孟慶東
一、利用解方程判斷函數(shù)零點(diǎn)個(gè)數(shù)
例1 函數(shù) f(x)=x2+2x-3,x≤0,-2+ln x,x>0的零點(diǎn)個(gè)數(shù)為
A.0 B.1 C.2 D.3
解 當(dāng)x≤0時(shí),令x2+2x-3= 0,解得x=-3;當(dāng)x> 0時(shí),令-2+ln x=0,解得x=e2.所以,函數(shù) f(x)有2個(gè)零點(diǎn).選C.
二、利用函數(shù)圖像判斷函數(shù)零點(diǎn)個(gè)數(shù)
1.直接觀察函數(shù)圖像與x 軸的交點(diǎn)個(gè)數(shù)
根據(jù)函數(shù)零點(diǎn)的定義,可作出函數(shù)y= f(x)的圖像,它與x軸的交點(diǎn)個(gè)數(shù)就是函數(shù)零點(diǎn)個(gè)數(shù).此方法適合容易作出圖像的函數(shù).
如例1可直接作出函數(shù)圖像,如圖1所示.由圖1可知,此函數(shù)有2個(gè)零點(diǎn).
2.一分為二轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
函數(shù)F(x)= f(x)-g(x)的零點(diǎn),即方程f(x)= g(x)的根,也就是函數(shù)y= f(x)的圖像與函數(shù)y=g(x)的圖像交點(diǎn)的橫坐標(biāo).當(dāng)函數(shù)y=F(x)的圖像不易作出時(shí),可將F(x)分解成兩個(gè)相對(duì)簡(jiǎn)單的函數(shù),即F(x)= f(x)-g(x),利用f(x)與g(x)的圖像的交點(diǎn)個(gè)數(shù)來(lái)判斷F(x)的零點(diǎn)個(gè)數(shù).
例2 設(shè)定義在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù), f ′(x)是 f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0< f(x)<1;當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,則函數(shù)y= f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為
A.2 B.4 C.5 D.8
解 當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,從而f(x)在(0,■)上單調(diào)遞減,在(■,π)上單調(diào)遞增.又x∈[0,π]時(shí),0< f(x)<1,在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù),在同一坐標(biāo)系中作出y= f(x)和y=sin x的圖像,如圖2.由圖2可知,y = f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為4.選B.
3.分離參數(shù)轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
通過(guò)分離函數(shù)f(x)對(duì)應(yīng)方程f(x)=0中的變量x和參數(shù)a,方程變形成 g(x)=h(a),將函數(shù)f(x)的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)y= g(x)與y=h(a)的圖像的交點(diǎn)個(gè)數(shù)問(wèn)題.
例3 設(shè)函數(shù)f(x)=ln x-ax,g(x)=ex -ax,其中a 為實(shí)數(shù).若g(x)在(-1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
解 由已知得 g ′(x)= ex - a > 0,即a < ex對(duì)x∈(-1,+∞)恒成立,則a≤■.由f(x)=0,得a=■,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)就是直線y=a與函數(shù)h(x)=■的圖像的交點(diǎn)個(gè)數(shù).令h′(x)=0,得x=e.當(dāng)x∈(0,e)時(shí),h′(x)>0,h(x)在(0,e)上單調(diào)遞增;當(dāng)x∈(e,+∞)時(shí),h′(x)<0,h(x)在(e,+∞)上單調(diào)遞減.故h(x)的最大值為h(e)=■.又當(dāng)x∈(0,1)時(shí),h(x)<0;當(dāng)x∈(1,+∞)時(shí),h(x)>0,作出函數(shù)h(x)的圖像如圖3所示.
一、利用解方程判斷函數(shù)零點(diǎn)個(gè)數(shù)
例1 函數(shù) f(x)=x2+2x-3,x≤0,-2+ln x,x>0的零點(diǎn)個(gè)數(shù)為
A.0 B.1 C.2 D.3
解 當(dāng)x≤0時(shí),令x2+2x-3= 0,解得x=-3;當(dāng)x> 0時(shí),令-2+ln x=0,解得x=e2.所以,函數(shù) f(x)有2個(gè)零點(diǎn).選C.
二、利用函數(shù)圖像判斷函數(shù)零點(diǎn)個(gè)數(shù)
1.直接觀察函數(shù)圖像與x 軸的交點(diǎn)個(gè)數(shù)
根據(jù)函數(shù)零點(diǎn)的定義,可作出函數(shù)y= f(x)的圖像,它與x軸的交點(diǎn)個(gè)數(shù)就是函數(shù)零點(diǎn)個(gè)數(shù).此方法適合容易作出圖像的函數(shù).
如例1可直接作出函數(shù)圖像,如圖1所示.由圖1可知,此函數(shù)有2個(gè)零點(diǎn).
2.一分為二轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
函數(shù)F(x)= f(x)-g(x)的零點(diǎn),即方程f(x)= g(x)的根,也就是函數(shù)y= f(x)的圖像與函數(shù)y=g(x)的圖像交點(diǎn)的橫坐標(biāo).當(dāng)函數(shù)y=F(x)的圖像不易作出時(shí),可將F(x)分解成兩個(gè)相對(duì)簡(jiǎn)單的函數(shù),即F(x)= f(x)-g(x),利用f(x)與g(x)的圖像的交點(diǎn)個(gè)數(shù)來(lái)判斷F(x)的零點(diǎn)個(gè)數(shù).
