胥月 湯純靜 黃宏 孫超群 張亞鯤 葉群峰 王愛(ài)軍
摘要本實(shí)驗(yàn)以蘋(píng)果汁為原料,通過(guò)一步水熱法合成得到了水溶性好及穩(wěn)定性高的藍(lán)色熒光碳量子點(diǎn)。研究發(fā)現(xiàn)Hg2+對(duì)碳量子點(diǎn)熒光有良好的猝滅作用,從而建立了一種快速檢測(cè)Hg2+的新方法。實(shí)驗(yàn)發(fā)現(xiàn)在pH 7.0 磷酸鹽緩沖介質(zhì)中碳量子點(diǎn)熒光猝滅強(qiáng)度與Hg2+濃度在5~100 nmol/L和1~50 μmol/L范圍內(nèi)呈線性關(guān)系,檢出限為2.3 nmol/L(S/N=3)。本方法可用于實(shí)際水樣中Hg2+的測(cè)定。
關(guān)鍵詞碳量子點(diǎn); 綠色合成; 蘋(píng)果汁; 汞離子檢測(cè)
1引言
汞離子(Hg2+)是毒性較高的重金屬離子之一。它能夠通過(guò)食物鏈產(chǎn)生富集效果,最終在人體內(nèi)積累,對(duì)人類的健康和生命造成嚴(yán)重威脅,如大腦及中樞神經(jīng)的損傷、腎臟衰竭、DNA破壞等\[1\]。因此,對(duì)汞污染的研究逐漸成為各國(guó)環(huán)境工作者研究的熱點(diǎn)。目前,Hg2+的檢測(cè)方法有比色法\[2\]、電化學(xué)法\[3\]、熒光光譜法\[4\]及原子發(fā)射光譜法\[5\]等。相比于其它幾種方法,熒光光譜法具有靈敏度高、選擇性好、用樣量少、方法簡(jiǎn)便、工作曲線線性范圍寬等優(yōu)點(diǎn)。
熒光碳量子點(diǎn)(CQDs)是一種尺寸小于10 nm的碳納米顆粒[6]。與傳統(tǒng)有機(jī)染料及半導(dǎo)體量子點(diǎn)相比,熒光碳量子點(diǎn)不僅具有光學(xué)性質(zhì)穩(wěn)定和易于實(shí)現(xiàn)表面功能化等優(yōu)勢(shì),還具有生物相容性好和細(xì)胞毒性低等特性\[7,8\]。因此,熒光碳量子點(diǎn)有廣泛的應(yīng)用前景,包括生物成像\[9\]、傳感\[10,11\]、藥物傳遞\[12\]和光催化\[13\]等。目前,研究者建立了多種制備熒光碳量子點(diǎn)的方法,如電弧放電法\[14\]、激光刻蝕法\[15\]、電化學(xué)法\[16\]、化學(xué)氧化法\[17\]、水熱法\[18\]、超聲處理\[19\]和微波輻射法\[20\]。其中,水熱法被認(rèn)為是一種簡(jiǎn)單、高效制備熒光碳量子點(diǎn)的方法。Liu等\[21\]通過(guò)水熱法處理草制備出氮摻雜碳量子點(diǎn),并用于構(gòu)建銅離子傳感器。
本實(shí)驗(yàn)以蘋(píng)果汁為原料,通過(guò)一步水熱法獲得有藍(lán)色熒光的碳量子點(diǎn)。合成的碳量子點(diǎn)可以用于環(huán)境水樣中Hg2+的快速檢測(cè)。
2實(shí)驗(yàn)部分
2.1儀器與試劑
JEOL 2100F 場(chǎng)發(fā)射透射電鏡(TEM,日本電子公司);Lambda 950 紫外可見(jiàn)分光光度計(jì), LS45 熒光分光光度計(jì)(珀金埃爾默儀器有限公司);Nicolet NEXUS670 紅外光譜儀(FTIR,美國(guó)熱電尼高力公司);X射線光電子能譜儀(XPS,賽默飛世爾科技)。
2.2實(shí)驗(yàn)方法
量取35 mL蘋(píng)果汁并轉(zhuǎn)移至50 mL聚四氟乙烯反應(yīng)釜中。將反應(yīng)釜置于烘箱中于180 ℃下加熱12 h。反應(yīng)結(jié)束后,自然冷卻至室溫。用孔徑為0.22 μm 微孔濾膜將反應(yīng)液過(guò)濾后,將濾液在15000 r/min轉(zhuǎn)速下離心30 min, 除去大顆粒雜質(zhì),以制得純凈的碳量子點(diǎn)溶液。將純化后的溶液放在真空干燥箱中干燥72 h后,配制成濃度為1 g/L的溶液,4 ℃保存。
將5 μL碳量子點(diǎn)溶液(1 g/L)加入1 mL磷酸鹽緩沖溶液(25 mmol/L, pH 7.0)中,混合均勻后測(cè)定其熒光強(qiáng)度。加入不同量的Hg2+ 室溫下反應(yīng)10 min后,測(cè)定相應(yīng)的熒光光譜(圖1)。
3結(jié)果與討論
3.1碳量子點(diǎn)的表征及性質(zhì)研究
如圖2A,所制備的碳量子點(diǎn)呈圓球形,分散性好,且尺寸均一。高分辨TEM圖(圖2A插圖)表明,碳量子點(diǎn)的晶格間距為0.205 nm,對(duì)應(yīng)于石墨的(102)晶面\[22\]。通過(guò)測(cè)量100個(gè)碳量子點(diǎn)得到的粒徑,得到相應(yīng)的粒徑分布圖。由圖2B可知,碳量子點(diǎn)的粒徑為(2.8 ± 0.4)nm。
