%牛血清白蛋白(BSA)室溫30 min封閉非特異性抗原,1∶100稀釋的兔抗大鼠cTnI多克隆抗體于4 ℃孵育過夜,1∶200稀釋的TRITC標(biāo)記羊抗兔IgG于37 ℃孵育1 h。封片后倒置熒光顯微鏡下觀察。實(shí)驗(yàn)中用PBS代替一抗作陰性對(duì)照。
1.2.5 Western blot檢測(cè)α-actin的表達(dá):分別收集各組細(xì)胞,提取總蛋白并用BCA法測(cè)定蛋白濃度。取50 μg處理的蛋白樣品進(jìn)行聚丙烯酰胺凝膠電泳,半干轉(zhuǎn)條件下以恒流將蛋白樣品從膠轉(zhuǎn)移至NC膜上。5%脫脂奶粉室溫振蕩封閉1 h, 加入適當(dāng)稀釋的一抗(α-actin濃度為1∶500,β-actin濃度為1∶1 000),4 ℃過夜;根據(jù)一抗來源選擇辣根過氧化物酶(HRP)標(biāo)記的二抗,按相應(yīng)比例稀釋后室溫下孵育1 h。TBST洗膜后加入發(fā)光液顯影,使用化學(xué)發(fā)光成像系統(tǒng)(LAS 4000)進(jìn)行圖像采集及目標(biāo)條帶分析。
1.2.6 Real time qPCR檢測(cè)Notch信號(hào)分子表達(dá)變化:分別取各組細(xì)胞進(jìn)行總RNA提取、cDNA合成及qPCR反應(yīng),分別按試劑說明書進(jìn)行。Notch信號(hào)通路相關(guān)基因引物見(表1)。
1.3 統(tǒng)計(jì)學(xué)分析
2.1 大鼠MSCs分離培養(yǎng)與鑒定
MSCs接種24 h后少量開始貼壁,細(xì)胞形態(tài)均一,呈梭形或多角形。48 h后首次換液去除未貼壁細(xì)胞,3~4 d后可見放射狀排列的細(xì)胞集落,伸出長(zhǎng)短不一、粗細(xì)不均的突起,梭形細(xì)胞為主(圖1A)。5 d時(shí)細(xì)胞集落生長(zhǎng)范圍擴(kuò)大,匯合80%~90%,經(jīng)胰蛋白酶消化傳代后均勻鋪于瓶底,呈漩渦狀同向排列(圖1B)。第3代大鼠MSCs均一表達(dá)CD44和CD29,陽性率分別為98.03%,99.00%,而CD45呈陰性表達(dá),陽性率僅為0.02%,證實(shí)培養(yǎng)所獲細(xì)胞為MSCs,且純度較高(圖2)。
表1 Notch信號(hào)通路相關(guān)基因引物序列
A .primary rat MSCs(×100);B.the third passage of rat MSCs(×100)圖1 大鼠MSCsFig 1 Micrographs of rat MSCs
2.2重組慢病毒載體感染大鼠MSCs效率及miR-1表達(dá)檢測(cè)
慢病毒感染大鼠MSCs第2天即可觀察到部分細(xì)胞表達(dá)GFP,細(xì)胞形態(tài)變化不明顯,隨培養(yǎng)時(shí)間推移,GFP陽性細(xì)胞逐漸增多,GFP表達(dá)逐漸增強(qiáng),至4 d時(shí)綠色熒光蛋白表達(dá)基本達(dá)到穩(wěn)定,其后持續(xù)高表達(dá),感染效率達(dá)90%以上。到15 d時(shí)仍可見綠色熒光表達(dá),部分細(xì)胞形態(tài)呈多角、短梭形變化(圖3)。miR-1表達(dá)水平隨時(shí)間逐漸增高,到15 d時(shí)MSCsmiR-1中miR-1表達(dá)量達(dá)到最高(表2)。
2.3 心肌特異性基因的表達(dá)變化
心肌特異性蛋白cTnI和α-actin只在誘導(dǎo)后的細(xì)胞中表達(dá),表達(dá)水平逐漸上升,15 d時(shí)達(dá)到高峰;轉(zhuǎn)錄調(diào)控因子GATA-4在分化過程中的第4天表達(dá)水平稍下降,以后逐漸上升,一直持續(xù)到15 d(表3)。
表2 MSCsmiR-1 中miR-1表達(dá)變化Table 2 Expression of miR-1 in MSCsmiR-1
*P<0.01 compared with day 4.
