曾麗君+隋映輝+申玉三
摘要 長期以來資源型城市為國家提供了主要生產(chǎn)資料,為我國經(jīng)濟(jì)與社會發(fā)展做出巨大貢獻(xiàn)。但資源型城市原有的粗放型發(fā)展模式使資源型城市發(fā)展普遍面臨嚴(yán)峻困境。資源型城市必須轉(zhuǎn)變原有發(fā)展模式,選擇以科技產(chǎn)業(yè)為支撐的可持續(xù)發(fā)展模式。科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)包括經(jīng)濟(jì)子系統(tǒng)、社會子系統(tǒng)、環(huán)境子系統(tǒng)和資源子系統(tǒng)四個子系統(tǒng)。在分析四個子系統(tǒng)各因素間因果關(guān)系的基礎(chǔ)上構(gòu)建整個系統(tǒng)的因果關(guān)系模型,進(jìn)而構(gòu)建系統(tǒng)的流圖模型,并綜合運(yùn)用多種方法建立變量間方程,從而初步建立起科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展的系統(tǒng)動力學(xué)模型。對模型進(jìn)行檢驗表明,模型真實、有效、可信??蛇M(jìn)一步運(yùn)用該模型進(jìn)行政策模擬。通過設(shè)置四個政策變量,企業(yè)R&D投入系數(shù)、企業(yè)對產(chǎn)學(xué)研R&D投入比例、政府對產(chǎn)學(xué)研R&D投入比例、產(chǎn)學(xué)研運(yùn)作效率的取值,從而設(shè)定了五種模式以進(jìn)行政策模擬。政策模擬的結(jié)果顯示:只提高R&D投入并不能有效促進(jìn)科技產(chǎn)業(yè)發(fā)展;只提高對產(chǎn)學(xué)研協(xié)同創(chuàng)新的資金投入,而不注重提高產(chǎn)學(xué)研協(xié)同創(chuàng)新的運(yùn)作效率,也會造成R&D資源的浪費;提高R&D投入的同時全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新是促進(jìn)科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展的最佳政策模式;R&D資源有限的資源型城市,通過全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新也能較好地促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展。政府、金融資本、科技中介機(jī)構(gòu)對產(chǎn)學(xué)研協(xié)同創(chuàng)新成功運(yùn)作從而實現(xiàn)科技經(jīng)濟(jì)一體化發(fā)展至關(guān)重要,實現(xiàn)“府產(chǎn)學(xué)研資介”六位一體協(xié)同運(yùn)作是實現(xiàn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的關(guān)鍵,是促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展的最佳政策實施模式。
關(guān)鍵詞 科技產(chǎn)業(yè);資源型城市;可持續(xù);協(xié)同發(fā)展;系統(tǒng)動力學(xué)
中圖分類號 F299.23文獻(xiàn)標(biāo)識碼 A 文章編號 1002-2104(2014)10-0085-09doi:10.3969/j.issn.1002-2104.2014.10.013
長期以來資源型城市為國家提供了主要生產(chǎn)資料,為我國經(jīng)濟(jì)與社會發(fā)展作出了巨大貢獻(xiàn)。然而資源型城市也為此承受了巨大的代價:原有的不顧環(huán)境承受能力的“大量開采,大量消耗,大量廢棄”的對資源粗放和一次性利用模式,導(dǎo)致可開采資源的大幅減少,以及開采的客觀條件的日益嚴(yán)峻,資源型城市粗放型的發(fā)展模式受到嚴(yán)格限制,資源型城市發(fā)展普遍面臨嚴(yán)峻困境[1]。近年來,理論界從不同的視角對科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展進(jìn)行了研究,主要包括以下研究視角[2]:①采礦業(yè)是否是科技產(chǎn)業(yè)。John E. Tilton提出采礦業(yè)是高科技產(chǎn)業(yè)[3-6];然而Paul J. Bartos卻認(rèn)為采礦業(yè)只是一般產(chǎn)業(yè)而非高科技產(chǎn)業(yè),其生產(chǎn)力的提高應(yīng)歸功于先進(jìn)制造業(yè)等產(chǎn)業(yè)的創(chuàng)新和技術(shù)進(jìn)步[7]。②科技產(chǎn)業(yè)支撐資源型城市可持續(xù)發(fā)展。Catherine Driussi和Janis Jansz通過案例分析得出結(jié)論:新的礦業(yè)技術(shù)的運(yùn)用能將礦業(yè)廢物最小化,甚至達(dá)到零污染[8];Gavin Hilson在探討采礦業(yè)開展污染預(yù)防和清潔生產(chǎn)時,強(qiáng)調(diào)技術(shù)進(jìn)步對采礦業(yè)開展污染預(yù)防和清潔生產(chǎn)非常重要[9];郭興紅認(rèn)為應(yīng)該通過發(fā)展煤炭高新技術(shù)產(chǎn)業(yè),實現(xiàn)潔凈煤技術(shù)產(chǎn)業(yè)化來做好煤炭資源的綜合開發(fā)和利用,積極推進(jìn)資源型城市的生態(tài)建設(shè)[10];黃少鵬認(rèn)為一個煤炭生態(tài)工業(yè)園區(qū)從設(shè)想到生成,關(guān)鍵還是要有高新技術(shù)的支撐[11]。③資源型城市科技產(chǎn)業(yè)集群。Peter Warrian探討了在全球化和知識經(jīng)濟(jì)形勢下,以及環(huán)境保護(hù)需要,迫使制造業(yè)和礦業(yè)產(chǎn)業(yè)的發(fā)展模式向典型的高科技產(chǎn)業(yè)集群模式轉(zhuǎn)變的相關(guān)問題[12]。④科技產(chǎn)業(yè)與資源型城市生態(tài)產(chǎn)業(yè)鏈的延伸。王志宏、袁學(xué)良、劉淼群等認(rèn)為技術(shù)創(chuàng)新和高新技術(shù)能促進(jìn)資源型城市生態(tài)產(chǎn)業(yè)鏈的延伸,從而促進(jìn)資源型城市的可持續(xù)發(fā)展[13-15]。⑤科技產(chǎn)業(yè)與資源型城市傳統(tǒng)產(chǎn)業(yè)改造升級。董鎖成、喬麗等認(rèn)為應(yīng)該運(yùn)用高新技術(shù)改造和提升資源型城市的傳統(tǒng)產(chǎn)業(yè),發(fā)展高新技術(shù)產(chǎn)業(yè)帶動傳統(tǒng)產(chǎn)業(yè),從而促進(jìn)資源型城市的產(chǎn)業(yè)結(jié)構(gòu)升級[16-17]。綜觀上述研究發(fā)現(xiàn),盡管有大量的研究人員開始從理論上關(guān)注和分析科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展,但相關(guān)的研究主要是一些觀點、想法的提出,缺乏機(jī)理的深入剖析和邏輯論證;成果分別散落在不同主題下,有的出現(xiàn)在資源型城市生態(tài)文明研究中,有的出現(xiàn)在資源型城市的循環(huán)經(jīng)濟(jì)研究中等等,有時作為對策提出,有時作為經(jīng)驗總結(jié)出現(xiàn)??傊诤芏嘀黝}下出現(xiàn),卻又“點到為止”,缺乏統(tǒng)一主題下系統(tǒng)、深入的研究。因此,本文運(yùn)用系統(tǒng)動力學(xué)方法,深入剖析科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)中各因素之間的相互關(guān)系和作用,構(gòu)建系統(tǒng)動力學(xué)(SD)模型,并通過對模型進(jìn)行政策模擬,找到最佳的政策模式,以期為促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展提供理論依據(jù)。
