国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

微囊藻毒素在太湖白鰱體內(nèi)的累積規(guī)律及其影響因素

2014-09-21 11:59:58賈軍梅羅維呂永龍
生態(tài)毒理學(xué)報 2014年2期
關(guān)鍵詞:白鰱鰱魚異構(gòu)體

賈軍梅,羅維,呂永龍

1.中國科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國家重點實驗室,北京 100085 2.中國科學(xué)院大學(xué),北京 100049

微囊藻毒素在太湖白鰱體內(nèi)的累積規(guī)律及其影響因素

賈軍梅1,2,羅維1,*,呂永龍1

1.中國科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國家重點實驗室,北京 100085 2.中國科學(xué)院大學(xué),北京 100049

太湖藍藻水華及其次級代謝產(chǎn)物微囊藻毒素(MCs)的生物累積對生態(tài)系統(tǒng)和人體健康造成嚴重威脅,已成為最近環(huán)境科學(xué)研究的熱點。本研究從太湖的不同區(qū)域(梅梁湖、西部沿岸區(qū)、南部沿岸區(qū)和湖心區(qū))采集不同體重和體長的白鰱,利用固相萃取方法提取、高效液相色譜-質(zhì)譜聯(lián)用儀測定了白鰱不同器官中MCs的3種異構(gòu)體MC-RR、MC-YR及MC-LR的含量,結(jié)合不同湖區(qū)的相關(guān)水質(zhì)指標分析了MCs在白鰱體內(nèi)的累積規(guī)律及其影響因素。研究結(jié)果表明:白鰱不同器官MCs的含量由高到低為:腸壁>腎臟>肝臟>肌肉>心臟,且腸壁累積的MCs顯著高于腎臟、肝臟、肌肉和心臟。MC-RR含量是白鰱各器官累積MCs的異構(gòu)體的主體,約占MCs的60%。梅梁湖鰱魚的肌肉、腎臟和心臟中MCs均高于西部沿岸區(qū)、南部沿岸區(qū)和湖心區(qū)。生物指標(體重和體長)是影響白鰱腎臟內(nèi)MCs和MC-RR含量以及腸壁內(nèi)MCs含量重要因素。太湖水質(zhì)指標總磷(TP)、藻細胞數(shù)量、湖泊營養(yǎng)指數(shù)及環(huán)節(jié)動物數(shù)量尤其是TP對白鰱肝臟累積MCs產(chǎn)生明顯影響,TP、總氮(TN)、銨態(tài)氮(NH4-N)、內(nèi)梅羅指數(shù)和環(huán)節(jié)動物數(shù)量尤其是NH4-N對腸壁累積MCs產(chǎn)生明顯影響。

微囊藻毒素;白鰱;累積;水質(zhì)指標;器官

藍藻水華通常指有害的藻類水華,藍藻大量滋生產(chǎn)生有害的微囊藻毒素(MCs),干擾水化學(xué)過程、減少溶解氧、破壞食物鏈,對飲用水、灌溉、娛樂和漁業(yè)造成嚴重影響[1-4],對生態(tài)系統(tǒng)和人體健康構(gòu)成潛在威脅。國內(nèi)外研究表明,在自然環(huán)境中MCs能在一系列水生動物(包括魚、蝦、蟹、蚌體)體內(nèi)累積[5-12],不僅在它們的內(nèi)臟中累積大量MCs,在可食用的肌肉等部位也有累積[13]。MCs在魚體內(nèi)累積的靶器官為肝臟,但有研究報道腎臟累積的MCs高于肝臟[7]。肌肉中累積MCs雖然低于內(nèi)臟,但有研究顯示長期食用會給人體健康帶來一定的風(fēng)險[6,8,12],已有研究表明,MCs可以通過水產(chǎn)品進入人體造成肝損傷[13]。盡管淡水魚僅占世界魚產(chǎn)量的很小部分,但是其在中國水產(chǎn)總量中卻占40%~50%。因此,研究MCs在淡水魚體內(nèi)的累積,對于水生態(tài)系統(tǒng)和人體健康風(fēng)險的評估尤為重要。MCs在魚體內(nèi)累積可能受生物因子和環(huán)境因子共同作用的影響,目前很少有研究同時探討生物和環(huán)境因子對MCs累積的影響。盡管少量研究試圖從魚的食性來探討MCs在魚體內(nèi)累積,但研究結(jié)論并不一致。有研究表明浮游食性魚累積MCs較高,而另有研究則報道浮游食性魚累積較低[14-15]。因此,從生物和環(huán)境的角度出發(fā),探討魚體內(nèi)MCs的累積規(guī)律及其影響因素十分必要。