More than 98% of the MSCs population expressed CD44 and CD29,less than 1% cells were CD45 positive圖2 流式細(xì)胞檢測(cè)大鼠MSCs表面標(biāo)志物Fig 2 Identification of MSCs phenotype by flow cytometry
A.control group;B.4-day group;C.6-day group;D.15-day group圖3 MSCsmiR-1中GFP的表達(dá)Fig 3 GFP expression of MSCsmiR-1(×100)
2.4 免疫熒光檢測(cè)cTnI的表達(dá)
感染后的MSCsmiR-1細(xì)胞體積較前變長(zhǎng)和寬大,形成類似肌管樣的形態(tài)特點(diǎn)。MSCsmiR-1于感染后第
表3 MSCsmiR-1心肌特異性基因的表達(dá)變化
*P<0.05,**P<0.01compared with control;△P<0.05,△△P<0.01 compared with day 4.4天開始少量表達(dá)cTnI,隨著培養(yǎng)時(shí)間的延長(zhǎng),陽性率逐漸增加(圖4)。
2.5 Western blot檢測(cè)α-actin的表達(dá)
感染前大鼠MSCs不表達(dá)α-actin。感染4 d時(shí)α-actin蛋白呈弱表達(dá),到第6天表達(dá)明顯增強(qiáng),并持續(xù)高表達(dá)至第15天(圖5)。
2.6 Notch信號(hào)分子表達(dá)變化
大鼠MSCs原代細(xì)胞高水平表達(dá)Notch1、Jagged1、Hey1和Hey2,中等表達(dá)Dll1、Dll3、Dll4、Notch2、Notch3和Notch4,下游靶基因Hes1和Hes5在肌分化過程中等量持續(xù)表達(dá)。miR-1重組慢病毒感染MSCs后,Jagged1、Notch1、Notch3和Hey2表達(dá)水平隨著觀察時(shí)間的延長(zhǎng)而逐漸下調(diào),其中配體Jagged1的含量下調(diào)最顯著 (表4)。而配體Dll1、Dll3和Dll4,受體Notch2和Notch4及靶基因Hes-1、Hes-5和Hey-1表達(dá)水平雖有波動(dòng),但無顯著性差異(表5)。
A.control group; B.4-day group; C.6-day group; D.15-day group圖4 MSCsmiR-1中cTnI的表達(dá)Fig 4 Expression of cardiomyocyte-specific cTnI in MSCsmiR-1(×100)
*P<0.01 compared with control圖5 MSCsmiR-1中α-actin表達(dá)變化Fig 5 Expression of cardiomyocyte-specific α-actin in MSCsmiR-1
groupCt(Jagged1)Ct(Notch1)Ct(Notch3)Ct(Hey2)control 2130±032 2491±042 2399±039 2671±0344?day 2283±030? 2609±036 2284±048? 2807±057?6?day 2316±038?? 2708±046?? 2701±055?? 2703±042??15?day 2607±048?? 2728±051?? 2729±049?? 2833±039??
*P<0.05,**P<0.01 compared with control.
表5 Notch信號(hào)分子的表達(dá)變化Table 5 Expression of genes related to Notch signaling pathway
miR-1作為首個(gè)確定的肌相關(guān)miRNAs,其調(diào)控機(jī)體心臟發(fā)育過程及心肌細(xì)胞分化的作用在一系列相關(guān)研究得到證實(shí)。敲除miR-1的小鼠心臟祖細(xì)胞的增殖明顯,而分化成的心肌細(xì)胞明顯減少[6]。在C2C12肌細(xì)胞中過表達(dá)miR-1使得早期和晚期心肌相關(guān)基因表達(dá)增多,明顯促進(jìn)肌生成[7]。本研究結(jié)果同樣證實(shí)miR-1可促使大鼠MSCs向心肌細(xì)胞分化,并進(jìn)一步驗(yàn)證了本實(shí)驗(yàn)的前期研究[8],表明miR-1具有決定干細(xì)胞向心肌細(xì)胞定向分化的作用。