1 系統(tǒng)分析
科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)是一個包含多因素的、非線性的、復(fù)雜的、開放的時變系統(tǒng)。在該系統(tǒng)中,科技產(chǎn)業(yè)發(fā)展通過提供先進(jìn)的工藝、裝備和材料,從而提高資源型城市礦產(chǎn)資源回收率和資源綜合利用率、減少廢棄物的排放和對城市生態(tài)環(huán)境的破壞,進(jìn)而推動資源型城市的可持續(xù)發(fā)展,而資源型城市通過提供資金支持、市場支持、生產(chǎn)基地和發(fā)展方向而促進(jìn)科技創(chuàng)新成果的產(chǎn)生、促進(jìn)科技成果轉(zhuǎn)化為現(xiàn)實生產(chǎn)力,從而拉動科技產(chǎn)業(yè)的發(fā)展,二者互相促進(jìn)、協(xié)同發(fā)展??梢娫谠撓到y(tǒng)中,各因素通過物質(zhì)、資金、人才、信息的交換而相互聯(lián)系、相互作用,很難將某一因素割裂開來單獨研究??偟膩碚f,科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)是一個包括經(jīng)濟(jì)、社會、環(huán)境和資源四個子系統(tǒng)的復(fù)雜、非線性、動態(tài)、開放系統(tǒng)。
系統(tǒng)動力學(xué)(System Dynamics)簡稱SD,是一門分析研究信息反饋系統(tǒng)的學(xué)科,也是一門認(rèn)識系統(tǒng)問題和解決系統(tǒng)問題的綜合性學(xué)科。SD把系統(tǒng)的行為模式看成是由系統(tǒng)內(nèi)部的信息反饋機(jī)制決定的,通過建立SD模型,利用SD仿真語言在計算機(jī)上實現(xiàn)對真實系統(tǒng)的仿真,從而實現(xiàn)定性分析與定量分析的有效結(jié)合,能夠有效地揭示復(fù)雜系統(tǒng)在各種因果關(guān)系作用下所呈現(xiàn)出的動態(tài)變化規(guī)律,可以研究系統(tǒng)的結(jié)構(gòu)、功能和行為之間的動態(tài)關(guān)系,以便尋求較優(yōu)的系統(tǒng)結(jié)構(gòu)和功能。
由此可見,運(yùn)用SD方法研究科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng),不僅能深入系統(tǒng)地分析系統(tǒng)的結(jié)構(gòu)、功能與行為之間的動態(tài)關(guān)系,而且能為政策的制定提供實質(zhì)的、具有操作性的建議。
2 SD模型構(gòu)建
2.1 因果關(guān)系模型構(gòu)建
2.1.1 經(jīng)濟(jì)子系統(tǒng)因果關(guān)系分析
科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的經(jīng)濟(jì)子系統(tǒng)主要是指資源型城市的科技產(chǎn)業(yè)經(jīng)濟(jì)發(fā)展系統(tǒng)。為了表征科技產(chǎn)業(yè)經(jīng)濟(jì)的發(fā)展,考慮了科技產(chǎn)業(yè)發(fā)展的幾個關(guān)鍵因素,即科技產(chǎn)業(yè)的“科學(xué)-技術(shù)-經(jīng)濟(jì)”過程中的幾個關(guān)鍵因素:R&D投入、R&D產(chǎn)出(專利、產(chǎn)業(yè)技術(shù)水平),從科技產(chǎn)業(yè)發(fā)展的關(guān)鍵環(huán)節(jié)來表征科技產(chǎn)業(yè)的實質(zhì)發(fā)展。
經(jīng)濟(jì)子系統(tǒng)的主要反饋回路有:
企業(yè)R&D投入→企業(yè)對內(nèi)R&D投入→企業(yè)新專利→技術(shù)水平→GDP→企業(yè)R&D投入
企業(yè)R&D投入→企業(yè)對產(chǎn)學(xué)研R&D投入→產(chǎn)學(xué)研新專利→技術(shù)水平→GDP→企業(yè)R&D投入
政府對產(chǎn)學(xué)研R&D投入→產(chǎn)學(xué)研新專利→技術(shù)水平→GDP→政府財政→政府R&D投入→政府對產(chǎn)學(xué)研R&D投入
政府對學(xué)研R&D投入→學(xué)研新專利→技術(shù)水平→GDP→政府財政→政府R&D投入→政府對學(xué)研R&D投入
科技產(chǎn)業(yè)的發(fā)展始于研發(fā)投入,研發(fā)投入的水平?jīng)Q定了科研成果的的數(shù)量和質(zhì)量,從而決定了產(chǎn)業(yè)的技術(shù)水平。在科技經(jīng)濟(jì)日益一體化發(fā)展的今天,產(chǎn)學(xué)研協(xié)同創(chuàng)新對于整合創(chuàng)新資源、促進(jìn)知識流動和技術(shù)轉(zhuǎn)移、提高科技成果轉(zhuǎn)化效率、獲取科技和經(jīng)濟(jì)競爭力都至關(guān)重要。這是各發(fā)達(dá)國家紛紛通過立法、出臺政策、制定實施專項計劃鼓勵、促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的重要原因。
2.1.2 社會子系統(tǒng)因果關(guān)系分析
科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的社會子系統(tǒng)是一個包含諸多因素的復(fù)雜非線性系統(tǒng),內(nèi)涵非常豐富。然而,并非資源型城市社會系統(tǒng)的所有因素都是分析的重點。因此,在社會子系統(tǒng)的分析中,我們重點考慮與科技產(chǎn)業(yè)和資源型城市可持續(xù)協(xié)同發(fā)展關(guān)系密切的人口子系統(tǒng)、教育子系統(tǒng)和醫(yī)療子系統(tǒng)。
在社會子系統(tǒng)的主要的反饋回路有:
總?cè)丝凇司〈矓?shù)→保健水平→死亡率→總?cè)丝?/p>
總?cè)丝凇司t(yī)護(hù)人員數(shù)→保健水平→死亡率→總?cè)丝?/p>
