陳靜
摘 要:小學(xué)數(shù)學(xué)的“數(shù)學(xué)建模”是教學(xué)方式中新的改革亮點(diǎn)。近年來(lái)許多學(xué)校都陸續(xù)展開小學(xué)數(shù)學(xué)的“數(shù)學(xué)建模”活動(dòng)。希望通過積極的實(shí)踐為小學(xué)數(shù)學(xué)教育總結(jié)出一條全新的教育模式。
關(guān)鍵詞:小學(xué)數(shù)學(xué);數(shù)學(xué)建模;教學(xué)策略探究
中圖分類號(hào):G622 文獻(xiàn)標(biāo)識(shí)碼:B 文章編號(hào):1002-7661(2014)17-139-01
數(shù)學(xué)教育是引導(dǎo)學(xué)生形成具有縝密邏輯性的思想方式。建立和解析數(shù)學(xué)模型能夠有效提高學(xué)生的數(shù)學(xué)學(xué)習(xí)熱情,降低數(shù)學(xué)學(xué)習(xí)的難度,使學(xué)生運(yùn)用數(shù)學(xué)知識(shí)更加輕松自然。然而,在小學(xué)的數(shù)學(xué)教育內(nèi)容中,就已經(jīng)包含許多初級(jí)的數(shù)學(xué)模型。所以,在研究“數(shù)學(xué)建?!钡倪^程中,教育界的學(xué)者們認(rèn)為,小學(xué)的“數(shù)學(xué)建?!毙枰⒁馊齻€(gè)方面:小學(xué)“數(shù)學(xué)建?!钡囊饬x與目標(biāo);小學(xué)“數(shù)學(xué)建模”的定位;小學(xué)“數(shù)學(xué)建模”的教學(xué)演繹。
一、小學(xué)“數(shù)學(xué)建?!钡囊饬x與目標(biāo)
1、小學(xué)“數(shù)學(xué)建?!钡囊饬x
小學(xué)的“數(shù)學(xué)建模”活動(dòng)早已經(jīng)有學(xué)校展開研究。從目前研究資料來(lái)分析,小學(xué)數(shù)學(xué)建模是指:學(xué)生在教師設(shè)計(jì)的生活情景之中,通過一定的數(shù)學(xué)活動(dòng)建立能夠解讀的數(shù)學(xué)模型并以此為學(xué)習(xí)數(shù)學(xué)的基本載體,進(jìn)行學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí)。
小學(xué)數(shù)學(xué)建模在建模目的、活動(dòng)方式、背景知識(shí)三方面,與傳統(tǒng)數(shù)學(xué)模型存在較大差異。(1)建模目的方面:小學(xué)的數(shù)學(xué)建模目的是讓學(xué)生了解數(shù)學(xué)知識(shí),通過數(shù)學(xué)模型掌握新吸收的數(shù)學(xué)知識(shí)和爭(zhēng)強(qiáng)對(duì)數(shù)學(xué)知識(shí)的正確應(yīng)用,使學(xué)生在潛移默化中形成數(shù)學(xué)思考能力。(2)活動(dòng)方式方面:小學(xué)的數(shù)學(xué)建模是為了培養(yǎng)學(xué)生的學(xué)習(xí)數(shù)學(xué)興趣和更好掌握數(shù)學(xué)知識(shí)的教學(xué)方式,所以在教學(xué)活動(dòng)方式上需要教師精心設(shè)計(jì)活動(dòng)內(nèi)容,由教師引導(dǎo)逐漸參與和體會(huì)數(shù)學(xué)世界的豐富和與現(xiàn)實(shí)生活的緊密聯(lián)系。(3)知識(shí)背景方面:小學(xué)的數(shù)學(xué)建模,是在小學(xué)生毫無(wú)數(shù)學(xué)基礎(chǔ)的情況下進(jìn)行構(gòu)建數(shù)學(xué)模型,所以在小學(xué)的數(shù)學(xué)建模中,需要簡(jiǎn)單的數(shù)學(xué)知識(shí),以此為學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)打下良好基礎(chǔ)。