在脊椎動(dòng)物的心臟發(fā)育的不同階段伴隨著Notch信號(hào)通路不同組分的時(shí)空表達(dá)變化,表明Notch信號(hào)通路在心臟發(fā)育的多個(gè)過程中發(fā)揮重要的調(diào)控作用[9]。本研究中,miR-1重組慢病毒載體感染MSCs后,伴隨其向心肌樣細(xì)胞定向分化過程,Notch信號(hào)分子Jagged1、Notch1、Notch3及Hey2表達(dá)水平隨時(shí)間逐漸下調(diào),推測(cè)Jagged1-Notch1/Notch3-Hey2介導(dǎo)的Notch信號(hào)下調(diào)可能參與了miR-1誘導(dǎo)大鼠MSCs的心肌分化過程,并在其中發(fā)揮著重要的調(diào)控作用。一項(xiàng)關(guān)于爪蟾的研究發(fā)現(xiàn),通過Notch1激活內(nèi)源性Notch信號(hào)通路可導(dǎo)致心肌分化標(biāo)志物cTnI、MHC和α-actin的下調(diào),致使心肌細(xì)胞分化成熟障礙,抑制Notch信號(hào)通路則相反[10]。因此,心臟分化發(fā)育過程中Notch1介導(dǎo)的Notch信號(hào)下調(diào)具有重要的調(diào)控作用。研究中發(fā)現(xiàn)Notch3的表達(dá)變化與Notch1相一致,推測(cè)肌分化過程中Notch3具有類似Notch1的同向作用。關(guān)于未成熟心肌細(xì)胞的體外分化研究發(fā)現(xiàn),Jagged1通過激活Notch1在未成熟心肌細(xì)胞的分化中發(fā)揮著重要的調(diào)控作用[11]。另一項(xiàng)研究發(fā)現(xiàn)Jagged1可激活Notch3啟動(dòng)Notch信號(hào)通路調(diào)控心肌細(xì)胞的分化[12]。盡管實(shí)驗(yàn)背景有所不同,但Jagged1激活Notch1/ Notch3介導(dǎo)心肌細(xì)胞分化得到證實(shí)。Hey2特異性敲除的小鼠出現(xiàn)室間隔缺損、瓣膜發(fā)育異常,進(jìn)一步研究證實(shí)Hey2是Notch信號(hào)通路的重要效應(yīng)因子[13]。此外,一項(xiàng)體內(nèi)研究發(fā)現(xiàn)Jagged1和Notch1敲除的小鼠中出現(xiàn)的心肌發(fā)育異常與Hey2敲除出現(xiàn)的一致,再次印證了Hey2為Notch信號(hào)的下游效應(yīng)因子[14]。由此可知,Jagged1-Notch1/Notch3-Hey2介導(dǎo)的Notch信號(hào)下調(diào)在miR-1誘導(dǎo)大鼠MSCs的心肌分化過程中發(fā)揮著重要的調(diào)控作用。需要指出的是,盡管配體Dll1、Dll3、Dll4,受體Notch2、Notch4及靶基因Hes1、Hes5、Hey1表達(dá)水平亦隨MSCsmiR-1分化過程而波動(dòng),但無顯著性差異。雖然上述基因均與心臟發(fā)育、胚胎發(fā)生有著密切的關(guān)系,但在miR-1介導(dǎo)MSCs向心肌細(xì)胞分化過程中是否發(fā)揮相應(yīng)的調(diào)控作用證據(jù)不足,進(jìn)一步的研究有助于闡明其相關(guān)作用。
綜上所述,本研究通過miR-1慢病毒載體感染大鼠MSCs,證實(shí)miR-1可促使MSCs向心肌細(xì)胞分化,在此過程中Jagged1-Notch1/Notch3-Hey2介導(dǎo)的Notch信號(hào)下調(diào)發(fā)揮著重要的調(diào)控作用。研究不僅為實(shí)現(xiàn)MSCs定向分化為心肌細(xì)胞找到了一條新途徑,同時(shí)對(duì)其分化機(jī)制也進(jìn)行了初步有益的探討。相信隨著研究的深入,MSCs向心肌細(xì)胞分化的相關(guān)機(jī)制將逐步闡明,干細(xì)胞低分化效率的瓶頸也終將突破,進(jìn)而實(shí)現(xiàn)干細(xì)胞治療技術(shù)的廣泛應(yīng)用。
[1] Leonardo TR, Schultheisz HL, Loring JF,etal. The functions of microRNAs in pluripotency and reprogramming[J].Nat Cell Biol,2012,14:1114- 1121.
[2] Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease[J]. Int J Biochem Cell Biol,2010,42:1252- 1255.
[3] Sluijter JP, van Mil A, van Vliet P,etal. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells[J]. Arterioscler Thromb Vasc Biol, 2010, 30:859- 868.