太湖藍藻水華及其MCs污染和危害是我國湖泊環(huán)境研究關(guān)注的焦點和熱點。據(jù)統(tǒng)計,2004—2008年期間太湖具有明確時間、地點的藍藻水華發(fā)生次數(shù)高達414次,藍藻水華總面積為72 890 km2[16]。另一方面,太湖也是我國重要的淡水漁業(yè)基地,而白鰱是太湖優(yōu)勢魚種之一。本研究試圖從生物和水質(zhì)角度出發(fā),探討MCs在白鰱體內(nèi)不同器官的累積及其影響因素,以期為MCs的生物累積和水產(chǎn)品及其健康風(fēng)險提供理論依據(jù)與參考。

1 材料與方法(Materials and methods)

1.1 研究區(qū)域

太湖是我國第三大淡水湖泊,面積約為2 338km2,平均水深為1.9m,水資源總量為195億m3,對周邊地區(qū)的漁業(yè)和供水發(fā)揮重要作用。太湖分為9個區(qū),分別為梅梁湖(MLB)、竺山湖(ZSB)、五里湖(WLB)、貢湖(GHB)、西部沿岸區(qū)(WC)、湖心區(qū)(LC)、胥湖(EC)、南部沿岸區(qū)(SC)以及東太湖(ETH)(圖1)。各湖區(qū)均有不同程度的藍藻水華發(fā)生,一般竺山湖、梅梁湖、西部沿岸區(qū)最為嚴重,出現(xiàn)帶狀或油漆狀藍藻頻次很多;湖心區(qū)和貢湖發(fā)生中等程度,且呈顆粒狀的藍藻水華;東部湖區(qū)藍藻較少,程度較輕。

1.2 采樣點布設(shè)及樣品采集

基于以往的研究,選擇受藍藻污染最為嚴重的梅梁湖,相對較嚴重的西部沿岸區(qū)和南部沿岸區(qū)以及占太湖的面積比例較大且水產(chǎn)品量較大的湖心區(qū)作為研究對象(圖1)。2011年9月,除梅梁湖只采集到1條白鰱外,在每個采樣區(qū)域各采集3條白鰱(設(shè)3個重復(fù)),記錄采樣點、體重、體長以及采樣的編號。現(xiàn)場進行解剖,每條魚均取肌肉、肝臟、腎臟、腸壁以及心臟,并用清水洗滌避免交叉污染,然后放入采樣管中封口。按順序放入-20℃冷凍箱中,運回實驗室進行分析。共采集10條代表性鰱魚的各種器官樣品共計50個。

1.3 微囊藻毒素提取和測定方法

固相萃取法具有簡單、快速、高效和提取所用的有機溶劑用量少等特點,因而提取動物體內(nèi)的MCs多采這一種方法[13,17-22]。根據(jù)Xie等[23]報道和使用的魚體MCs的提取方法和步驟,首先將樣品冷凍干燥,然后用研缽磨碎。每個器官稱取約0.4 g的樣品,加入10 mL混合溶液,混合液成分為V (丁醇)∶V (甲醇)∶V (水)=1∶4∶15,在搖床上振蕩24 h,在18000r·min-1離心機上離心30 min,析出上清液,將加入混合液振蕩到析出上清液這一過程重復(fù)3遍。將3次上清液合并,加超純水稀釋至甲醇體積分數(shù)

小于15%,稀釋液過0.5 g C18固相萃取小柱(預(yù)先用50 mL甲醇和50 mL超純水潤洗),然后用100 mL 20%甲醇(體積分數(shù))洗脫雜質(zhì),用100 mL 90%甲醇(體積分數(shù))收集目標物,洗提液在旋轉(zhuǎn)蒸發(fā)儀上蒸發(fā)近干。用5 mL純甲醇分3次溶解,過10 mL純甲醇潤洗過的硅膠小柱,然后用20 mL 70%甲醇(體積分數(shù))洗脫,洗提液用旋轉(zhuǎn)蒸發(fā)儀蒸發(fā)近干,用1 mL純甲醇分3次溶解,轉(zhuǎn)入2 mL棕色樣品瓶待測。