通過上述三個(gè)方面的分析,小學(xué)“數(shù)學(xué)建模”的意義,在于通過數(shù)學(xué)教育方式的改進(jìn),引導(dǎo)小學(xué)生發(fā)現(xiàn)數(shù)學(xué)與生活的緊密聯(lián)系,提高小學(xué)生對(duì)數(shù)學(xué)知識(shí)的興趣,培養(yǎng)小學(xué)生數(shù)學(xué)思維能力和學(xué)習(xí)能力,為日后的數(shù)學(xué)學(xué)習(xí)打下結(jié)實(shí)基礎(chǔ)。
2、小學(xué)“數(shù)學(xué)建?!钡哪繕?biāo)導(dǎo)向
小學(xué)的數(shù)學(xué)建模,其目標(biāo)導(dǎo)向是培養(yǎng)小學(xué)生的建模意識(shí)。通過培養(yǎng)建模意識(shí)來(lái)提升數(shù)學(xué)思維能力,積累數(shù)學(xué)知識(shí),提升數(shù)學(xué)素養(yǎng)。建模意識(shí)的培養(yǎng)需要通過挖掘教學(xué)內(nèi)容中蘊(yùn)涵的建模元素,采用教師引導(dǎo)、學(xué)生尋找、以生活內(nèi)容加強(qiáng)記憶的方式,使學(xué)生掌握數(shù)學(xué)建模的過程和通過數(shù)學(xué)模型解決生活問題的能力,在不斷反復(fù)的學(xué)習(xí)和鍛煉中組建使學(xué)生提升數(shù)學(xué)建模的意識(shí)。
二、小學(xué)“數(shù)學(xué)建?!钡亩ㄎ?/p>
數(shù)學(xué)建模,是建立數(shù)學(xué)模型并且通過使用數(shù)學(xué)模型,解決生活中存在的數(shù)學(xué)問題,整體過程的簡(jiǎn)稱。
如果通過大學(xué)或高中的教學(xué)視角審視數(shù)學(xué)建模,無(wú)疑會(huì)對(duì)學(xué)生日后學(xué)習(xí)和工作產(chǎn)生積極的影響。不過,從小學(xué)生的視角考慮數(shù)學(xué)建模,就需要特別注意建模的合理性定位,既不能失去數(shù)學(xué)建模的意義,又不能過于拔苗助長(zhǎng),導(dǎo)致教學(xué)效果的反向反彈。所以“數(shù)學(xué)建?!钡亩ㄎ灰m合小學(xué)生的生活經(jīng)驗(yàn)和環(huán)境,同時(shí)適合小學(xué)生的思維模式。
1、定位于兒童的生活經(jīng)驗(yàn)
在小學(xué)對(duì)小學(xué)生的數(shù)學(xué)教學(xué)過程中,提供學(xué)生探討研究的數(shù)學(xué)問題,其難易程度和復(fù)雜程度需要盡量貼近小學(xué)生的日常生活。在設(shè)計(jì)教學(xué)內(nèi)容的時(shí)候,需要多設(shè)計(jì)小學(xué)生常見的生活數(shù)學(xué)問題,使學(xué)生因?yàn)楹闷嫘亩鴮?duì)學(xué)習(xí)產(chǎn)生動(dòng)力,通過思考探索,體會(huì)數(shù)學(xué)模型的存在。
同時(shí),在教學(xué)的過程中需要循序漸進(jìn),隨著學(xué)生的年齡爭(zhēng)長(zhǎng),認(rèn)知度的加強(qiáng),生活關(guān)注內(nèi)容的變化,適時(shí)地增加數(shù)學(xué)問題的難度。在此過程中,既需要照顧學(xué)生們的學(xué)習(xí)差異性,又要尊重學(xué)生的學(xué)習(xí)興趣和個(gè)性。
2、定位于兒童的思維模式
