李夢(mèng)莎, 閻秀峰
(東北林業(yè)大學(xué)鹽堿地生物資源環(huán)境研究中心, 東北油田鹽堿植被恢復(fù)與重建教育部重點(diǎn)實(shí)驗(yàn)室, 哈爾濱 150040)
1980年Ueda和Kato從苦艾(Artemisiaabsinthium)中分離并鑒定了具有促進(jìn)衰老生理活性的茉莉酸甲酯(methyl jasmonate, MeJA)[1],從而引發(fā)了人們對(duì)茉莉酸信號(hào)分子的廣泛關(guān)注。迄今已知,具有信號(hào)分子生理功能的至少包括茉莉酸(jasmonic acid, JA)以及茉莉酸甲酯和茉莉酸-異亮氨酸復(fù)合物(jasmonoyl-isoleucine, JA-Ile)等茉莉酸衍生物,人們將它們統(tǒng)稱為茉莉酸類化合物(jasmonates, JAs)。研究表明,茉莉酸信號(hào)分子參與植物生長(zhǎng)發(fā)育眾多生理過(guò)程的調(diào)控,尤其是作為環(huán)境信號(hào)分子能有效地介導(dǎo)植物對(duì)病原菌、食草動(dòng)物及非生物脅迫等的防御反應(yīng),誘導(dǎo)一系列防御基因的表達(dá)、防御反應(yīng)化學(xué)物質(zhì)的合成,并調(diào)節(jié)植物的“免疫”和應(yīng)激反應(yīng)。本文從環(huán)境信號(hào)分子角度介紹茉莉酸信號(hào)的啟動(dòng)、傳遞和生物學(xué)功能。
最近幾十年,人們對(duì)外界生物脅迫和非生物脅迫信號(hào)如何被植物感知并啟動(dòng)茉莉酸信號(hào)的生物合成進(jìn)行了大量的研究,其中在番茄中的研究較多。1991年P(guān)earce等人在番茄(Lycopersiconesculentum)中發(fā)現(xiàn)了應(yīng)答昆蟲(chóng)食害等機(jī)械損傷的系統(tǒng)素(systemin)[2],這是一種由18個(gè)氨基酸組成的多肽信號(hào)分子,來(lái)源于由200個(gè)氨基酸組成的前體蛋白——前系統(tǒng)素(prosystemin)[3]。番茄受到機(jī)械損傷后,前系統(tǒng)素水解為系統(tǒng)素,可通過(guò)質(zhì)外體(apoplast)運(yùn)輸?shù)狡渌?xì)胞,與細(xì)胞表面受體SR160(富含亮氨酸重復(fù)單位的蛋白)結(jié)合,最終激活茉莉酸信號(hào)途徑[4- 5]。除了創(chuàng)傷信號(hào)外,人們?cè)诜阎羞€發(fā)現(xiàn)病菌與真菌激發(fā)子誘發(fā)的寡聚糖信號(hào),最終也激活茉莉酸信號(hào)途徑。推測(cè)寡聚糖的作用機(jī)制與系統(tǒng)素有相似的途徑,但具體的誘導(dǎo)機(jī)制還不清楚[6- 7]。
近幾年,在擬南芥(Arabidopsisthaliana)中也發(fā)現(xiàn)了與系統(tǒng)素具有相同功能的多肽——由23個(gè)氨基酸組成的AtPEP1。與系統(tǒng)素的產(chǎn)生類似,機(jī)械損傷或者病原體侵染促使前體蛋白PROPEP1(由92個(gè)氨基酸組成)水解為AtPEP1,AtPEP1與質(zhì)膜上的受體PEPR1(富含亮氨酸重復(fù)單位的酶)結(jié)合,最終激活茉莉酸信號(hào)途徑[8]。
系統(tǒng)素、AtPEP1與受體結(jié)合誘發(fā)茉莉酸信號(hào)途徑的過(guò)程比較復(fù)雜,目前知道最主要的過(guò)程是激活質(zhì)膜上的磷脂酶,之后磷脂酶作用于膜上的磷脂釋放亞麻酸(茉莉酸合成前體)[9]。不過(guò),系統(tǒng)素激活磷脂酶活化的機(jī)制還不清楚。目前為止,人們發(fā)現(xiàn)了幾種可以被系統(tǒng)素、AtPEP1誘導(dǎo)的磷脂酶,包括番茄中的PLA2和擬南芥中的DAD1、DGL、PLD,且這幾種磷脂酶作用機(jī)制相似[10- 12]。
