盛濟(jì)川 曹杰 周慧
摘要 本文通過(guò)建立一個(gè)簡(jiǎn)單支付模型研究了完全信息和不完全信息情景下經(jīng)濟(jì)目標(biāo)、環(huán)境目標(biāo)以及福利目標(biāo)對(duì)于REDD+機(jī)制收益分配的影響。按照政策制定者知道的代理人機(jī)會(huì)成本的信息,本文設(shè)定了完全信息和不完全信息兩種情景。政策制定者在兩種情景中對(duì)于總毀林和潛在造林面積的分布、代理人總收益以及各代理人的毀林或潛在造林面積都擁有完全信息。為了研究不同的政策目標(biāo)對(duì)REDD+機(jī)制效果的影響,本文設(shè)定三種政策目標(biāo):經(jīng)濟(jì)目標(biāo)、環(huán)境目標(biāo)以及福利目標(biāo)。在此基礎(chǔ)上,利用云南生態(tài)固碳造林項(xiàng)目的入戶調(diào)查數(shù)據(jù),對(duì)三種政策目標(biāo)的效果進(jìn)行了仿真研究。通過(guò)仿真研究分析了在完全信息和不完全信息條件下三種政策目標(biāo)對(duì)于代理人受益、政策制定者收益以及減少毀林或增加造林總面積的影響。研究結(jié)果表明,在不完全信息情景下,政策制定者只能按照相同的補(bǔ)償標(biāo)準(zhǔn)支付給所有代理人,因而三種政策目標(biāo)的產(chǎn)出完全相同。對(duì)于經(jīng)濟(jì)目標(biāo)的政策制定者而言,完全信息并不會(huì)帶來(lái)森林面積的增加,但會(huì)導(dǎo)致REDD+剩余從代理人轉(zhuǎn)移至政策制定者。相反,對(duì)于環(huán)境目標(biāo)政策制定者而言,完全信息會(huì)導(dǎo)致森林面積增加而減少代理人的收益。對(duì)于福利目標(biāo)政策制定者,完全信息并不會(huì)導(dǎo)致總體福利有所差別,且收益仍歸代理人所有,而減少毀林或增加造林的面積大于等于不完全信息。
關(guān)鍵詞 REDD+機(jī)制;完全信息;不完全信息;收益分配;政策目標(biāo)
中圖分類號(hào) X196
文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 1002-2104(2014)09-0037-08
巴厘島路線圖將“REDD+機(jī)制”定義為“采取各種政策方法和積極的激勵(lì)措施,以幫助發(fā)展中國(guó)家減少砍伐和森林退化,同時(shí)還包括森林保護(hù)、森林的可持續(xù)經(jīng)營(yíng)以及增加森林碳匯。 森林對(duì)CO2的吸收是碳捕捉和碳儲(chǔ)存的一種重要途徑[1],森林面積大約占全球陸地面積的15%[2],卻儲(chǔ)存了陸地生物圈約25%的碳[3]。因森林砍伐和森林退化所導(dǎo)致的溫室氣體排放目前已成為全球變暖的第二大主因,其總量已占到由人為因素導(dǎo)致碳排放總量的12-20%[4-5]。因而聯(lián)合國(guó)氣候變化框架公約(UNFCCC)在2007年提出了旨在減少森林砍伐和退化的REDD+機(jī)制,目前REDD+機(jī)制已成為最經(jīng)濟(jì)的氣候變化減緩措施之一[6]。
在REDD+機(jī)制中,一個(gè)重要的因素是REDD+的機(jī)會(huì)成本。當(dāng)取得的收益高于減少毀林或增加造林的機(jī)會(huì)成本時(shí),減少森林砍伐或增加森林面積便成為有利可圖的選項(xiàng)[7]。因而減少毀林或增加造林的機(jī)會(huì)成本信息成為REDD+機(jī)制得以有效實(shí)施的一個(gè)關(guān)鍵因素[8],政策制定者對(duì)于REDD+機(jī)制中代理人的私人機(jī)會(huì)成本信息的了解程度將直接影響到REDD+的收益分配。另一方面,在REDD+機(jī)制實(shí)施過(guò)程中政策制定者的政策目標(biāo)也是多樣的或多重的,例如在許多發(fā)展中國(guó)家環(huán)境和發(fā)展往往是政策目標(biāo)的核心[9] ,而不同的政策目標(biāo)也會(huì)對(duì)REDD+機(jī)制的效果產(chǎn)生不同的影響。為此,本文將設(shè)定三種政策目標(biāo):經(jīng)濟(jì)目標(biāo)(即政策制定者收益最大化目標(biāo))、環(huán)境目標(biāo)(即減少毀林或增加造林最大化目標(biāo))以及福利目標(biāo)(即代理人收益最大化目標(biāo)),通過(guò)建立一個(gè)簡(jiǎn)單支付模型用以研究在完全信息和不完全信息條件下不同政策目標(biāo)對(duì)REDD+機(jī)制收益分配的影響。
1 不完全信息條件下REDD+機(jī)制的收益分配