然而,鮮榨的蘋(píng)果汁在262 nm處有吸收峰。碳量子點(diǎn)的最大發(fā)射峰位于428 nm,最大激發(fā)波長(zhǎng)為340 nm,而蘋(píng)果汁沒(méi)有熒光現(xiàn)象。這說(shuō)明在碳量子點(diǎn)的合成過(guò)程中水熱處理至關(guān)重要。蘋(píng)果汁的主要成分是碳水化合物,如葡萄糖、蔗糖、果糖和抗壞血酸等,因此,在碳量子點(diǎn)的合成中可能涉及到這些碳水化合物的脫水、聚合及碳化等過(guò)程\[24\]。與文獻(xiàn)報(bào)道一致\[25,26\],該碳量子點(diǎn)的熒光發(fā)射峰位置和強(qiáng)度與激發(fā)波長(zhǎng)相關(guān)。改變激發(fā)波長(zhǎng),發(fā)射峰也隨之改變,并且強(qiáng)度亦發(fā)生變化。如圖3B所示,當(dāng)激發(fā)波長(zhǎng)由330 nm增加到430 nm時(shí),發(fā)射波長(zhǎng)由426 nm紅移至502 nm,同時(shí)強(qiáng)度逐漸降低。以硫酸奎寧(54%, 0.1 mol/L H2SO4)為參考物質(zhì),測(cè)得碳量子點(diǎn)的熒光量子產(chǎn)率為6.4%。利用FTIR和XPS等技術(shù)對(duì)碳量子點(diǎn)的結(jié)構(gòu)和表面基團(tuán)進(jìn)行表征。圖4A為碳量子點(diǎn)的XPS全譜圖。在533.6和283.3 eV處有兩個(gè)峰,分別為O1s和C1s。這表明碳量子點(diǎn)主要由O和C元素組成。對(duì)C1s進(jìn)行分峰,得到4個(gè)峰(圖4B):284.8,286.2,287.9和289.1 eV 分別對(duì)應(yīng)于CC,CO,CO與OCO[23]。O1s分峰后得到532.7和531.9 eV兩個(gè)峰(圖4C),分別對(duì)應(yīng)于COH/COC和CO[27]。Symbolm@@ 1處的吸收分別對(duì)應(yīng)于CC和CO的伸縮振動(dòng)\[28\]。這些含氧基團(tuán)的存在說(shuō)明碳量子點(diǎn)有很好的水溶性。FTIR和XPS兩種實(shí)驗(yàn)所得的數(shù)據(jù)是一致的。[TS(][HT5”SS]圖4(A)碳量子點(diǎn)的XPS全譜圖;(B)C1s;(C)O1s;(D)FTIR圖譜
Fig.4(A) Survey, highresolution (B) C1s, (C) O1s XPS spectra of CQDs and (D) corresponding FTIR spectra [HT5][TS)]
研究了碳量子點(diǎn)在不同條件下的穩(wěn)定性。碳量子點(diǎn)在不同NaCl溶液中的穩(wěn)定性實(shí)驗(yàn)結(jié)果見(jiàn)圖5A,碳量子點(diǎn)的熒光強(qiáng)度與NaCl溶液濃度無(wú)關(guān)(高達(dá)1 mol/L)。當(dāng)溶液pH值在3~11內(nèi)變化時(shí),碳量子點(diǎn)熒光強(qiáng)度變化甚微,表明碳量子點(diǎn)熒光強(qiáng)度不隨pH 值變化(圖5B)。此外,用氙燈(500 W)照射碳量子點(diǎn)溶液7 h,碳量子點(diǎn)熒光強(qiáng)度幾乎不變(圖5C)。在室溫下放置3個(gè)月,碳量子點(diǎn)熒光強(qiáng)度也很穩(wěn)定(圖5D)。這些實(shí)驗(yàn)結(jié)果說(shuō)明此碳量子點(diǎn)穩(wěn)定性較好。
[TS(][HT5”SS]圖5(A)不同濃度的NaCl 溶液;(B)pH;(C)光照時(shí)間及(D)放置時(shí)間對(duì)碳量子點(diǎn)溶液熒光強(qiáng)度的影響
Fig.5Effects of the concentration of NaCl solution (A), pH values (B), irradiation time (C), and storage time (D) on the fluorescence intensity of the CQDs[HT5][TS)]
3.2反應(yīng)條件的優(yōu)化
如圖6A所示,加入Hg2+后體系熒光強(qiáng)度急劇下降,10 min后熒光強(qiáng)度趨于穩(wěn)定,表明Hg2+與碳量子點(diǎn)之間反應(yīng)快速。故在后續(xù)研究中反應(yīng)時(shí)間為10 min。不同pH值下,Hg2+對(duì)體系熒光強(qiáng)度影響不同(圖6B)。在pH=7.0時(shí)對(duì)體系熒光強(qiáng)度的影響最大,故本實(shí)驗(yàn)選擇pH為7.0。如圖6C所示,當(dāng)碳量子點(diǎn)溶液濃度為5 μg/mL時(shí),Hg2+ 對(duì)其熒光猝滅程度最大。