基礎(chǔ)教育投入→教師數(shù)→學(xué)齡兒童入學(xué)率→在校學(xué)生數(shù)→基礎(chǔ)教育投入
高等教育投入→教師總水平→科研型畢業(yè)生數(shù)→R&D人員→專利數(shù)→技術(shù)水平→GDP→政府財政→教育投入→高等教育投入
2.1.3 環(huán)境子系統(tǒng)因果關(guān)系構(gòu)建
科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的環(huán)境子系統(tǒng)是決定資源型城市生態(tài)水平的重要子系統(tǒng)。由于傳統(tǒng)的資源型城市發(fā)展模式無視環(huán)境保護(hù),三廢——廢水、廢氣、固體廢棄物排放嚴(yán)重超出了資源型城市生態(tài)環(huán)境的承受能力,導(dǎo)致資源型城市生態(tài)環(huán)境遭到極大破壞。因此,在科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的環(huán)境子系統(tǒng)中,主要考慮了三廢排放、環(huán)境質(zhì)量、技術(shù)水平、資源產(chǎn)量和環(huán)境治理投資等因素。
在環(huán)境子系統(tǒng)的因果關(guān)系圖中,主要的反饋回路有:
環(huán)境治理投入→水環(huán)境治理投入→水污染物排放量→環(huán)境質(zhì)量→環(huán)境治理投入系數(shù)→環(huán)境治理投入
環(huán)境治理投入→大氣治理投入→大氣染物排放量→環(huán)境質(zhì)量→環(huán)境治理投入系數(shù)→環(huán)境治理投入
環(huán)境治理投入→固廢治理投入→固廢排放量→環(huán)境質(zhì)量→環(huán)境治理投入系數(shù)→環(huán)境治理投入
環(huán)境質(zhì)量→勞動人口數(shù)→GDP→環(huán)境治理投入→水環(huán)境治理投入→水污染物排放量→環(huán)境質(zhì)量
環(huán)境質(zhì)量→勞動人口數(shù)→GDP→環(huán)境治理投入→大氣治理投入→大氣染物排放量→環(huán)境質(zhì)量
環(huán)境質(zhì)量→勞動人口數(shù)→GDP→環(huán)境治理投入→固廢治理投入→固廢排放量→環(huán)境質(zhì)量
2.1.4 資源子系統(tǒng)因果關(guān)系構(gòu)建
科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的資源子系統(tǒng)本文主要是指礦產(chǎn)資源子系統(tǒng)。對資源型城市來講,資源子系統(tǒng)是非常重要的。在資源子系統(tǒng)中,主要考慮了資源的儲量、需求量、產(chǎn)量、可采年限等因素,同時考慮了技術(shù)水平對資源可采年限的影響和對資源需求量的影響。
在環(huán)境子系統(tǒng)的因果關(guān)系圖中,主要的反饋回路有:
可采年限→生產(chǎn)規(guī)模→資源年產(chǎn)量→年采出量→可采儲量→可采年限
年采出量→可采儲量→資源年產(chǎn)量→年采出量
2.1.5 系統(tǒng)因果關(guān)系模型構(gòu)建
綜合經(jīng)濟(jì)子系統(tǒng)、社會子系統(tǒng)、環(huán)境子系統(tǒng)和資源子系統(tǒng)的因果關(guān)系分析,構(gòu)建出科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的因果關(guān)系模型,如圖1所示。
2.2 系統(tǒng)流圖模型構(gòu)建
通過對科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的因果關(guān)系圖的深入分析,根據(jù)各變量在系統(tǒng)中所起的作用不同,運(yùn)用Vensim軟件構(gòu)建出科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的流圖模型,如圖2所示。模型中,狀態(tài)變量包括固定資產(chǎn)總額、勞動力總數(shù)、技術(shù)水平、環(huán)境質(zhì)量等12個,速率變量包括年增資產(chǎn)、技術(shù)水平年增加、勞動力年增加、(環(huán)境質(zhì)量)年變化程度、年采出量等22個,其他變量均為輔助變量,共50個。
2.3 變量間方程的建立
本文在變量間方程的構(gòu)建過程中,主要運(yùn)用了以下方法:
(1)通過查閱統(tǒng)計年鑒、統(tǒng)計公報等統(tǒng)計數(shù)據(jù)獲得相關(guān)數(shù)據(jù)。比如GDP、固定資產(chǎn)投資、固定資產(chǎn)凈值的歷年數(shù)據(jù)。
(2)通過對數(shù)據(jù)進(jìn)行初步分析、處理,獲得數(shù)據(jù)間的規(guī)律性認(rèn)識。比如,通過對歷年數(shù)據(jù)分析發(fā)現(xiàn),資源型城市濟(jì)寧的財政收入與GDP之比一般維持在0.06左右。
(3)綜合運(yùn)用回歸分析、專家估計確定具有一定規(guī)律性的變量間的關(guān)系。
(4)規(guī)律性弱的變量間關(guān)系應(yīng)用SD的特征函數(shù):圖表函數(shù),通過插值建立圖表函數(shù)的方法將關(guān)系清晰地表現(xiàn)出來。
(5)對于難于估計的參數(shù),先粗略地試用該參數(shù)的一些可能數(shù)值進(jìn)行模擬測試,直至模型行為無顯著變化時,確定相應(yīng)值為參數(shù)值。
通過綜合運(yùn)用以上方法,構(gòu)建出科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展SD模型變量間方程。其中主要的方程如下:
(1) 企業(yè)對產(chǎn)學(xué)研R&D投入=企業(yè)R&D投入×(1-內(nèi)部比例)
(2) 企業(yè)對內(nèi)R&D投入=企業(yè)R&D投入×內(nèi)部比例
(3) 企業(yè)新專利=0.015×DELAY1I(企業(yè)對內(nèi)R&D投入, 1, 企業(yè)對內(nèi)R&D投入 -1.4×104)
(4) 政府對產(chǎn)學(xué)研R&D投入=政府R&D投入×(1-學(xué)研R&D系數(shù))
(5) 政府對學(xué)研R&D投入=政府R&D投入×學(xué)研R&D系數(shù)
(6) 政府R&D投入=政府財政×政府R&D投入系數(shù)
(7) R&D總投入=企業(yè)R&D投入+政府R&D投入
(8) 產(chǎn)學(xué)研新專利=0.03×(企業(yè)對產(chǎn)學(xué)研R&D投入+政府對產(chǎn)學(xué)研R&D投入)
(9) 學(xué)研新專利=0.015×DELAY1I(政府對學(xué)研R&D投入, 1, 政府對學(xué)研R&D投入 -3458)
(10) 技術(shù)水平= INTEG (技術(shù)水平年增加-技術(shù)淘汰,8.35×106)
(11) 大氣污染物排放量=MAX(141714-0.0005×技術(shù)水平-0.01×DELAY1I(大氣治理投入,1,大氣治理投入×0.92)+0.0001×資源年產(chǎn)量, 1000)