由式(15)可以發(fā)現(xiàn),在完全信息下政策制定者并沒(méi)有獲得REDD+剩余,同樣代理人也沒(méi)有獲得這部分剩余。在環(huán)境目標(biāo)下,政策制定者將低機(jī)會(huì)成本代理人的收益用于彌補(bǔ)高機(jī)會(huì)成本代理人的損失,因而代理人的收益水平并未提高,仍和基線情景下的收益水平相同,并低于完全信息下的收益水平。但是無(wú)差異代理人數(shù)量mE是最多的,因而減少毀林或增加造林的面積是最大的。
2.3 福利目標(biāo)的均衡支付水平
一方面,為了實(shí)現(xiàn)福利目標(biāo),政策制定者需要最大化加入REDD+機(jī)制代理人的收益;另一方面,由于具有代理人機(jī)會(huì)成本的完全信息,政策制定者可以預(yù)算約束條件采取任意的方式分配REDD+剩余。為了簡(jiǎn)化模型,我們假定政策制定者按照羅爾斯的最大化最小值標(biāo)準(zhǔn)[10]進(jìn)行收益分配,即選擇使最后一個(gè)愿意加入REDD+機(jī)制的代理人收益最大化的分配方案。由于代理人的機(jī)會(huì)成本Yi/(Di+Ai)嚴(yán)格反映了代理人的收益排序,因此福利目標(biāo)下的代理人總收益水平可以用式(12)來(lái)表示。因此根據(jù)羅爾斯的最大化最小值標(biāo)準(zhǔn),應(yīng)按照統(tǒng)一的補(bǔ)償價(jià)格支付給所有的代理人,而國(guó)際碳信用價(jià)格r是政策制定者在不虧本的前提下可以提供給代理人的最高補(bǔ)償價(jià)格。只要提供給代理人的補(bǔ)償價(jià)格pi高于代理人i的機(jī)會(huì)成本,那么代理人i的收益水平仍然是好于基線情景下的收益水平。
3 基于云南生態(tài)固碳造林項(xiàng)目的仿真研究
3.1 項(xiàng)目概況
作為REDD+機(jī)制中的重要組成部分,生物固碳造林和沼氣建設(shè)對(duì)減緩氣候變化具有十分重要和不可替代的地位和作用?!霸颇鲜±梅▏?guó)開(kāi)發(fā)署貸款開(kāi)展生物固碳造林和沼氣建設(shè)項(xiàng)目”是利用法國(guó)開(kāi)發(fā)署(AFD)貸款在中國(guó)實(shí)施的第一個(gè)生物固碳項(xiàng)目,該項(xiàng)目利用法國(guó)開(kāi)發(fā)署貸款3 500萬(wàn)歐元,將在曲靖市、西雙版納傣族自治州和普洱市等3個(gè)州市的9個(gè)縣(市)建設(shè)生物固碳林59,000.0hm2,其中人工造林45 584.7 hm2、低產(chǎn)林改造5 415.3 hm2、思茅松現(xiàn)有林培育8 000.0 hm2。項(xiàng)目建設(shè)期為5年,從2010至2014年,總投資為65 768.37萬(wàn)元,其中法國(guó)開(kāi)發(fā)署貸款3 500.00萬(wàn)歐元。為研究完全信息和不完全信息條件下經(jīng)濟(jì)目標(biāo)、環(huán)境目標(biāo)和福利目標(biāo)對(duì)于REDD+機(jī)制收益分配的影響,我們對(duì)項(xiàng)目區(qū)域9個(gè)縣的279戶進(jìn)行了問(wèn)卷調(diào)查,并使用這些入戶數(shù)據(jù)數(shù)據(jù)進(jìn)行仿真研究,入戶調(diào)查數(shù)據(jù)的收集持續(xù)1個(gè)月。
3.2 機(jī)會(huì)成本和補(bǔ)償價(jià)格的確定
面積是相同的。由于政策制定者不具有樣本戶的機(jī)會(huì)成本信息,因而按照統(tǒng)一的補(bǔ)償價(jià)格進(jìn)行支付,政策制定者無(wú)法從REDD+機(jī)制中獲益,所有的REDD+剩余都?xì)w樣本戶所有。②在完全信息條件下,采用經(jīng)濟(jì)目標(biāo)時(shí),無(wú)論采用何種貼現(xiàn)率,政策制定者都無(wú)法把所有樣本戶的土地納入REDD+機(jī)制之中,此時(shí)獲得的REDD+剩余都?xì)w政策制定者所有。當(dāng)采用福利目標(biāo)時(shí)按照統(tǒng)一的補(bǔ)償價(jià)格支付給所有樣本戶,其結(jié)果與經(jīng)濟(jì)目標(biāo)相同,只不過(guò)所有的REDD+剩余都?xì)w樣本戶所有。而當(dāng)采用環(huán)境目標(biāo)時(shí),樣本戶和政策制定者都無(wú)法獲得REDD+剩余,但在貼現(xiàn)率為5%的情況下,90.64%的樣本戶土地會(huì)變?yōu)樾略炝?,而貼現(xiàn)率為10%和15%時(shí),所有的樣本戶都會(huì)選擇參加生態(tài)固碳項(xiàng)目。因此在完全信息條件下,經(jīng)濟(jì)目標(biāo)會(huì)使得REDD+剩余從樣本戶轉(zhuǎn)移至政策制定者,而環(huán)境目標(biāo)會(huì)使REDD+剩余從低機(jī)會(huì)成本樣本戶向高機(jī)會(huì)成本樣本戶轉(zhuǎn)移,而福利目標(biāo)下樣本戶的總收益以及增加造林面積和不完全信息是相同的。