小學(xué)生的思維模式比較簡(jiǎn)單。在小學(xué)數(shù)學(xué)的建模過程中,需要根據(jù)學(xué)生的具體學(xué)習(xí)程度循序漸進(jìn),通過由簡(jiǎn)入深的學(xué)習(xí)過程,讓學(xué)生具有充分的適應(yīng)過程。只有適應(yīng)學(xué)生思維模式的教學(xué)定位,才能使學(xué)生的數(shù)學(xué)意識(shí)得到提高,并且通過循序漸進(jìn)的學(xué)習(xí)過程掌握運(yùn)用數(shù)學(xué)模型解決實(shí)際問題的能力。
舉例:在小學(xué)二年級(jí),關(guān)于認(rèn)知乘法和除法的過程中,將時(shí)間、路程、速度引入教學(xué)場(chǎng)景之中。學(xué)生跟隨教師引導(dǎo),逐漸發(fā)現(xiàn)時(shí)間與路程的關(guān)系,并且結(jié)合所學(xué)的數(shù)學(xué)知識(shí),乘法與除法,找到了“一乘兩除”的數(shù)學(xué)原型。從而使學(xué)生通過“數(shù)量關(guān)系”中,認(rèn)知到生活與數(shù)學(xué)的關(guān)系。
三、小學(xué)“數(shù)學(xué)建?!钡慕虒W(xué)演繹
小學(xué)“數(shù)學(xué)建?!钡慕虒W(xué)演繹,主要分析以下兩個(gè)方面。
1、在小學(xué)“數(shù)學(xué)建?!敝写龠M(jìn)結(jié)構(gòu)性生長(zhǎng)
因?yàn)樾W(xué)生的邏輯思維能力還處于發(fā)展構(gòu)成階段,所以必須在數(shù)學(xué)建模教學(xué)過程中從學(xué)生的“邏輯結(jié)構(gòu)圖式”出發(fā),充分考慮小學(xué)生的知識(shí)結(jié)構(gòu)和認(rèn)知規(guī)律,通過整合實(shí)際問題,從數(shù)學(xué)問題角度為學(xué)生整合抽象的、具有清晰結(jié)構(gòu)認(rèn)知性的,數(shù)學(xué)教育模型,從而使小學(xué)生能夠直接清晰地對(duì)數(shù)學(xué)模型擁有直觀深刻的認(rèn)知。
2、在小學(xué)“數(shù)學(xué)建?!敝写龠M(jìn)學(xué)生自主性建構(gòu)
在小學(xué)“數(shù)學(xué)建?!敝薪處熜枰龑?dǎo)和幫助學(xué)生,運(yùn)用已學(xué)習(xí)的數(shù)學(xué)知識(shí),構(gòu)建具有應(yīng)用性的數(shù)學(xué)模型。在教學(xué)過程中,教師需要對(duì)學(xué)生們習(xí)以為常的事物進(jìn)行剖析,使事物露出具有吸引性的數(shù)學(xué)問題,通過激發(fā)學(xué)生的好奇心,引導(dǎo)學(xué)生探索生活中存在的數(shù)學(xué)問題,幫助學(xué)生發(fā)現(xiàn)生活中隱藏的數(shù)學(xué)問題和解決問題,最終促使學(xué)生能夠獨(dú)立自主地根據(jù)實(shí)際問題建立數(shù)學(xué)模型。
小學(xué)數(shù)學(xué)的“數(shù)學(xué)建?!笔墙虒W(xué)方式中新的嘗試,它作為一種學(xué)習(xí)數(shù)學(xué)的方式、方法、策略和將生活與數(shù)學(xué)緊密聯(lián)系的紐帶,對(duì)引導(dǎo)學(xué)生更好的認(rèn)識(shí)數(shù)學(xué)、學(xué)習(xí)數(shù)學(xué)、運(yùn)用數(shù)學(xué)、具有十分積極的作用。小學(xué)生學(xué)習(xí)建模過程,實(shí)際就是鍛煉邏輯思維能力的過程,對(duì)學(xué)生日后學(xué)習(xí)學(xué)習(xí)知識(shí)和興趣愛好都有顯著的幫助。
參考文獻(xiàn):
[1] 陳進(jìn)春.基于數(shù)學(xué)建模視角的教學(xué)演繹[J].江蘇教育,2013(4).
[2] 儲(chǔ)冬生.小學(xué)數(shù)學(xué)建模的分析討論[J].湖南教育,2012(12).
[3] 陳明椿.數(shù)學(xué)教育中的數(shù)學(xué)建模方法[J].福建師范大學(xué),2014(1).