(12) 環(huán)境質(zhì)量= INTEG (年變化程度,-4)
(13) 環(huán)境治理投入=GDP×環(huán)境治理投入系數(shù)
(14) 水污染物排放量=MAX(46382.9-0.00015×技術(shù)水平-0.001×DELAY1I(水環(huán)境治理投入, 1, 水環(huán)境治理投入×0.92 )+1×10-5資源年產(chǎn)量, 1000)
(15) GDP=1.58×固定資產(chǎn)總額+0.01×技術(shù)水平+0.1×勞動力總數(shù)
(16) 勞動力減少數(shù)=勞動力總數(shù)×0.06×(1-(環(huán)境質(zhì)量-1)/50)
(17) 勞動力總數(shù)= INTEG (勞動力增加數(shù)-勞動力減少數(shù),4.46×106)
(18) 能耗系數(shù)=MAX( 1.515-4.3×10-9×技術(shù)水平 , 0.5)
(19) 資源回收率=MIN((0.761+1.29×10-9×技術(shù)水平)×管理水平, 1)
(20) 資源可采儲量= INTEG (+準(zhǔn)備煤量-年采出量,178×108)
(21) 資源年產(chǎn)量=MIN(MIN(生產(chǎn)規(guī)模, 資源可采 儲量), 需求量)
(22) 需求量=RANDOM NORMAL(3, 3.1, 3.02, 0.04, 100)×GDP×能耗系數(shù)
(23) 年采出量=資源年產(chǎn)量/資源回收率
2.4 模型檢驗
通過在系統(tǒng)流圖模型的基礎(chǔ)上,建立變量間的數(shù)學(xué)方程,科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng)的SD模型已經(jīng)基本構(gòu)建起來了。為檢驗?zāi)P偷恼_性、有效性和信度,對構(gòu)建的模型進(jìn)行了結(jié)構(gòu)適合性檢驗、行為適合性檢驗、結(jié)構(gòu)與實際系統(tǒng)一致性檢驗、行為與實際系統(tǒng)一致性檢驗,檢驗結(jié)果表明本文構(gòu)建的科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展的SD模型結(jié)構(gòu)適合、行為適合、模型結(jié)構(gòu)與實際系統(tǒng)一致、模型行為與實際系統(tǒng)一致,模型正確真實地反映了實際系統(tǒng)的結(jié)構(gòu)和功能,模型有效性、可信度高。可進(jìn)一步運(yùn)用該模型進(jìn)行實證分析和政策模擬。
3 政策模擬與仿真
本節(jié)將運(yùn)用構(gòu)建的SD模型進(jìn)行政策模擬與仿真,從而為更好地促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展提供決策依據(jù)。選取企業(yè)R&D投入系數(shù)、企業(yè)對產(chǎn)學(xué)研R&D投入比例、政府對產(chǎn)學(xué)研R&D投入比例、產(chǎn)學(xué)研運(yùn)作效率四個變量為政策變量,調(diào)整四個政策變量取值形成不同的政策模式,觀察模型在不同政策模式下的運(yùn)行情況。各政策模式下政策變量的取值如表1所示。表中第1行為資源型城市濟(jì)寧原有發(fā)展模式,政策模式一是提高企業(yè)的R&D投入系數(shù),其他政策變量不變,其政策含義是通過提高R&D投入來促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展;政策模式二是政府和企業(yè)提高對產(chǎn)學(xué)研的R&D投入比例,而產(chǎn)學(xué)研的運(yùn)作效率系數(shù)并不高,企業(yè)的R&D投入也不增加,其政策含義是政府和企業(yè)在不增加R&D投入的情況下通過提高對產(chǎn)學(xué)研的資金支持來促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展;政策模式三是政府和企業(yè)在提高對產(chǎn)學(xué)研的R&D投入比例的同時,提高產(chǎn)學(xué)研運(yùn)作效率,但并不增加R&D投入,其政策含義是政府和企業(yè)在不增加R&D投入的情況下通過對產(chǎn)學(xué)研協(xié)同創(chuàng)新的全面支持來促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展;政策模式四是提高企業(yè)的R&D投入系數(shù),同時提高對產(chǎn)學(xué)研的R&D投入比例,但產(chǎn)學(xué)研的運(yùn)作效率系數(shù)并不高,其政策含義是通過同時提高R&D投入和對產(chǎn)學(xué)研的R&D資金支持來促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展;政策模式五是同時提高企業(yè)的R&D投入系數(shù)、對產(chǎn)學(xué)研的R&D投入比例、產(chǎn)學(xué)研的運(yùn)作效率三個政策變量,其政策含義是通過提高R&D投入和全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新來促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展。
圖3-圖9顯示了在不同的政策組合下模型的仿真模擬結(jié)果。從7個仿真結(jié)果圖我們可以看到,政策模式5的運(yùn)行效果最好。而表1顯示,政策模式5并非是R&D投入最大的模式。這表明通過適當(dāng)提高R&D投入并全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新,可以很好地促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展。相反,R&D投入最大的政策模式1的運(yùn)行效果卻并不理想,這似乎有些出人意料,但仔細(xì)分析后我們發(fā)現(xiàn)這是符合邏輯的——如果只是強(qiáng)調(diào)提高R&D投入,而不注意R&D資源的合理配置,就會出現(xiàn)高投入下低回報的結(jié)果。
特別值得注意的是政策模式3,雖然該模式并沒有增加R&D投入,但運(yùn)行的效果比較好:圖3-圖9顯示在該模式下,除了新專利總數(shù)這一體現(xiàn)科技產(chǎn)業(yè)發(fā)展“中間成果”的指標(biāo)仿真情況明顯落后于政策模式5和政策模式4外,其他體現(xiàn)科技產(chǎn)業(yè)與資源型城市協(xié)同可持續(xù)發(fā)展的“最終成果”的技術(shù)水平、環(huán)境質(zhì)量、污染物排放量、能耗系數(shù)、資源回收率等6項指標(biāo)均幾乎與政策模式4相當(dāng),
水平的政策模式3和政策模式5來說,分別都還是存在較大差距的。這表明,只是提高對產(chǎn)學(xué)研協(xié)同創(chuàng)新的資金投入,而不注重提高產(chǎn)學(xué)研協(xié)同創(chuàng)新運(yùn)作效率,同樣會造成R&D資源的浪費。