4 結(jié)論與啟示
REDD+機(jī)制是國(guó)際社會(huì)為減緩氣候變化而提出的新舉措,通過(guò)向發(fā)展中國(guó)家提供大量資金以減少森林砍伐和森林退化。本文通過(guò)建立一個(gè)簡(jiǎn)單支付模型研究了完全信息和不完全信息條件下不同政策目標(biāo)對(duì)于REDD+機(jī)制收益分配的影響。
研究發(fā)現(xiàn):無(wú)論采用何種政策目標(biāo),在不完全信息條件下,由于政策制定者不擁有各代理人機(jī)會(huì)成本信息,政策制定者只能按照相同的補(bǔ)償標(biāo)準(zhǔn)支付給所有代理人。因而政策制定者無(wú)法從REDD+機(jī)制中獲益,也無(wú)法對(duì)REDD+剩余進(jìn)行分配,所有的REDD+剩余都?xì)w代理人所有。相比基線情景,代理人在不完全信息條件下可以從REDD+機(jī)制中獲利。仿真研究的結(jié)果表明,所有政策目標(biāo)的產(chǎn)出(即減少毀林和增加造林面積)是完全相同的。
在完全信息條件下:①政策制定者采用經(jīng)濟(jì)目標(biāo)所得到的減少毀林量或增加造林量與不完全信息是一樣的,只不過(guò)此時(shí)的REDD+剩余歸政策制定者所有。當(dāng)采用經(jīng)濟(jì)目標(biāo)時(shí),無(wú)論采用何種貼現(xiàn)率,政策制定者都無(wú)法把所有的土地納入REDD+機(jī)制之中。②當(dāng)政策制定者采用環(huán)境目標(biāo)時(shí),由于可以將低機(jī)會(huì)成本代理人的REDD+剩余用于對(duì)高機(jī)會(huì)成本代理人的補(bǔ)償,因而在完全信息條件下的減少毀林量或增加造林量大于不完全信息,但是代理人總收益是一樣的,只不過(guò)完全信息的存在導(dǎo)致了REDD+剩余的再分配。在環(huán)境目標(biāo)下代理人和政策制定者都無(wú)法獲得REDD+剩余,但會(huì)使得減少毀林量或增加造林面積顯著增加。③當(dāng)政策制定者采用福利目標(biāo)時(shí),代理人的總收益與不完全信息是相同的,而不同在于各代理人的收益分配。在完全信息條件下,各代理人的收益分配主要取決于政策制定者的偏好。如果采用羅爾斯的最大化最小值標(biāo)準(zhǔn),所有代理人會(huì)獲得相同的補(bǔ)償價(jià)格,這就使得完全信息條件下的減少毀林量或增加造林量以及各代理人的收益與不完全信息是完全相同的。
本文中的REDD+支付模型只是對(duì)政策制定者復(fù)雜決策過(guò)程的簡(jiǎn)化,對(duì)于模型的適用性需要進(jìn)一步研究。本文忽視了REDD+機(jī)制中的各種交易成本,特別是獲取代理人的機(jī)會(huì)成本信息的成本,這些交易成本的存在可能會(huì)降低代理人加入REDD+機(jī)制的動(dòng)機(jī)[14],因此需要重視REDD+中知識(shí)整合的管理能力[15]。此外REDD+監(jiān)測(cè)、報(bào)告和驗(yàn)證體系(MRV)的成本以及環(huán)境規(guī)制計(jì)劃所帶來(lái)的各項(xiàng)成本[16]也被忽視,而這部分的成本也會(huì)對(duì)REDD+機(jī)制的收益分配產(chǎn)生重要的影響。對(duì)于經(jīng)濟(jì)目標(biāo)和環(huán)境目標(biāo)而言,機(jī)會(huì)成本信息的獲取對(duì)于政策制定者而言是至關(guān)重要的;而對(duì)于福利目標(biāo)而言則無(wú)足輕重,但是當(dāng)REDD+剩余的分配不再按照羅爾斯的最大化最小值標(biāo)準(zhǔn)時(shí),這些機(jī)會(huì)成本的信息就變得非常重要了。
(編輯:劉呈慶)
參考文獻(xiàn)(References)
[1]張慧明,周德群,曹杰,等. 溫室氣體減排技術(shù)研究進(jìn)展[J]. 中國(guó)科技論壇,2011,(9):104-109. [Zhang Huiming, Zhou Dequn, Cao Jie, et al. Research Progress of Reducing Greenhouse Gas Emissions [J]. Forum on Science and Technology in China, 2011, (9): 104-109.]
