邢國(guó)起等
摘要:應(yīng)用空間滑動(dòng)面原理改進(jìn)了LadeDuncan彈塑性模型的屈服準(zhǔn)則及破壞準(zhǔn)則,建立了基于非關(guān)聯(lián)流動(dòng)法則的改進(jìn)LadeDuncan彈塑性模型,模型參數(shù)可通過(guò)常規(guī)三軸試驗(yàn)獲取。利用濰坊中南部平原地區(qū)某深基坑持力層的粉土UU三軸試驗(yàn)結(jié)果,驗(yàn)證了改進(jìn)LadeDuncan模型對(duì)粉土試樣的適應(yīng)性。改進(jìn)模型較LadeDuncan彈塑性模型能夠更好地反映持力層粉土的關(guān)系,以及應(yīng)力路徑的相關(guān)性與剪脹等特性。改進(jìn)彈塑性模型可為該地區(qū)高層及超高層建筑粉土地基變形計(jì)算創(chuàng)造有利條件。
關(guān)鍵詞:關(guān)鍵詞:空間滑動(dòng)面理論;LadeDuncan模型;粉土;屈服準(zhǔn)則;破壞準(zhǔn)則
中圖分類號(hào):TV45 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):
16721683(2014)05001804
Modified LadeDuncan model based on the theory of spatial mobilized plane
XING Guoqi1,2,XIAO Hongtian1,LI Dayong1
(1.Shandong Province Key Laboratory of Geotechnical and Structural Engineering,Shandong University of Science and Technology,Qingdao 266590,China;
2.College of architectural engineering,Weifang University,Weifang 261061,China)
Abstract:The theory of spatial mobilized plane was used to improve the yield criterion and failure criterion of LadeDuncan elastoplastic model,and then the modified LadeDuncan model was established based on the nonassociated flow rule.Model parameters can be determined by the traditional triaxial test.The adaptability to the modified LadeDuncan model for silt was verified based on the triaxial UU test results of the silt samples collected in the deep foundation pit of the southcentral plain area in Weifang.The modified model can better reflect the relationship between (σ1-σ3)and ε1 of supporting layer of silt,and the relativity and shear dilatancy properties of stress paths.The modified model can provide reference for the calculation of silt foundation deformation of the highrise buildings and ultratall buildings.
Key words:theory of spatial mobilized plane;LadeDuncan elastoplastic model;silt;yield criterion;failure criterion
近年來(lái)高層及超高層建筑的發(fā)展推動(dòng)了土的本構(gòu)關(guān)系研究日益廣泛和深入,成為巖土工程的重要研究領(lǐng)域之一。土的彈塑性模型能夠反映土的非線性、彈塑性、剪脹性以及各向異性等特點(diǎn),在高層及超高層建筑的地基沉降計(jì)算中得到了廣泛的應(yīng)用并且取到了較好的效果。土的彈塑性模型建立在增量塑性理論基礎(chǔ)上,彈性應(yīng)變?cè)隽靠捎脧椥岳碚撉蠼猓苄詰?yīng)變?cè)隽靠捎迷隽克苄岳碚撚?jì)算。Roscoe等[1]在塑性力學(xué)加工硬化理論基礎(chǔ)上,對(duì)正常固結(jié)重塑黏土建立了第一個(gè)土的彈塑性帽子模型,即劍橋模型(CamClay)。英國(guó)劍橋大學(xué)的Burland[2](1965)采用了一種新的能量方程形式,得到了修正劍橋模型。魏汝龍(1981)[34]提出了不同于劍橋模型與修正劍橋模型的新的能量方程式,把彈性剪應(yīng)變考慮進(jìn)去,功能的假定更全面,比修正的劍橋模型適用性更廣。黃文熙[57](1979)通過(guò)進(jìn)行土的等向固結(jié)試驗(yàn)和常規(guī)三軸壓縮試驗(yàn),建立了土的彈塑性模型(清華彈塑性模型)。濮家騮[8]、李廣信[9]根據(jù)平面應(yīng)變和真三軸試驗(yàn)資料和p、vσ及q三維應(yīng)力空間的流動(dòng)法則的推導(dǎo),進(jìn)一步建立了三維彈塑性模型。沈珠江[1011]提出了雙重屈服面模型以及三重屈服面模型。Lade和Duncan[1213]根據(jù)真三軸儀上砂土試驗(yàn)成果,建立了一個(gè)適應(yīng)三維空間的彈塑性應(yīng)力應(yīng)變模型。隨后Lade[14]又針對(duì)LadeDuncan彈塑性模型不能反映土在各向等壓的應(yīng)力下不產(chǎn)生屈服的現(xiàn)象,將原來(lái)的直線屈服軌跡改為彎曲的并增加了“帽子”屈服面,以反映比例加載條件、應(yīng)變軟化和強(qiáng)度隨圍壓變化等因素。LadeDuncan彈塑性模型采用非關(guān)聯(lián)流動(dòng)法則的砂土本構(gòu)模型,但是塑性勢(shì)函數(shù)卻是基于傳統(tǒng)塑性力學(xué)理論提出的,試驗(yàn)假定的塑性勢(shì)函數(shù)與所采用的屈服函數(shù)具有相似的形式,理論不嚴(yán)密。在松崗元等基于空間滑動(dòng)面理論提出[1516]的空間滑動(dòng)面模型(SMP)中,屈服準(zhǔn)則考慮了三個(gè)應(yīng)力張量不變量的影響。
本文將空間滑動(dòng)面模型中的屈服函數(shù)作為L(zhǎng)adeDuncan彈塑性模型中的屈服函數(shù),塑性勢(shì)函數(shù)形式不變,破壞準(zhǔn)則采用松岡元-中井準(zhǔn)則,建立基于非關(guān)聯(lián)流動(dòng)法則的改進(jìn)LadeDuncan彈塑性模型,并以濰坊中南部地區(qū)持力層粉土為試樣驗(yàn)證改進(jìn)彈塑性模型對(duì)粉土類材料的可行性,為本地區(qū)高層及超高層建筑地基變形計(jì)算提供支持。
1
空間滑動(dòng)面模型與LadeDuncan彈塑性模型
參數(shù)α隨圍壓σ3增大呈減小趨勢(shì);土性參數(shù)β隨圍壓σ3增大而增大。
(4)針對(duì)試驗(yàn)粉土試樣,改進(jìn)模型的精度優(yōu)于LadeDuncan彈塑性模型,改進(jìn)模型可為本地區(qū)高層及超高層建筑地基變形計(jì)算創(chuàng)造更有利條件。
本次試驗(yàn)以濰坊中南部地區(qū)某深基坑持力層粉土重塑試樣進(jìn)行了常規(guī)UU三軸試驗(yàn),驗(yàn)證了改進(jìn)模型適用于高層及超高層粉土地基變形的可行性,但改進(jìn)模型是否適用于CU及CD三軸試驗(yàn),還有待于進(jìn)一步研究。
參考文獻(xiàn)(References):
[1]
Roscoe K H,Schofield A N,Thurairajah A.Yielding of clay in states wetter than critical[J].Geotechnique,1963,13(3):211240.