綜上所述,只強(qiáng)調(diào)提高R&D投入,而不注意R&D資源的合理配置,并不能有效促進(jìn)科技產(chǎn)業(yè)的發(fā)展;同樣,只提高對產(chǎn)學(xué)研協(xié)同創(chuàng)新的資金投入,而不注重提高產(chǎn)學(xué)研協(xié)同創(chuàng)新運(yùn)作效率,也會造成R&D資源的浪費;為了有效促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展,應(yīng)該多管齊下:不僅要提高R&D投入,而且要提高對產(chǎn)學(xué)研協(xié)同創(chuàng)新的R&D投入,更要提高產(chǎn)學(xué)研協(xié)同創(chuàng)新運(yùn)作效率,即提高R&D投入的同時全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新——實現(xiàn)“府產(chǎn)學(xué)研資介”協(xié)同運(yùn)作是促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展的最佳政策實施模式;此外,盡管有些資源型城市的R&D資源有限,但只要“勵精圖治”,通過全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新也能夠較好地促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展。
4 結(jié)論與建議
本文通過系統(tǒng)分析科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展系統(tǒng),通過構(gòu)建因果關(guān)系模型、動態(tài)流圖模型、變量間方程逐步構(gòu)建起科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展的SD模型。對模型進(jìn)行政策模擬的結(jié)果顯示,無論資源型城市的R&D資源是否豐富,通過全面支持產(chǎn)學(xué)研協(xié)同創(chuàng)新,從而實現(xiàn)“府產(chǎn)學(xué)研資介”協(xié)同運(yùn)作是促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展的最佳政策模式。借鑒發(fā)達(dá)國家通過促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新從而實現(xiàn)科技經(jīng)濟(jì)一體化發(fā)展過程中的經(jīng)驗,本文認(rèn)為實現(xiàn)“府產(chǎn)學(xué)研資介”六位一體協(xié)同運(yùn)作是實現(xiàn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的關(guān)鍵。綜觀產(chǎn)學(xué)研協(xié)同創(chuàng)新成功運(yùn)轉(zhuǎn)從而實現(xiàn)科技經(jīng)濟(jì)一體化發(fā)展的發(fā)達(dá)國家,可以發(fā)現(xiàn)政府部門、金融資本、科技中介機(jī)構(gòu)起到了至關(guān)重要的作用,甚至可以說,沒有“府資介”角色的積極參與,產(chǎn)學(xué)研協(xié)同創(chuàng)新不可能有效展開。為更好地促進(jìn)科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展,政府部門的角色和作用主要包括以下四個方面:①通過立法規(guī)范和鼓勵產(chǎn)學(xué)研協(xié)同創(chuàng)新。美國的《史蒂文森-威德勒技術(shù)創(chuàng)新法》(1980)、《國家合作研究生產(chǎn)法》(1984)、《國家競爭力技術(shù)轉(zhuǎn)移法》(1989)、《研究交流促進(jìn)法》(1998),日本的《大學(xué)技術(shù)轉(zhuǎn)移促進(jìn)法》、《研究交流促進(jìn)法》,法國的《技術(shù)創(chuàng)新和科研法》都明確提出鼓勵產(chǎn)學(xué)研協(xié)同創(chuàng)新,并從不同的角度提出了促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的具體措施。而我國目前還沒有一部法律明確鼓勵產(chǎn)學(xué)研協(xié)同創(chuàng)新。②成立或改建相關(guān)組織機(jī)構(gòu)有效調(diào)控產(chǎn)學(xué)研協(xié)同創(chuàng)新。美國政府設(shè)立了國家科技委員會,主要職能是協(xié)調(diào)促進(jìn)產(chǎn)學(xué)研合作發(fā)展的政策、戰(zhàn)略制定中各部門和單位之間的利益。意大利政府設(shè)立了由總理直接領(lǐng)導(dǎo)的國家科研與創(chuàng)新政策部級委員會,其下設(shè)立了一個委員會專門處理產(chǎn)學(xué)研協(xié)同創(chuàng)新的相關(guān)事宜。③制定政策促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新。美國、日本等過都出臺了財稅政策、鼓勵產(chǎn)學(xué)研機(jī)構(gòu)間人才流動政策等來促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新。④制定實施具體的科技計劃切實推進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新。法國的“競爭點計劃”、芬蘭的“國家科技發(fā)展中心計劃”、德國聯(lián)邦政府的一系列科研計劃都明確規(guī)定科研項目必須通過產(chǎn)學(xué)研合作實施。目前我國還沒有這方面的專門計劃。特別是在能源、新材料、環(huán)保等戰(zhàn)略性新興產(chǎn)業(yè)的產(chǎn)業(yè)共性技術(shù)和核心關(guān)鍵技術(shù)領(lǐng)域應(yīng)該制定實施產(chǎn)學(xué)研協(xié)同創(chuàng)新的科技計劃,這對促進(jìn)科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展意義非常重大。
資金投入對科技創(chuàng)新和科技產(chǎn)業(yè)發(fā)展至關(guān)重要。雖然產(chǎn)學(xué)研合作能有效整合三方的資金資源,部分彌補(bǔ)高校和科研機(jī)構(gòu)研發(fā)資金的不足,但并不能從根本上解決科技創(chuàng)新和科技產(chǎn)業(yè)發(fā)展對資金的巨大需求問題。在促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的資金投入上,政府應(yīng)該本著有進(jìn)有退的原則:對于產(chǎn)業(yè)共性技術(shù)、關(guān)鍵核心技術(shù)以及基礎(chǔ)研究領(lǐng)域,政府應(yīng)該加強(qiáng)對研發(fā)的資金投入,對于研發(fā)成果的商業(yè)化領(lǐng)域政府應(yīng)當(dāng)減少投入,加強(qiáng)企業(yè)的投入主體地位,同時建立科技產(chǎn)業(yè)風(fēng)險投資機(jī)制,完善風(fēng)險投資政策,促進(jìn)風(fēng)險投資產(chǎn)業(yè)健康發(fā)展,從而多渠道為科技創(chuàng)新和科技產(chǎn)業(yè)發(fā)展籌集資金。