[2]Food and Agriculture Organization of the United Nations. Key Findings of Global Forest Resources Assessment 2010 [R]. Rome: Forest Resources Assessment, 2010.
[3]Bonan G B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests [J]. Science, 2008, 320:1444-1449.
[4]Sala O E, Ill F S C, Armesto J J, et al. Global Biodiversity Scenarios for the Year 2100 [J]. Science, 2000, 287: 1770-1774.
[5]Houghton R A. Carbon Flux to the Atmosphere from Landuse Changes: 1850-2005 [R]. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2008.
[6]Stern N. The Economics of Climate Change: The Stern Review [M]. Cambridge, UK: Cambridge University Press, 2007.
[7]Groom B, Palmer C. Costeffective Provision of Environmental Services: The Role of Relaxing Market Constraints? [J]. Environment and Development Economics, 2010, 15 (2): 219-240.
[8]Delacote P, Palmer C, Bakkegaard R K, et al. Unveiling Information on Opportunity Costs in REDD: Who Obtains the Surplus When Policy Objectives Differ? [J]. Resource and Energy Economics, 2014, 36 (2): 508-527.
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳儲(chǔ)量動(dòng)態(tài)變化及其碳匯潛力分析[D]. 昆明:云南財(cái)經(jīng)大學(xué),2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]單海燕,王文平. 跨組織知識(shí)整合下的創(chuàng)新網(wǎng)絡(luò)結(jié)構(gòu)分析[J]. 中國(guó)管理科學(xué),2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]張三峰,卜茂亮. 環(huán)境規(guī)制、環(huán)保投入與中國(guó)企業(yè)生產(chǎn)率:基于中國(guó)企業(yè)問(wèn)卷數(shù)據(jù)的實(shí)證研究[J]. 南開(kāi)經(jīng)濟(jì)研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳儲(chǔ)量動(dòng)態(tài)變化及其碳匯潛力分析[D]. 昆明:云南財(cái)經(jīng)大學(xué),2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]單海燕,王文平. 跨組織知識(shí)整合下的創(chuàng)新網(wǎng)絡(luò)結(jié)構(gòu)分析[J]. 中國(guó)管理科學(xué),2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]張三峰,卜茂亮. 環(huán)境規(guī)制、環(huán)保投入與中國(guó)企業(yè)生產(chǎn)率:基于中國(guó)企業(yè)問(wèn)卷數(shù)據(jù)的實(shí)證研究[J]. 南開(kāi)經(jīng)濟(jì)研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object
[9]Bulte E H, Lipper L, Stringer R, et al. Payments for Ecosystem Services and Poverty Reduction: Concepts, Issues, and Empirical Perspectives [J]. Environment and Development Economics, 2008, 13 (3): 245-254.