第三步建立方程(3),檢驗加入中介變量后文化與旅游產(chǎn)業(yè)融合的直接效應(yīng)(γ1是否顯著,是否與β1γ7同號)。

采用安捷倫6460 QQQ高效液相色譜質(zhì)譜聯(lián)用儀(HPLC/MS/MS)、配有ODS色譜柱(Cosmosil 5C18-AR, 4.6 mm×150 mm, Nacalai, Japan)測定MCs的各種異構(gòu)體的含量[24]。流動相A(甲醇),流動相B(體積分數(shù)為0.1%甲酸水溶液),流速為0.5 mL·min-1,柱溫為40℃,梯度洗脫程序為(tmin):t0= 80%;t3= 65%;t5= 65%;t7= 35%;t8= 35%;t8.5= 80%;t12= 80%。

目標成分在色譜柱分離后直接進入正離子ESI模式下的三重四級桿質(zhì)譜檢測器。氮氣用作兩級干燥和屏蔽氣體以及碰撞氣體。離子源參數(shù)設(shè)置如下:氣體溫度(gas temperature) 350 ℃,氣體流速(gas flow )11 L·min-1,噴霧器氣體壓力(nebulizer gas pressure)50 psi,毛細管電壓(capillary voltage)5 kV。樣品檢測在多反應(yīng)檢測模式(MultiReactionMonitor, MRM)進行,delta EMV設(shè)為(+) 400。破碎電壓(100~250 V)和碰撞能量(20~100 eV)根據(jù)每種化合物成分不同而設(shè)置(表1)。

儀器控制、數(shù)據(jù)處理和分析都在Masshunter軟件上進行。3種異構(gòu)體的標準曲線R2>99%,通過與標準樣品的測試曲線對比獲得MCs濃度(標準樣品MC-LR,MC-RR和MC-YR,來自AXXORA,EUROPE-Switzerland)。

1.4 回收率實驗

平行稱取6份0.4 g冷凍干燥的肝臟,按照1 μg·g-1的標準加入0.4μg MC-RR、MC-YR和MC-LR的標準品,按照1.3中的提取方法和分析方法進行提取和檢測MC-RR、MC-YR和MC-LR的含量。MC-RR、MC-YR和MC-LR的回收率分別為48.2%、93.3%和86.2%,相應(yīng)的相對標準差RSD分別為9.6%、0.2%和0.5%。

表1 多反應(yīng)檢測模式(MRM)的參數(shù)設(shè)置Table 1 Parametersfor multireactionmonitor (MRM)

注:MC-YR、MC-LR和MC-RR為微囊藻毒素MC的3種異構(gòu)體。

Note: MC-YR,MC-LR and MC-RR are three isomers of microcystins.

1.5 太湖水質(zhì)數(shù)據(jù)的獲取

根據(jù)所采集的鰱魚的體重和體長確定大部分鰱魚的年齡在1年左右,因此選擇采樣期(2011年)全年太湖不同分區(qū)的水質(zhì)指標作為鰱魚暴露的水環(huán)境參數(shù)。本研究所使用的2011年太湖分區(qū)水質(zhì)和生物指標的數(shù)據(jù)來源于太湖流域管理局的長期監(jiān)測數(shù)據(jù)[25]。

1.6 統(tǒng)計分析方法

由于實驗數(shù)據(jù)近似服從正態(tài)分布,因而可利用SPSS 17.0對不同區(qū)域的白鰱的不同器官累積MCs進行方差分析(ANOVA),對潛在影響MCs累積的生物和非生物因素進行Pearson相關(guān)分析。判斷差異或相關(guān)性顯著的標準為p <0.05,極顯著的標準為p <0.01。

2 結(jié)果(Results)

2.1 太湖各湖區(qū)水質(zhì)