3.4碳量子點(diǎn)對(duì)Hg2+的響應(yīng)曲線
考察了Hg2+濃度對(duì)碳量子點(diǎn)熒光的猝滅程度。如圖8A所示,隨著Hg2+濃度增加,體系的熒光強(qiáng)度逐漸降低。Hg2+濃度為5~100 nmol/L (F/F0=0.9827-0.8485C, R=0.9943)和1~50 μmol/L(F/F0=0.8565-0.0033C, R=0.9913)時(shí)與碳量子點(diǎn)熒光猝滅程度呈線性關(guān)系(圖8B),檢出限為2.3 nmol/L(S/N=3)。將構(gòu)建的Hg2+傳感器性能與基于其它熒光納米材料的Hg2+傳感器進(jìn)行比較(表1),發(fā)現(xiàn)此傳感器具有檢出限低和線性范圍較寬等優(yōu)點(diǎn)。
4結(jié)論
以蘋(píng)果汁為原料,通過(guò)一步水熱法合成了水溶性好且穩(wěn)定性高的熒光碳量子點(diǎn)?;诤哿縃g2+對(duì)碳量子點(diǎn)熒光的強(qiáng)猝滅作用建立了一種快速測(cè)定Hg2+的新方法。本方法可用于實(shí)際水樣中Hg2+的測(cè)定,在環(huán)境監(jiān)控與分析方面有廣闊的應(yīng)用前景。
References
1Clarkson T W, Magos L. Crit. Rev. Toxicol., 2006, 36(8): 609-662
2Li T, Dong S J, Wang E K. Anal. Chem., 2009, 81(6): 2144-2149
3Liu S J, Nie H G, Jiang J H, Shen G L, Yu R Q. Anal. Chem., 2009, 81(14): 5724-5730
4Li H L,Zhai J F, Tian J Q, Luo Y L, Sun X P. Biosens. Bioelectron., 2011, 26(12): 4656-4660
5Han F X, Patterson W D, Xia Y J, Sridhar B M, Su Y. Water Air Soil Pollut., 2006, 170(4): 161-171
6HU ShengLiang, BAI PeiKang, CAO ShiRui, SUN Jing. Chem. J. Chinese Universities, 2009, 30(8): 1497-1500
胡勝亮, 白培康, 曹士銳, 孫 景. 高等學(xué)校化學(xué)學(xué)報(bào), 2009, 30(8): 1497-1500
7Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744
8Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230-24253
9Kong B, Zhu A W, Ding C Q, Zhao X M, Li B, Tian Y. Adv. Mater., 2012, 24(43): 5844-5848
10Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z. ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247
11Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Anal. Chem., 2013, 85(21): 10232-10239
12Wang Q L, Huang X X, Long Y J, Wang X L, Zhang H J, Zhu R, Liang L P, Teng P, Zheng H Z. Carbon, 2013, 59: 192-199
13Li H T, He X D, Kang Z H, Huang H, Liu Yang, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434
14Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737
15Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19(4): 484-488
16Qu Q, Zhu A W, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48(44): 5473-5475
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection
17Dong Y Q, Zhou N N, Lin X M, Lin J P, Chi Y W, Chen G N. Chem. Mater., 2010, 22(21): 5895-5899
18Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835-8837
19Zhuo S J, Shao M W, Lee S T. ACS Nano, 2012, 6(2): 1059-1064
20Liu S, Wang L, Tian J Q, Zhai J F, Luo Y L, Lu W B, Sun X P. RSC Adv., 2011, 1(6): 951-953
21Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041
22Huang H, Xu Y, Tang C J, Chen J R, Wang A J, Feng J J. New J. Chem., 2014, 38(2): 784-789
23Huang H, Lv J J, Zhou D L,Bao N, Xu Y, Wang A J, Feng J J. RSC Adv., 2013, 3(44): 21691-21696
24De B, Karak N. RSC Adv., 2013, 3(22): 8286-8290
25Liu S, Tian J Q, Wang L, Luo Y L, Zhai J F, Sun X P. J. Mater. Chem., 2011, 21(32): 11726-11729
26Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1): 15-18
27Lu W B, Qin X Y, Liu S, Chang G H, Zhang Y W, Luo Y L, Asiri A M, AlYoubi A O, Sun X P. Anal. Chem., 2012, 84(12): 5351-5357
28Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873
29Yang X, Zhu Y, Liu P, He L, Li Q, Wang Q, Wang K, Huang J, Liu J. Anal. Methods, 2012, 4(4): 895-897
30Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416
31Zhou T, Huang Y, Cai Z, Luo F, Yang C J, Chen X. Nanoscale, 2012, 4(17): 5312-5315
32Liang A N, Wang L, Chen H Q, Qian B B, Ling B, Fu J. Talanta, 2010, 81(1): 438-443
33Duan J, Song L, Zhan J. Nano Res., 2009, 2(1): 61-68
34Paramanik B, Bhattacharyya S, Patra A. Chem. Eur. J., 2013, 19(19): 5980-5987
AbstractFluorescent carbon quantum dots (CQDs) were synthesized by onestep hydrothermal treatment of apple juice. Experiments showed that Hg2+ could quench the fluorescence of the CQDs with specificity. Based on this phenomenon, a selective and sensitive sensor was constructed for Hg2+ detection. In a NaH2PO4Na2HPO4 buffer solution (pH 7.0), their fluorescence intensity showed good linear relationship with the concentrations of Hg2+ from 5 to 100 nmol/L and 1 to 50 μmol/L, respectively, with the detection limit of 2.3 nmol/L (S/N=3). Its practical application was further demonstrated by the detection of Hg2+ in real water samples.
KeywordsCarbon quantum dots; Green synthesis; Apple juice; Mercury detection