科技中介機(jī)構(gòu)是促進(jìn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的粘合劑和潤滑劑,是促進(jìn)科技創(chuàng)新和科技產(chǎn)業(yè)發(fā)展的助推劑。發(fā)達(dá)國家都非常重視中介機(jī)構(gòu)的建設(shè),而且功能日趨完善,結(jié)構(gòu)日趨合理。美國的科技中介機(jī)構(gòu)最為完善。小企業(yè)發(fā)展中心、中小企業(yè)信息中心都已形成龐大的全國性網(wǎng)絡(luò),為小企業(yè)、中小企業(yè)提供技術(shù)創(chuàng)新等方面的服務(wù);美國大學(xué)大都建立了生產(chǎn)力促進(jìn)中心、法律契約事務(wù)服務(wù)機(jī)構(gòu)和技術(shù)轉(zhuǎn)讓服務(wù)機(jī)構(gòu),這些機(jī)構(gòu)有力地促進(jìn)了產(chǎn)學(xué)研協(xié)同創(chuàng)新和科技成果的商業(yè)化。目前我國的科技中介機(jī)構(gòu)的力量還比較薄弱,功能比較單一,信息服務(wù)還不到位,這些都是實現(xiàn)科技資源的有效流動和整合、實現(xiàn)科技經(jīng)濟(jì)一體化發(fā)展的主要障礙。為了有效促進(jìn)科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展,應(yīng)當(dāng)通過各種方式促進(jìn)科技中介機(jī)構(gòu)的建立和功能的完善。
綜上所述,實現(xiàn)“府產(chǎn)學(xué)研資介”六位一體協(xié)同運(yùn)作是實現(xiàn)產(chǎn)學(xué)研協(xié)同創(chuàng)新的關(guān)鍵,是實現(xiàn)科技經(jīng)濟(jì)一體化發(fā)展的關(guān)鍵,是促進(jìn)促進(jìn)科技產(chǎn)業(yè)與資源型城市的可持續(xù)協(xié)同發(fā)展的最佳政策實施模式。本文用“科學(xué)-技術(shù)-經(jīng)濟(jì)”過程中的幾個關(guān)鍵因素的發(fā)展?fàn)顩r來表征科技產(chǎn)業(yè)的發(fā)展是一種新的嘗試,關(guān)鍵因素的選取還有待進(jìn)一步的完善。此外,所構(gòu)建的模型僅僅以資源型城市濟(jì)寧為例進(jìn)了行驗證,還需擴(kuò)大驗證的范圍以進(jìn)一步對模型進(jìn)行完善。總之,通過本文的研究,構(gòu)建了科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展的SD模型,為進(jìn)一步的研究奠定了基礎(chǔ),期待更多研究來深入和完善科技產(chǎn)業(yè)與資源型城市可持續(xù)協(xié)同發(fā)展理論。
(編輯:李 琪)
參考文獻(xiàn)(References)
[1]曾麗君, 隋映輝. 中國資源型城市循環(huán)經(jīng)濟(jì)發(fā)展水平聚類實證研究[J]. 中國人口·資源與環(huán)境, 2011,21(3), 143-149.[ Zeng Lijun, Sui Yinghui. Cluster Empirical Study on the Level of Circular Economic Development of Chinese Resource:Based Cities[J]. China Population, Resources and Environment,2011, 21(3):143-149.]
[2]曾麗君,隋映輝,申玉三.科技產(chǎn)業(yè)與生態(tài)礦區(qū)協(xié)同發(fā)展研究綜述[J].礦業(yè)研究與開發(fā),2013,33(2):121-127.[ Zeng Lijun, Sui Yinghui, Shen Yusan. Review on Synergistic Development of Science & Technology Industry and Ecological Mining Area[J].Mining Research and Development,2013, 33(2):121:127.]
[3]John E T. Mining and Public Policy: An Alternative View: Reply. Natural Resources Forum, 2001, 25(1): 71–72.
[4]John E T. Labor Productivity, Costs, and Mine Survival during a Recession [J]. Resources Policy, 2001, 27(2): 107-117.
[5]John E T. Long Term Trends in Copper Prices [J]. Mining Engineering, 2002(7), 25-32.
[6]John E T. Creating Wealth and Competitiveness in Mining [J]. Mining Engineering, 2003(9), 15-22.
[7]Paul J B. Is Mining a Hightech Industry?Investigations into Innovation and Productivity Advance [J]. Resources Policy, 2007, 32(4), 149-158.
[8]Catherine D, Janis J. Technological Options for Waste Minimization in the Mining Industry [J]. Journal of Cleaner Production, 2006, 14(8), 682-688.
[9]Gavin H. Pollution Prevention and Cleaner Production in the Mining Industry: An Analysis of Current Issues [J]. Journal of Cleaner Production, 2000, 8(2):119-126.
[10]郭興紅,司悅生.推行清潔生產(chǎn)、大力發(fā)展循環(huán)經(jīng)濟(jì)走可持續(xù)發(fā)展之路[C].全國礦山建設(shè)學(xué)術(shù)會議論文選集,2004: 599-601. [Guo Xinghong, Si Yuesheng. Promote Clean Production and Develop Circular Economy Vigorously to Develop in Sustainable Way [C]. Conference Proceedings of the National Mine Construction Symposium, 2004: 599-601.]