由太湖分區(qū)水質(zhì)狀況可知,西部沿岸區(qū)的化學(xué)需氧量(COD)、總磷(TP)、總氮(TN)、銨態(tài)氮(NH4-N)、藻細胞數(shù)量、湖水污染指標內(nèi)梅羅指數(shù)(表征湖泊污染綜合指標,內(nèi)梅羅指數(shù)越高,污染越嚴重)和湖泊營養(yǎng)指數(shù)(表征湖泊富營養(yǎng)化程度的指標)以及環(huán)節(jié)動物數(shù)量均最高;梅梁湖水體的COD、藍藻數(shù)量、湖泊營養(yǎng)指數(shù)和環(huán)節(jié)動物數(shù)量也較高;湖心區(qū)水體的COD、TP、藻細胞數(shù)量、湖泊營養(yǎng)指數(shù)和環(huán)節(jié)動物數(shù)量均最低,而南部沿岸區(qū)水體的TN、NH4-N、內(nèi)梅羅指數(shù)和原生動物均最低(表2)。

2.2 MCs在白鰱體內(nèi)累積

由白鰱各器官累積的MCs及異構(gòu)體(MC-RR、MC-LR和MC-YR)含量(表3)可知,鰱魚不同器官累積的MCs由高到低的順序為:腸壁>腎臟>肝臟>肌肉>心臟。鰱魚腸壁內(nèi)MCs含量顯著高于腎臟、肝臟、肌肉和心臟(p <0.05),而腎臟、肝臟、肌肉和心臟的MCs含量不存在顯著差異(p> 0.05)。鰱魚肌肉累積的各異構(gòu)體含量為:MC-RR > MC-YR > MC-LR,而肝臟、腎臟和腸壁的異構(gòu)體含量則均為:MC-RR > MC-LR > MC-YR,但心臟中只檢測出MC-RR??傮w上白鰱不同器官中累積的MC-RR比較高,占MCs的60%。

表2 2011年太湖采樣區(qū)域水質(zhì)指標Table 2 Water quality inde xin different sampling areas of Taihu Lake in 2011

表3 微囊藻毒素MC-RR、MC-YR、MC-LR在白鰱體內(nèi)的累積(n =10)Table 3 Accumulation of microcystins (MC-RR, MC-YR, MC-LR) in silver carp(n =10)

注:*p <0.05;表中微囊藻毒素數(shù)據(jù)為所有樣本的均值±標準偏差;n.d.表示未檢出。

Note: *p <0.05; the concentration of microcystins were showed as mean value ± standard deviation; n.d., not detected.

鰱魚體內(nèi)不同器官累積的MCs數(shù)據(jù)表明(圖2),梅梁湖的鰱魚肌肉累積的MCs極顯著高于南部沿岸區(qū)和西部沿岸區(qū)(p< 0.01),湖心區(qū)的鰱魚肌肉中MCs同樣顯著高于南部沿岸區(qū)和西部沿岸區(qū)(p< 0.05)。不同區(qū)域白鰱肝臟中累積的MCs相差不大,僅西部沿岸區(qū)的鰱魚肝臟中MCs顯著高于湖心區(qū)(p< 0.05)。梅梁湖鰱魚腎臟累積的MCs極顯著地高于西部沿岸區(qū)、南部沿岸區(qū)和湖心區(qū)(p< 0.01),同時西部沿岸區(qū)的白鰱腎臟累積的MCs也極顯著地高于南部沿岸區(qū)和湖心區(qū)(p< 0.01)。不同區(qū)域的鰱魚腸壁中累積的MCs不存在顯著的差異。梅梁湖鰱魚心臟累積的MCs極顯著地高于西部沿岸區(qū)、南部沿岸區(qū)和湖心區(qū)(p< 0.01),湖心區(qū)白鰱心臟中的MCs含量顯著高于南部沿岸區(qū)(p< 0.05)。

2.3 影響MCs累積的因素

由白鰱不同器官內(nèi)MCs及其異構(gòu)體含量與白鰱的體重和體長的相關(guān)分析(表4)表明,腎臟中累積的MCs及MC-RR與體重、體長均呈顯著正相關(guān)。腸壁中累積的MCs也與體重、體長顯著相關(guān)。同一器官的異構(gòu)體之間也呈顯著的正相關(guān),例如肌肉內(nèi)的MC-LR與MC-RR呈顯著正相關(guān)(P< 0.01)。此外,心臟中累積的MC-RR與肌肉和腎臟中累積的MCs及其異構(gòu)體之間呈顯著正相關(guān)。