針對(duì)茉莉酸類化合物在植物體內(nèi)的合成,近一二十年人們已經(jīng)研究了多種單子葉和雙子葉植物,其中對(duì)模式植物擬南芥和番茄開(kāi)展的工作最多。到目前為止,茉莉酸類化合物的生物合成途徑已經(jīng)比較清楚,途徑中的各種酶已基本完成功能解析,并且關(guān)注茉莉酸合成途徑與其他代謝途徑關(guān)聯(lián)關(guān)系的研究逐漸增多。
關(guān)于茉莉酸類化合物生物合成的研究進(jìn)展,國(guó)內(nèi)學(xué)者已有較好的綜述[13- 14],這里不再詳細(xì)闡述。在擬南芥中,至少存在兩條合成茉莉酸的途徑,即從亞麻酸(linolenic acid, 18:3)開(kāi)始的十八烷途徑和從十六碳三烯酸(16∶3)開(kāi)始的十六烷途徑。兩條途徑都涉及葉綠體、過(guò)氧化物酶體和細(xì)胞質(zhì)3個(gè)反應(yīng)場(chǎng)所,從不飽和脂肪酸到12-氧植物二烯酸(12-oxo-phytodienoic acid, 12-OPDA)或去甲基-含氧植物二烯酸(dn-OPDA)的合成發(fā)生在葉綠體中,而后到茉莉酸的轉(zhuǎn)化發(fā)生在過(guò)氧化物酶體中,對(duì)茉莉酸的修飾在細(xì)胞質(zhì)中完成[15]。
茉莉酸(JA)經(jīng)各種化學(xué)修飾會(huì)代謝成不同的結(jié)構(gòu),但目前為止人們僅發(fā)現(xiàn)茉莉酸甲酯(MeJA)、茉莉酸-異亮氨酸復(fù)合物(JA-Ile)與順式-茉莉酸(cis-jasmone, CJ)這3種茉莉酸衍生物在環(huán)境誘導(dǎo)的茉莉酸信號(hào)途徑中起作用[16]。
茉莉酸類化合物在植物響應(yīng)生物與非生物脅迫的反應(yīng)中扮演著重要角色,在植物的防御過(guò)程中起著調(diào)控全局的作用。例如,在由創(chuàng)傷信號(hào)引發(fā)的防御反應(yīng)中,通常既有傷口附近的局部防御反應(yīng),也有未受傷部位的系統(tǒng)獲得性抗性(systemic acquired resistance, SAR),乃至相鄰植株產(chǎn)生的誘導(dǎo)防御反應(yīng)。在這些防御反應(yīng)中,人們發(fā)現(xiàn)了茉莉酸信號(hào)的短距離傳遞和遠(yuǎn)距離傳輸(圖1)[17]。
圖1 茉莉酸信號(hào)的傳遞[17]
當(dāng)植物受到機(jī)械損傷或昆蟲(chóng)取食后,在損傷部位會(huì)造成迅速并且短暫的JA或JA-Ile的積累,由此激活傷口周圍組織防御基因的表達(dá),從而產(chǎn)生局部防御反應(yīng)。在局部防御反應(yīng)中,茉莉酸信號(hào)的短距離傳遞可能有兩種方式。其一,由創(chuàng)傷反應(yīng)產(chǎn)生的系統(tǒng)素作為信號(hào)物質(zhì),通過(guò)質(zhì)外體與韌皮部傳遞到鄰近部位,激活茉莉酸級(jí)聯(lián)反應(yīng)途徑。其二,由系統(tǒng)素誘導(dǎo)產(chǎn)生的JA與JA-Ile充當(dāng)了流動(dòng)信號(hào),被轉(zhuǎn)運(yùn)到鄰近部位進(jìn)行防御反應(yīng)[18]。
目前為止知道,茉莉酸信號(hào)的遠(yuǎn)距離傳輸方式有維管束傳輸與空氣傳播兩種。
2.2.1 維管束傳輸