[11]黃少鵬.基于循環(huán)經(jīng)濟(jì)理念的煤炭生態(tài)工業(yè)園區(qū)建設(shè)[J].中國煤炭,2007,32(6):16-17 [Huang Shaopeng. Construction of Coal Ecoindustry Park Based on Philosophy of Circular Economy [J].China Coal,2007, 32(6):16-17.]
[12]Peter W. From Metal Bashing to Materials Science and Services: Advanced Manufacturing and Mining Clusters in Transition [J]. European Planning Studies,2009,(2), 281-301.
[13]王志宏,何志強(qiáng).礦區(qū)可持續(xù)發(fā)展中的技術(shù)創(chuàng)新與產(chǎn)業(yè)鏈延伸[J].煤炭學(xué)報,2003,28(4):348-352 [Wang Zhihong, He Zhiqiang. Technical Innovation and Extensions of Industrial Chains in the Sustainable Development of Mining Area [J]. Journal of Coal Society, 2003, 28(4): 348-352.]
[14]袁學(xué)良.煤炭行業(yè)循環(huán)經(jīng)濟(jì)發(fā)展理論及應(yīng)用研究[D].濟(jì)南:山東大學(xué),2008:72-73.[Yuan Xueliang. Study on Theory and Application of Circular Economy Development in Coal Industry [D]. Jinan: Shandong University, 2008: 72-73.]
[15]劉淼群.黑龍江省煤炭城市發(fā)展循環(huán)經(jīng)濟(jì)模式研究[D].哈爾濱:哈爾濱工程大學(xué),2008:60-61.[Liu Miaoqun. The Research on the Development Model of Cycle Economy in Coal City in Heilongjiang Province [D]. Harbin: Harbing Engineering University, 2008: 60-61.]
[16]董鎖成,李澤紅,李斌,等.中國資源型城市經(jīng)濟(jì)轉(zhuǎn)型問題與戰(zhàn)略探索[J].中國人口·資源與環(huán)境,2007, 17(5): 12-17.[Dong Suocheng, Li Zehong, Li Bin,et al. The Problems and Strategies on Economic Transformation of Resourcebased Cities in China [J]. China Population, Resources and Environment,2007, 17 (5): 12-17.]
[17]喬麗.礦區(qū)生態(tài)文明理論、方法與實證研究:以平朔礦區(qū)為例[D].北京:中國地質(zhì)大學(xué),2010: 38-39.[Qiao Li. A Case Study on Ecological Civilization in Pingshuo Mining Area: Theory, Method and Practice [D]. Beijing: China University of Geosciences,2010: 38-39.]
Study on Sustainable Synergistic Development of Science & Technology Industry
and Resourcebased City Based on System Dynamics
ZENG Lijun1 SUI Yinghui1,2 SHEN Yusan3
(1.College of Economics and Management, Shandong University of Science and Technology, Qingdao Shandong 266590, China;
2.Institute of Economic Strategy and Management,Qingdao Academy of Social Science,Qingdao Shandong 266071,China;
3.Teaching Affairs Department, Shandong University of Science and Technology, Qingdao Shandong 266590, China)
Abstract Resourcebased cities have being provided main raw materials and made great contribution for our country for a long period. However, the previous extensive development patterns of resourcebased cities have led to severe difficulties for their future development. Resourcebased cities have to transform the original development patterns, take sustainable development patterns which are supported by science & technology(S&T) industry. The sustainable synergetic development system of S&T industry and resourcebased city includes four subsystems: subsystem of economy, society, environment, and resource. Based on analyzing relations between factors of four subsystems, the causal loop model of whole system is built. Then the stockandflow diagram model is built, and mathematical equations between variables are established by comprehensive application of multiple methods. Consequently the paper builds the system dynamics model of sustainable synergetic development of S&T industry and resourcebased city. Model verification shows that model is real, credible, valid, and can be further used to carry on policy simulation. By setting the values of four policy variables: corporate R&D input coefficient, corporate R&D input rate to industryuniversityresearch, government R&D input rate to industryuniversityresearch, operation efficiency of industryuniversityresearch, we design five policy modes for policy simulation. Policy simulation indicates that only increasing R&D input can not effectively prompt development of S&T industry, and only increasing funding to industryuniversityresearch while ignoring operation efficiency of industryuniversityresearch synergetic innovation will lead to waste of R&D resource; furthermore, full supporting industryuniversityresearch synergetic innovation while increasing R&D expenditure is the best policy model of prompting sustainable synergetic development of science & technology industry and resourcebased city; meanwhile, for those resourcebased cities with limit R&D resource, full supporting industryuniversityresearch synergetic innovation can well prompt sustainable synergetic development. Government, financial capital, S&T intermediary are of great importance to successful operation of industryuniversityresearch synergetic innovation and then to realization of integration of science, technology and economy. Realizing six in one synergistic operation of governmentindustryuniversityresearchcapitalintermediary is the key of realizing industryuniversityresearch synergistic innovation and is the best model of policy implementation to promote sustainable synergistic development of science & technology industry and resourcebased city.
Key words science & technology industry; resourcebased city; sustainable; synergistic development; system dynamics
[15]劉淼群.黑龍江省煤炭城市發(fā)展循環(huán)經(jīng)濟(jì)模式研究[D].哈爾濱:哈爾濱工程大學(xué),2008:60-61.[Liu Miaoqun. The Research on the Development Model of Cycle Economy in Coal City in Heilongjiang Province [D]. Harbin: Harbing Engineering University, 2008: 60-61.]
[16]董鎖成,李澤紅,李斌,等.中國資源型城市經(jīng)濟(jì)轉(zhuǎn)型問題與戰(zhàn)略探索[J].中國人口·資源與環(huán)境,2007, 17(5): 12-17.[Dong Suocheng, Li Zehong, Li Bin,et al. The Problems and Strategies on Economic Transformation of Resourcebased Cities in China [J]. China Population, Resources and Environment,2007, 17 (5): 12-17.]
[17]喬麗.礦區(qū)生態(tài)文明理論、方法與實證研究:以平朔礦區(qū)為例[D].北京:中國地質(zhì)大學(xué),2010: 38-39.[Qiao Li. A Case Study on Ecological Civilization in Pingshuo Mining Area: Theory, Method and Practice [D]. Beijing: China University of Geosciences,2010: 38-39.]