MCs及其異構(gòu)體在白鰱體內(nèi)累積可能受太湖水質(zhì)的影響。由相關(guān)分析(表5)表明,肝臟和腸壁中累積的MCs及異構(gòu)體(MC-RR、MC-YR、MC-LR)與水質(zhì)指標之間呈顯著的相關(guān)關(guān)系。腸壁累積的MC-YR與TP、TN、NH4-N、內(nèi)梅羅指數(shù)和環(huán)節(jié)動物數(shù)量呈顯著相關(guān)、而與藻細胞數(shù)量并無顯著相關(guān)。

3 討論(Discussion)

本研究中白鰱腸壁累積的MCs最高,這與以往的研究結(jié)果一致,可能是由于腸壁能有效阻止MCs進入魚體內(nèi),而本身能截留大量MCs的緣故[14,22-23]。白鰱肝臟累積的MCs較低,這與以往的研究不同[15,26-28],可能是由于本研究所采集的魚樣在累積-凈化的動態(tài)過程中,凈化處于優(yōu)勢[29],且膽汁在MCs凈化過程中起到重要作用[30]。因此,肝臟中累積的MCs首先被凈化排除體外,因而肝臟中MCs濃度較低。3種異構(gòu)體中MC-RR所占比例最高,占MCs的60%,可能是由于魚體首先凈化毒性較高的MC-LR和MC-YR,然后凈化毒性最小的MC-RR[31]。由于心臟累積MCs較少,因而心臟中只檢測到MC-RR,其他2種異構(gòu)體的含量均未檢測到。對比不同區(qū)域采集的白鰱發(fā)現(xiàn),梅梁湖鰱魚的肌肉、腎臟和心臟中MCs均較高,可能是由于梅梁湖的藍藻數(shù)量較大[25]、且相對于其他3個區(qū)域而言,梅梁湖比較封閉、藍藻容易聚集所致。

圖2 太湖不同區(qū)域白鰱的不同器官(M 肌肉,L 肝臟,K 腎臟,I 腸壁,H 心臟)中MCs的累積Fig. 2 Accumulation of MCs in different organs (M: muscle; L: liver; K: kidney; I: intestine wall; H: heart) of silver carp collected from different areas of Taihu Lake

表5 白鰱不同器官內(nèi)MCs(MC-RR、MC-YR、MC-LR)及其異構(gòu)體的含量與水質(zhì)指標的相關(guān)關(guān)系

Table 5 Correlations between MCs (MC-RR, MC-YR, MC-LR) in

different organs of silver carp and water quality of Taihu Lake

Pearson相關(guān)Pearsoncorrelation化學(xué)需氧量COD/(mg·L-1)總磷TP/(mg·L-1)總氮TN/(mg·L-1)銨態(tài)氮NH4-N/(mg·L-1)氮磷比TN/TP藻細胞數(shù)量Algaecell(104·L-1)內(nèi)梅羅指數(shù)Nemerowindex營養(yǎng)指數(shù)Nutritionindex原生動物數(shù)量Protozoanumbers/(104·L-1)環(huán)節(jié)動物數(shù)量Annelidnumbers/(10-3·L-1)MCs(肌肉Muscle)-0.31-0.64-0.45-0.500.74-0.23-0.48-0.530.65-0.52MC-RR(肌肉Muscle)0.610.910.750.79-0.810.610.770.84-0.280.83MC-YR(肌肉Muscle)-0.36-0.68-0.48-0.540.77-0.29-0.51-0.580.62-0.56MC-LR(肌肉Muscle)0.048-0.48-0.38-0.440.420.075-0.41-0.260.66-0.35MCs(肝臟Liver)0.940.890.800.78-0.680.99*0.790.98*0.370.92MC-RR(肝臟Liver)0.790.17-0.030-0.061-0.550.68-0.0430.480.210.20MC-YR(肝臟Liver)0.940.730.660.63-0.570.99*0.650.880.520.79MC-LR(肝臟Liver)0.790.99**0.930.93-0.670.860.930.97*0.210.99**MCs(腎臟Kidney)0.46-0.0440.006-0.0590.0890.51-0.0260.190.780.082MC-RR(腎臟Kidney)0.570.0560.0680.006-0.0460.610.0380.310.730.17MC-YR(腎臟Kidney)0.29-0.23-0.16-0.220.240.33-0.19-0.0020.75-0.10MC-LR(腎臟Kidney)0.12-0.21-0.031-0.100.470.24-0.066-0.0730.90-0.063MCs(腸壁Intestinewall)-0.350.350.430.470.012-0.260.450.045-0.370.28MC-RR(腸壁Intestinewall)-0.180.400.360.42-0.28-0.180.390.16-0.620.29MC-YR(腸壁Intestinewall)0.610.98*0.99*0.99**-0.500.730.99*0.870.240.98*MC-LR(腸壁Intestinewall)-0.85-0.33-0.041-0.0340.81-0.69-0.041-0.600.10-0.30MC-RR(心臟Heart)0.093-0.41-0.30-0.360.410.14-0.33-0.200.72-0.28