例2 設(shè)定義在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù), f ′(x)是 f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0< f(x)<1;當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,則函數(shù)y= f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為
A.2 B.4 C.5 D.8
解 當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,從而f(x)在(0,■)上單調(diào)遞減,在(■,π)上單調(diào)遞增.又x∈[0,π]時(shí),0< f(x)<1,在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù),在同一坐標(biāo)系中作出y= f(x)和y=sin x的圖像,如圖2.由圖2可知,y = f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為4.選B.
3.分離參數(shù)轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
通過(guò)分離函數(shù)f(x)對(duì)應(yīng)方程f(x)=0中的變量x和參數(shù)a,方程變形成 g(x)=h(a),將函數(shù)f(x)的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)y= g(x)與y=h(a)的圖像的交點(diǎn)個(gè)數(shù)問(wèn)題.
例3 設(shè)函數(shù)f(x)=ln x-ax,g(x)=ex -ax,其中a 為實(shí)數(shù).若g(x)在(-1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
解 由已知得 g ′(x)= ex - a > 0,即a < ex對(duì)x∈(-1,+∞)恒成立,則a≤■.由f(x)=0,得a=■,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)就是直線y=a與函數(shù)h(x)=■的圖像的交點(diǎn)個(gè)數(shù).令h′(x)=0,得x=e.當(dāng)x∈(0,e)時(shí),h′(x)>0,h(x)在(0,e)上單調(diào)遞增;當(dāng)x∈(e,+∞)時(shí),h′(x)<0,h(x)在(e,+∞)上單調(diào)遞減.故h(x)的最大值為h(e)=■.又當(dāng)x∈(0,1)時(shí),h(x)<0;當(dāng)x∈(1,+∞)時(shí),h(x)>0,作出函數(shù)h(x)的圖像如圖3所示.
一、利用解方程判斷函數(shù)零點(diǎn)個(gè)數(shù)
例1 函數(shù) f(x)=x2+2x-3,x≤0,-2+ln x,x>0的零點(diǎn)個(gè)數(shù)為
A.0 B.1 C.2 D.3
解 當(dāng)x≤0時(shí),令x2+2x-3= 0,解得x=-3;當(dāng)x> 0時(shí),令-2+ln x=0,解得x=e2.所以,函數(shù) f(x)有2個(gè)零點(diǎn).選C.
二、利用函數(shù)圖像判斷函數(shù)零點(diǎn)個(gè)數(shù)
1.直接觀察函數(shù)圖像與x 軸的交點(diǎn)個(gè)數(shù)
根據(jù)函數(shù)零點(diǎn)的定義,可作出函數(shù)y= f(x)的圖像,它與x軸的交點(diǎn)個(gè)數(shù)就是函數(shù)零點(diǎn)個(gè)數(shù).此方法適合容易作出圖像的函數(shù).
如例1可直接作出函數(shù)圖像,如圖1所示.由圖1可知,此函數(shù)有2個(gè)零點(diǎn).
2.一分為二轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
函數(shù)F(x)= f(x)-g(x)的零點(diǎn),即方程f(x)= g(x)的根,也就是函數(shù)y= f(x)的圖像與函數(shù)y=g(x)的圖像交點(diǎn)的橫坐標(biāo).當(dāng)函數(shù)y=F(x)的圖像不易作出時(shí),可將F(x)分解成兩個(gè)相對(duì)簡(jiǎn)單的函數(shù),即F(x)= f(x)-g(x),利用f(x)與g(x)的圖像的交點(diǎn)個(gè)數(shù)來(lái)判斷F(x)的零點(diǎn)個(gè)數(shù).
例2 設(shè)定義在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù), f ′(x)是 f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0< f(x)<1;當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,則函數(shù)y= f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為
A.2 B.4 C.5 D.8
解 當(dāng)x∈(0,π)且x≠■時(shí),(x-■)f ′(x)>0,從而f(x)在(0,■)上單調(diào)遞減,在(■,π)上單調(diào)遞增.又x∈[0,π]時(shí),0< f(x)<1,在R上的函數(shù) f(x)是最小正周期為2π的偶函數(shù),在同一坐標(biāo)系中作出y= f(x)和y=sin x的圖像,如圖2.由圖2可知,y = f(x)-sin x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為4.選B.
3.分離參數(shù)轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)
通過(guò)分離函數(shù)f(x)對(duì)應(yīng)方程f(x)=0中的變量x和參數(shù)a,方程變形成 g(x)=h(a),將函數(shù)f(x)的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)y= g(x)與y=h(a)的圖像的交點(diǎn)個(gè)數(shù)問(wèn)題.
例3 設(shè)函數(shù)f(x)=ln x-ax,g(x)=ex -ax,其中a 為實(shí)數(shù).若g(x)在(-1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
解 由已知得 g ′(x)= ex - a > 0,即a < ex對(duì)x∈(-1,+∞)恒成立,則a≤■.由f(x)=0,得a=■,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)就是直線y=a與函數(shù)h(x)=■的圖像的交點(diǎn)個(gè)數(shù).令h′(x)=0,得x=e.當(dāng)x∈(0,e)時(shí),h′(x)>0,h(x)在(0,e)上單調(diào)遞增;當(dāng)x∈(e,+∞)時(shí),h′(x)<0,h(x)在(e,+∞)上單調(diào)遞減.故h(x)的最大值為h(e)=■.又當(dāng)x∈(0,1)時(shí),h(x)<0;當(dāng)x∈(1,+∞)時(shí),h(x)>0,作出函數(shù)h(x)的圖像如圖3所示.