[2] Roscoe K H,Burland J B.On the Generalized Stressstrain Behavior of “Wet” Clay[J].Journal of Terramechanics,1970,7(2):107108.
[3] 魏汝龍.正常壓密粘土的塑性勢(shì)[J].水利學(xué)報(bào),1964,(6):921(WEI Rulong.The plastic potential of normally consolidated clays[J].Journal of Hydraulic Engineering,1964,(6):921.(in chinese))
[4] 魏汝龍.正常壓密粘土的本構(gòu)定律[J].巖土工程學(xué)報(bào),1981,3(3):1018(WEI Rulong.Constitutive laws for normally consolidated clay[J].Chinese Jounal of Geotechnical Engineering,1981,3(3):1018.(in chinese))
[5] 黃文熙.土的彈塑性應(yīng)力一應(yīng)變模型理論[J].清華大學(xué)學(xué)報(bào),1979,19(1):120(HUANG Wenxi.Theory of elastoplastic stressstrain models for soils[J].Journal of Tsinghua University,1979,19(1):120.(in chinese))
[6] 黃文熙.硬化規(guī)律對(duì)土的彈塑性應(yīng)力應(yīng)變模型影響的研究[J].巖士工程學(xué)報(bào),1980,2(1):111(HUANG Wenxi.The influence of the hardening law on the formulation of the elastoplastic model of soil[J].Chinese Journal of Geotechnical Engineering,1980,2(1):111.(in chinese))
[7] Huang Wenxi.Effect of work hardening rules on the elastoplastic matrix[A].Soils under Cyclic and Transient Loading/Swansea[C].1980,1:711.
[8] 濮家騮,李廣信,孫岳嵩.砂土復(fù)雜應(yīng)力狀態(tài)試驗(yàn)及三維彈塑性數(shù)學(xué)模型研究[A].第4屆土力學(xué)及基礎(chǔ)工程學(xué)術(shù)會(huì)議論文集[C].北京:中國(guó)建筑工業(yè)出版社,1986:156163.(PU Jialiu,LI Guangxin,SUN Yuesong.Tests on sands under complicated stress states and study of a three dimensional elastoplastic model for the sands[A].Proceedings of the 4th National Conference on Soil Mechanics and Foundation Engineering[C].Beijing:China Building Industry Press,1986:156163.(in chinese))
[9] 李廣信.土的三維本構(gòu)關(guān)系的探討與模型驗(yàn)證[D].北京:清華大學(xué),1985:7889.(LI Guangxin.A study of threedimensional constitutive relationship of soils and an examination of various models[D].Beijing:Tsinghua University,1985:7889.(in chinese))
[10] 沈珠江.土的彈塑性應(yīng)力應(yīng)變關(guān)系的合理形式[J].巖土工程學(xué)報(bào),1980,2(2):1119.(SHEN Zhujiang.The rational form of stressstrain relationship of soils based on elasloplasticity theory[J].Chinese Journal of Geotechnical Engineering,1980,2(2):1119.(in chinese)).
[11] 沈珠江.土的三重屈服面應(yīng)力應(yīng)變模式[J].固體力學(xué)學(xué)報(bào),1982(2):163174.(SHEN Zhujiang.A stressstrain model for soils with three yield surface[J].Acta Mechanica Solida Sinica,1982(2):163174.(in Chinese))
[12] Lade,P.V.and Duncan,J.M.Elastoplastic.Stressstrain Theory for Cohesionless Soil[J].Geotechnical Engineering Division,1975,101(10):10371053.
[13] Lade P V,Duncan J M.Stresspath dependent behavior of cohesionless soi1[J].Journal of Geotechnical Engineering Division,ASCE,1976,102(GT1):4248.
[14] Lade P V.Elastoplastic.Stressstrain theory for cohesionless with curved yield surfaces[J].Solids and Struc,1977,13(11):10191035.
[15] Matsuoka H,Yao Y P,Aun D A.The camclay models revised by SMP criterion[J].Soils and Foundations,1999,39(1):8195.
[16] Matsuoka H,Nakai T.Stressdeformation and strength characteristics of soil under three different principal stresses[A].Proceedings of Japan Society of Civil Engineers[C].Tokyo:[s.n.],1974,232:5970.