注:*p <0.05,**p< 0.01;MCs(MC-RR、MC-YR、MC-LR)單位為ng·g-1, dw。

Note:*p <0.05, **p< 0.01; the unit of MCs (MC-RR, MC-YR, MC-LR) is ng·g-1, dw.

由白鰱體內(nèi)累積MCs和體重及體長的相關(guān)關(guān)系可知,體重和體長是影響白鰱腎臟累積MCs和MC-LR、腸壁累積MCs的重要因素。另外,同一器官中MCs的異構(gòu)體之間也呈顯著的正相關(guān),例如肌肉內(nèi)的MC-LR與MC-RR呈顯著正相關(guān)(p< 0.01),由此說明同一器官累積MCs的各異構(gòu)體容易相互影響。此外,心臟中累積的MC-RR與肌肉和腎臟中累積的MCs及其異構(gòu)體之間呈顯著正相關(guān),由此解釋了白鰱肌肉、腎臟和心臟累積MCs在同一個區(qū)域均為最高的原因。

由白鰱各器官累積MCs和水質(zhì)指標的相關(guān)關(guān)系可知,肝臟累積MCs及異構(gòu)體(MC-RR、MC-YR、MC-LR)容易受到TP、藻細胞數(shù)量、湖泊營養(yǎng)指數(shù)及環(huán)節(jié)動物數(shù)量的影響,可能是由于TP、湖泊營養(yǎng)指數(shù)及環(huán)節(jié)動物數(shù)量會影響藻細胞數(shù)量,進而間接影響肝臟中MCs及異構(gòu)體的累積。腸壁累積的MC-YR與TP、TN、NH4-N、內(nèi)梅羅指數(shù)和環(huán)節(jié)動物呈顯著相關(guān),而與藻細胞數(shù)量并無顯著相關(guān),其原因有待進一步研究。

[1] Wiegand C, Pflugmacher S. Ecotoxi cological effects of selected cyanobacterial secondary metabolites a short review [J]. Toxicology and Applied Pharmacology, 2005, 203(3): 201-218

[2] Otten T G, Xu H, Qin B, et al. Spatiotemporal patterns and ecophysiology of toxigenic microcystis bloomsin Lake Taihu, China: Implications for water quality management [J]. Environmental Science & Technology, 2012, 46(6): 3480-3488

[3] Blaha L, Babica P, Marsalek B. Toxins produced in cyanobacterial water blooms -Toxicity and risks [J]. Interdisciplinary Toxicology, 2009, 2(2): 36-41

[4] Paskerová H, Hilscherová K, Bláha L. Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass [J]. Environmental Science and Pollution Research, 2012, 19(6): 2024-2037

[5] Mekebri A, Blondina G J, Crane D B. Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(15): 3147-3155

[6] Magalh?es V F, Marinho M M, Domingos P, et al. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ) [J]. Toxicon, 2003, 42(3): 289-295

[7] Mohamed ZA, Carmichael W W, Hussein A A. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom[J]. Environmental Toxicology, 2003, 18(2): 137-141

[8] Chen J, Xie P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis , from a large shallow, eutrophic lake of the subtropical China [J]. Toxicon, 2005, 45(5):615-625

[9] Zurawell R W, Kotak B G, Prepas E E. Influence of lake trophic status on the occurrence of microcystin-LR in the tissue of pulmonate snails [J]. Freshwater Biology, 1999, 42(4): 707-718

[10] Zhang J Q, Wang Z, Song Z Y, et al. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi [J]. Environmental Pollution, 2012, 164: 227-234

[11] Williams D E, Dawe S C, Kent M L, et al. Bioaccumulation and clearance of microcystins from salt water, mussels, Mytilu sedulis, and in vivo evidence for covalently bound microcystins in mussel tissues [J]. Toxicon, 1997, 35(11): 1617-1625