Study on Sustainable Synergistic Development of Science & Technology Industry
and Resourcebased City Based on System Dynamics
ZENG Lijun1 SUI Yinghui1,2 SHEN Yusan3
(1.College of Economics and Management, Shandong University of Science and Technology, Qingdao Shandong 266590, China;
2.Institute of Economic Strategy and Management,Qingdao Academy of Social Science,Qingdao Shandong 266071,China;
3.Teaching Affairs Department, Shandong University of Science and Technology, Qingdao Shandong 266590, China)
Abstract Resourcebased cities have being provided main raw materials and made great contribution for our country for a long period. However, the previous extensive development patterns of resourcebased cities have led to severe difficulties for their future development. Resourcebased cities have to transform the original development patterns, take sustainable development patterns which are supported by science & technology(S&T) industry. The sustainable synergetic development system of S&T industry and resourcebased city includes four subsystems: subsystem of economy, society, environment, and resource. Based on analyzing relations between factors of four subsystems, the causal loop model of whole system is built. Then the stockandflow diagram model is built, and mathematical equations between variables are established by comprehensive application of multiple methods. Consequently the paper builds the system dynamics model of sustainable synergetic development of S&T industry and resourcebased city. Model verification shows that model is real, credible, valid, and can be further used to carry on policy simulation. By setting the values of four policy variables: corporate R&D input coefficient, corporate R&D input rate to industryuniversityresearch, government R&D input rate to industryuniversityresearch, operation efficiency of industryuniversityresearch, we design five policy modes for policy simulation. Policy simulation indicates that only increasing R&D input can not effectively prompt development of S&T industry, and only increasing funding to industryuniversityresearch while ignoring operation efficiency of industryuniversityresearch synergetic innovation will lead to waste of R&D resource; furthermore, full supporting industryuniversityresearch synergetic innovation while increasing R&D expenditure is the best policy model of prompting sustainable synergetic development of science & technology industry and resourcebased city; meanwhile, for those resourcebased cities with limit R&D resource, full supporting industryuniversityresearch synergetic innovation can well prompt sustainable synergetic development. Government, financial capital, S&T intermediary are of great importance to successful operation of industryuniversityresearch synergetic innovation and then to realization of integration of science, technology and economy. Realizing six in one synergistic operation of governmentindustryuniversityresearchcapitalintermediary is the key of realizing industryuniversityresearch synergistic innovation and is the best model of policy implementation to promote sustainable synergistic development of science & technology industry and resourcebased city.
Key words science & technology industry; resourcebased city; sustainable; synergistic development; system dynamics
[15]劉淼群.黑龍江省煤炭城市發(fā)展循環(huán)經(jīng)濟(jì)模式研究[D].哈爾濱:哈爾濱工程大學(xué),2008:60-61.[Liu Miaoqun. The Research on the Development Model of Cycle Economy in Coal City in Heilongjiang Province [D]. Harbin: Harbing Engineering University, 2008: 60-61.]
[16]董鎖成,李澤紅,李斌,等.中國資源型城市經(jīng)濟(jì)轉(zhuǎn)型問題與戰(zhàn)略探索[J].中國人口·資源與環(huán)境,2007, 17(5): 12-17.[Dong Suocheng, Li Zehong, Li Bin,et al. The Problems and Strategies on Economic Transformation of Resourcebased Cities in China [J]. China Population, Resources and Environment,2007, 17 (5): 12-17.]
[17]喬麗.礦區(qū)生態(tài)文明理論、方法與實證研究:以平朔礦區(qū)為例[D].北京:中國地質(zhì)大學(xué),2010: 38-39.[Qiao Li. A Case Study on Ecological Civilization in Pingshuo Mining Area: Theory, Method and Practice [D]. Beijing: China University of Geosciences,2010: 38-39.]
Study on Sustainable Synergistic Development of Science & Technology Industry
and Resourcebased City Based on System Dynamics
ZENG Lijun1 SUI Yinghui1,2 SHEN Yusan3
(1.College of Economics and Management, Shandong University of Science and Technology, Qingdao Shandong 266590, China;
2.Institute of Economic Strategy and Management,Qingdao Academy of Social Science,Qingdao Shandong 266071,China;
3.Teaching Affairs Department, Shandong University of Science and Technology, Qingdao Shandong 266590, China)
Abstract Resourcebased cities have being provided main raw materials and made great contribution for our country for a long period. However, the previous extensive development patterns of resourcebased cities have led to severe difficulties for their future development. Resourcebased cities have to transform the original development patterns, take sustainable development patterns which are supported by science & technology(S&T) industry. The sustainable synergetic development system of S&T industry and resourcebased city includes four subsystems: subsystem of economy, society, environment, and resource. Based on analyzing relations between factors of four subsystems, the causal loop model of whole system is built. Then the stockandflow diagram model is built, and mathematical equations between variables are established by comprehensive application of multiple methods. Consequently the paper builds the system dynamics model of sustainable synergetic development of S&T industry and resourcebased city. Model verification shows that model is real, credible, valid, and can be further used to carry on policy simulation. By setting the values of four policy variables: corporate R&D input coefficient, corporate R&D input rate to industryuniversityresearch, government R&D input rate to industryuniversityresearch, operation efficiency of industryuniversityresearch, we design five policy modes for policy simulation. Policy simulation indicates that only increasing R&D input can not effectively prompt development of S&T industry, and only increasing funding to industryuniversityresearch while ignoring operation efficiency of industryuniversityresearch synergetic innovation will lead to waste of R&D resource; furthermore, full supporting industryuniversityresearch synergetic innovation while increasing R&D expenditure is the best policy model of prompting sustainable synergetic development of science & technology industry and resourcebased city; meanwhile, for those resourcebased cities with limit R&D resource, full supporting industryuniversityresearch synergetic innovation can well prompt sustainable synergetic development. Government, financial capital, S&T intermediary are of great importance to successful operation of industryuniversityresearch synergetic innovation and then to realization of integration of science, technology and economy. Realizing six in one synergistic operation of governmentindustryuniversityresearchcapitalintermediary is the key of realizing industryuniversityresearch synergistic innovation and is the best model of policy implementation to promote sustainable synergistic development of science & technology industry and resourcebased city.
Key words science & technology industry; resourcebased city; sustainable; synergistic development; system dynamics