[10]Rawls J A. Theory of Justice [M]. Cambridge, Massachusetts, USA: Harvard University Press, 1971.
[11]Brner J, Wunder S. Paying for Avoided Deforestation in the Brazilian Amazon: From Cost Assessment to Scheme Design [J]. International Forestry Review, 2008, 10 (3): 496-511.
[12]Dutschke M, Wong J L P, Rumberg M. Value and Risks of Expiring Carbon Credits from CDM Afforestation and Reforestation [J]. Climate Policy, 2005, 5 (1): 109-125.
[13]李亮. 云南省1992-2007年森林植被碳儲(chǔ)量動(dòng)態(tài)變化及其碳匯潛力分析[D]. 昆明:云南財(cái)經(jīng)大學(xué),2012. [Li Liang. The Dynamic Changes and Potential of Forest Carbon Stock in Yunnan: 1992-2007 [D]. Kunming: Yunnan University of Finance and Economics, 2012.]
[14]Anthon S, Bogetoft P, Thorsen B. Socially Optimal Procurement with Tight Budgets and Rationing? [J]. Journal of Public Economics, 2007, 91 (7-8): 1625-1642.
[15]單海燕,王文平. 跨組織知識(shí)整合下的創(chuàng)新網(wǎng)絡(luò)結(jié)構(gòu)分析[J]. 中國(guó)管理科學(xué),2012,20 (6):176-184. [Shan Haiyan, Wang Wenping. Analysis of the Structure of Interorganization Innovation Network during the Process of Knowledge Integration [J]. Chinese Journal of Management Science, 2012, 20 (6): 176-184.]
[16]張三峰,卜茂亮. 環(huán)境規(guī)制、環(huán)保投入與中國(guó)企業(yè)生產(chǎn)率:基于中國(guó)企業(yè)問(wèn)卷數(shù)據(jù)的實(shí)證研究[J]. 南開(kāi)經(jīng)濟(jì)研究,2011,(2):129-146. [Zhang Sanfeng, Pu Maoliang. Environmental Regulation, Environmental Protection Investment and Productivity: An Empirical Study Based on Questionnaire of Enterprises in China [J]. Nankai Economic Studies, 2011, (2): 129-146.]
Abstract The impacts of economic object, environmental object and poverty alleviation object on benefit distribution for REDD+ are analyzed by a simple payment model in two scenarios: asymmetric and full information for opportunity cost. According to agents opportunity costs the policy makers known, the scenarios of asymmetric and full information are established. The policy makers have full information about total distribution of deforestation and potential afforestation area, agents benefits, amount of agents deforestation or potential afforestation in both scenarios. In order to study the impacts of different policy objects on REDD+ results, economic object, environmental object and poverty alleviation object are set up in the paper. On this basis, the household survey data of ecological reforestation and carbon sequestration project in Yunnan is used to simulate the effects of three policy objectives. According to the simulation study, the impacts of three policy objects on agents benefits, benefits of policy makers and the avoided deforestation or increased afforestation are analyzed. The results show that policy makers can only pay same compensation to all agents in the scenario of asymmetric information. Therefore, the outputs of three policy objects are the same. Full information may not increase the forest area for the policy makers of economic object, but could lead to a redistribution of REDD+ surplus from agents to policy maker. By contrast, full information increases the forest area and reduces the agents benefits for the policy makers of environmental object. Full information makes no difference to overall welfare for the policy makers of poverty alleviation object, and the benefits remain belong the agents. The avoided deforestation or increased afforestation in the scenario of full information will be more than that in the scenario of asymmetric information.
Key words REDD+; asymmetric information; full information; profit distribution; policy object