[12] Chen J, Xie P. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of subtropical China and the risk to human consumption [J]. Environmental Toxicology, 2005, 20(6): 572-584

[13] Chen J, Xie P, Li L, et al. First identification of the hepatotoxic microcystinsin the serum of a chronically exposed human population together with indication of hepatocellular damage [J]. Toxicological Sciences, 2009, 108(1): 81-89

[14] Zhang D W, Xie P, Liu Y Q, et al. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health [J]. Science of the Total Environment, 2009, 407(7): 2191-2199

[15] Xie L Q, Xie P, Guo L G, et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China [J]. Environmental Toxicology, 2005, 20(3): 293-300

[16] 劉聚濤, 楊永生, 高俊峰, 等. 太湖藍藻水華分級及其時空變化[J]. 長江流域資源與環(huán)境, 2011(2): 156-160

Liu J T, Yang Y S, Gao J F, et al. Characteristics of cuanobacteria bloom grading and its temporal and spatial variation in Taihu Lake [J]. Resources and Environment in the Yangtze Basin, 2011(2): 156-160 (in Chinese)

[17] Zhang D, Xie P, Liu Y, et al. Bioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese lake, Taihu Lake, with dense toxic microcystis blooms [J]. Environmental Toxicology and Chemistry, 2007, 26(1): 171-176

[18] Chen J, Xie P. Accumulation of hepatotoxic microcystins in freshwater mussels, aquatic insect larvae and oligochaetes in a large, shallow eutrophic lake (Lake Chaohu) of subtropical China [J]. Fresenius Environmental Bulletin, 2008, 17(7A): 849-854

[19] Zhang D, Xie P, Chen J, et al. Determination of microcystin-LR and its metabolites in snail (Bellamyaaeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from Lake Taihu, China [J]. Chemosphere, 2009, 76(7): 974-981

[20] Wang Q, Xie P, Chen J, et al. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection [J]. Toxicon, 2008, 52(6): 721-772

[21] Zhang D, Xie P, Chen J. Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(2): 202-207

[22] Chen J, Xie P, Zhang D, et al. In situ studies on the distribution patterns and dynamics of microcystins in a biomanipulation fish -Bighead carp (Aristichthysnobilis ) [J]. Environmental Pollution, 2007, 147(1): 150-157

[23] Xie LQ, Xie P, Ozawa K, et al. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment [J]. Environmental Pollution, 2004, 127(3): 431-439

[24] 李建中. Agilent1260U HPLC/6460QQQ用于微囊藻毒素的檢測[J]. 環(huán)境化學(xué), 2011, 30(3): 731-733

Li J Z. Agilent 1260 U HPLC/6460QQQ used for the detection of microcystins [J]. Environmental Chemistry, 2011, 30(3): 731-733 (in Chinese)

[25] 水利部太湖流域管理局. 太湖健康狀況報告2011[R]. 上海: 水利部太湖流域管理局, 2012

[26] Malbrouck C, Trausch G, Devos P, et al. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. [J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2003; 135(1): 39-48

[27] Li X Y, Chung I K, Kim J I, et al. Subchronic oral toxicity of microcystin in common carp (Cyprinusc arpio L.) exposed to microcystisunder laboratory conditions [J]. Toxicon, 2004, 44(8): 821-827

[28] Kankaanp?? H T, Holliday J, Schr?der H, et al. Cyanobacteria and prawn farming in northern New South Wales, Australia-Acase study on cyanobacteria diversity and hepatotoxin bioaccumulation [J]. Toxicology and Applied Pharmacology, 2005, 203(3): 243-256

[29] Ibelings B W, Chorus I. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review [J]. Environmental Pollution, 2007, 150(1): 177-192

[30] Tencalla F, Dietrich D. Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss) [J]. Toxicon, 1997, 35(4): 583-595

[31] Gupta N, Pant S C, Vijayaraghavan R, et al. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice [J]. Toxicology, 2003, 188(2-3): 285-296

AccumulationofMicrocystinsinSilverCarpfromTaihuLakeanditsInfluencingFactors

JiaJunmei1,2, Luo Wei1,*, LuYonglong1

1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. University of Chinese Academy of Sciences, Beijing 100049, China