[4] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436: 214- 220.
[5] Ricks DM, Kutner R, Zhang XY,etal. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells[J]. Stem Cells Dev, 2008, 17:441- 450.
[6] Zhao Y, Ransom JF, Li A,etal. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007,129:303- 317.
[7] Chen JF, Mandel EM, Thomson JM,etal. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006,38: 228- 233.
[8] 文通,魏云峰,王夢(mèng)洪,等.microRNA-1誘導(dǎo)大鼠骨髓間充質(zhì)干細(xì)胞向心肌樣細(xì)胞分化[J].基礎(chǔ)醫(yī)學(xué)與臨床,2011,31:41- 46.
[9] MacGrogan D, Nus M, Pompa JL. Notch signaling in cardiac development and disease [J]. Curr Top Dev Biol, 2010, 92: 333- 365.
[10] Rones MS, McLaughlin KA, Raffin M,etal. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis [J]. Development, 2000, 127: 3865- 3876.
[11] Sassoli C, Pini A, Mazzanti B,etal. Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration [J]. J Mol Cell Cardiol, 2011, 51:399- 408.
[12] Li H, Yu B, Zhang Y,etal. Jagged1 protein enhances the diffe- rentiation of mesenchymal stem cells into cardiomyocytes [J]. Biochem Biophys Res Commun, 2006, 341:320- 325.
[13] Fischer A, Schumacher N, Maier M,etal. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development [J]. Genes Dev, 2004, 18:901- 911.
[14] McBride KL, Riley MF, Zender GA,etal. Notch1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling [J]. Hum Mol Genet, 2008, 17: 2886- 2893.
Expression of Notch signaling moleculesin the process of microRNA-1 inducing rat bone marrowmesenchymal stem cells into cardiomyocyte-like cells
DENG Hai-yan1, ZENG Jun-yi2*, WEI Yun-feng1,2, WANG Meng-hong1,2, ZHENG Ze-qi1,2, ZHANG Wan2, WEN Tong1
(1.Dept of Cardiology;2.Jiangxi Institute of Hypertension,the First Affiliated Hospital of Nanchang University,Nanchang 330006,China)
ObjectiveTo investgate the effect of miR-1 on MSCs differentiation into cardiac phenotypes and the expression changes of Notch signaling molecules in this process.MethodsMSCs were isolated from rat bone marrow by the whole bone marrow adherence method; MSCs were introduced by the lentiviral vectors expressing miR-1(MSCsmiR-1),which were then divided into four groups: control group, 4-day culture group, 6-day culture group,15-day culture group;The cell morphology was examined by light microscopy, miR-1 and cardiomyocyte-specific genes including GATA- 4, cTnI and α-actin were examined by real-time qPCR, and the expression of cTnI and α-actin was detected by immunofluorescence and Western blot respectively;Meanwhile, MSCsmiR-1cells were detected for the expression of genes related to notch signaling pathway by qPCR.ResultsIsolated MSCs displayed a stable spindle-phenotype and showed characteristic swirling growth. More than 98% of the MSCs population expressed CD44 and CD29 for MSCs phenotype; Meanwhile, less than 1% cells were CD45 positive. MSCsmiR-1highly expressed miR-1 and showed a higher expression of cardiomyocyte-specific genes, including GATA-4, cTnI and α-actin, cTnI was detected by immunofluorescence in MSCsmiR-1after miR-1 transduction for 4 days, and gradually increased afterwards. Western blot further confirmed the expression of α-actin in MSCsmiR-1. The mRNA expression of Jagged1,Notch1,Notch3 and Hey2 reduced significantly in MSCsmiR-1during its differentiation into cardiomyocyte-like cells,and reached the minimum on day 15.ConclusionsTransduction of miR-1 into rat MSCs induce cell differentiation into cardiomyocyte-like cells,which is in company with down-regulation mRNA expression of Jagged1- Notch1/ Notch3-Hey2 in the Notch pathway.
miR-1; MSCs;cardiomyocyte-specific cells;notch
2013- 11- 18
2014- 03- 28
江西省自然科學(xué)基金(2010GZY0321);江西省科技支撐計(jì)劃(2010BSA11700);江西省教育廳青年科學(xué)基金(GJJ12153);江西省衛(wèi)生廳科技計(jì)劃(20111021)
*通信作者(correspondingauthor):zjy1312@163.com
1001-6325(2014)09-1204-07
R 542.2
A