31 May 2013accepted26 July 2013

Cyanobacterial blooms took place in Taihu Lake every year and were widely concerned. Microcystins (MCs), the metabolites of cyanobacteria, could have potential adverse effects on ecosystems and human health. In order to examine accumulations of MCs in fish from different parts of Taihu Lake and its influencing factors, silver carp was sampled and MCs (MC-LR, MC-YR and MC-RR) were analyzed by high performance liquid chromatography tandem mass spectrometric. The results showed that MCs in different organs of silver carp was of such order: intestine wall > kidney > liver > muscle >heart, and MCs concentration in intestine wall was significantly higher than those in kidney, liver, muscle and heart. MC-RR was the main isomer of MCs which accounted for 60% of MCs. Concentrations of MCs in muscle, kidney and heart of silver carp from the Meiliang Bay were higher than those from West Coast, South Coast and Lake Center of Taihu Lake. Based onthe significant relationships between body length, weight and MCs concentrations in organs of silver carp, it wasindicated that body length and weight were important factors that influenced accumulation of MCs and MC-RR in kidney and that of MCs in intestine wall.The water quality index of Taihu Lake including TP, algae cell number, nutrition index and number of annelid, especially TP, played important roles in MCs accumulation in liver of silver carp whilethe water quality index including TP, TN, NH4-N, Nemerow index and number of annelid, especially NH4-N also played important roles in MCs accumulation in intestine wall of silver carp.

microcystins; silver carp; accumulation; water quality index; organs

國家重點基礎(chǔ)研究計劃973計劃課題(2008CB418106);國家自然科學(xué)基金資助項目(41271502;C031001);科技部科技基礎(chǔ)性工作專項課題(2013FY111100)

賈軍梅(1988-),女,碩士,研究方向為區(qū)域生態(tài)風(fēng)險,E-mail:jiadao_mei@126.com;

*通訊作者(Corresponding author),E-mail:luow@rcees.ac.cn

10.7524/AJE.1673-5897.20130531001

賈軍梅,羅維,呂永龍. 微囊藻毒素在太湖白鰱體內(nèi)累積及其影響因素[J]. 生態(tài)毒理學(xué)報, 2014, 9(2): 382-390

Jia J M, Luo W, Lv Y L. Accumulation of microcystins in silver carp from the Taihu Lake and its influencing factors [J]. Asian Journal of Ecotoxicology, 2014, 9(2): 382-390 (in Chinese)

2013-05-31錄用日期2013-07-26

1673-5897(2014)2-382-09

X171.5

A

羅維(1972—),男,博士,副研究員,主要研究方向為城市與區(qū)域污染過程及生態(tài)風(fēng)險評價,景觀生態(tài)毒理,有機廢物堆肥與資源化利用及生態(tài)風(fēng)險。

猜你喜歡
白鰱鰱魚異構(gòu)體
跨域異構(gòu)體系對抗聯(lián)合仿真試驗平臺
48畝白鰱增產(chǎn)10000多斤!這款全價生物漁肥成為漁民創(chuàng)收的秘密武器
簡析旋光異構(gòu)體平面分析和構(gòu)象分析的一致性
云南化工(2021年8期)2021-12-21 06:37:38
武漢白沙洲:淡水魚多數(shù)品種價格下跌,但鰱魚價格漲幅較大
《滇池白鰱》
流行色(2019年11期)2020-01-09 07:20:30
花鰱倒掛模式技術(shù)要點
電腦迷(2019年1期)2019-01-30 06:43:18
在魚病最易爆發(fā)的季節(jié),針對花、白鰱爆發(fā)性出血、敗血病的防控措施
鰱魚無公害養(yǎng)殖技術(shù)
利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
CPU+GPU異構(gòu)體系混合編程模式研究
平原县| 南安市| 高安市| 兴宁市| 邵阳县| 苏尼特右旗| 沅江市| 长沙市| 县级市| 德阳市| 汕头市| 塔城市| 永昌县| 内黄县| 海城市| 梨树县| 平原县| 海安县| 常州市| 淮北市| 甘南县| 黄石市| 和顺县| 鹤岗市| 长武县| 平阴县| 凤台县| 宁陕县| 罗源县| 噶尔县| 长兴县| 循化| 凭祥市| 尚志市| 衡阳县| 六枝特区| 石家庄市| 枣庄市| 诏安县| 太原市| 城固县|