先前,許多研究者認(rèn)為系統(tǒng)素在遠(yuǎn)距離信號(hào)傳遞的過(guò)程中發(fā)揮直接作用,是一種可移動(dòng)的信號(hào)分子。但是,用擬南芥的茉莉酸不敏感突變體jai1、系統(tǒng)素不敏感突變體spr1、茉莉酸缺失突變體spr2與acx1A等開(kāi)展的一系列嫁接實(shí)驗(yàn)證明,系統(tǒng)素只是在局部起到信號(hào)放大與誘發(fā)茉莉酸類化合物合成的作用,之后,茉莉酸類化合物JA-Ile在植物體內(nèi)傳輸[19]。Thorpe等則通過(guò)同位素標(biāo)記實(shí)驗(yàn)證明,MeJA可以在維管束中的韌皮部和木質(zhì)部轉(zhuǎn)移[20]。
一些工作也表明,茉莉酸類化合物并不是簡(jiǎn)單地沿維管束運(yùn)輸,而是在運(yùn)輸過(guò)程中伴隨著茉莉酸類化合物的重新合成。在番茄維管束的伴胞和篩管復(fù)合體(companion cell-sieveelement complex, CC-SE)中也發(fā)現(xiàn)了各種JA合成酶(如LOX、AOS等)的定位[21],且韌皮部中的篩分子有形成JA前體OPDA的能力[22]。
近些年Koo等[23]通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),傷誘導(dǎo)導(dǎo)致的全身性JA、JA-Ile的產(chǎn)生并非全部由受傷部位轉(zhuǎn)移而來(lái),至少有一部分是重新合成的,并在未受傷部位級(jí)聯(lián)循環(huán)產(chǎn)生更多的JA-Ile。Wang等也證實(shí)了這一結(jié)果[24]。
2.2.2 空氣傳播
實(shí)驗(yàn)發(fā)現(xiàn),番茄韌皮部信號(hào)的流動(dòng)速度為每小時(shí)1—5 cm[25],但機(jī)械損傷后15 min內(nèi)就可在整株檢測(cè)到JA與JA-Ile的積累[26]。20世紀(jì)90年代Malone等的環(huán)割實(shí)驗(yàn)也證明,即使維管束傳輸被阻斷了,遠(yuǎn)端葉片中也存在迅速且強(qiáng)烈的防御基因表達(dá)[26]。大量的事實(shí)表明,除了維管束傳輸以外,茉莉酸信號(hào)還存在其他的遠(yuǎn)距離傳播途徑。JA可被甲基化形成MeJA。相對(duì)于沒(méi)有載體輔助就難以穿透細(xì)胞膜的JA,MeJA容易透過(guò)細(xì)胞膜且有很強(qiáng)的揮發(fā)性,可通過(guò)空氣傳播擴(kuò)散到遠(yuǎn)距離葉片和相鄰的植株而發(fā)揮作用[27]。在擬南芥[19]、煙草(Nicotianatabacum)[28]、利馬豆(Phaseoluslunatus)[29]、山艾樹(shù)(Artemisiakawakamii)[30]等植物中已經(jīng)證實(shí),MeJA可以在同一植株的損傷與未損傷葉片之間或相鄰植物間通過(guò)空氣傳播。
人們對(duì)茉莉酸信號(hào)受體的認(rèn)識(shí)經(jīng)歷了復(fù)雜的過(guò)程。1994年Feys最先確認(rèn)擬南芥的COI1蛋白是茉莉酸敏感蛋白[31],進(jìn)一步發(fā)現(xiàn)擬南芥coi1突變體喪失了對(duì)茉莉酸的所有反應(yīng)[32],證實(shí)了這一觀點(diǎn)。COI1是一種泛素連接酶E3的組成部分,SCF型泛素連接酶E3包括S、C、F 3個(gè)組分,其家族所有成員的S(SKP1蛋白)和C(Cullin蛋白)組分都相同,區(qū)分標(biāo)志是F組分(F-box),F(xiàn)-box蛋白為COI1的SCF型泛素連接酶E3記為SCFCOI1[33]。COI1蛋白的發(fā)現(xiàn)對(duì)于茉莉酸信號(hào)途徑的研究有著重要意義。
人們?cè)欢纫詾镃OI1就是茉莉酸信號(hào)在細(xì)胞內(nèi)的受體,直到JAZ蛋白家族的發(fā)現(xiàn)使人們對(duì)茉莉酸信號(hào)轉(zhuǎn)導(dǎo)途徑有了新的認(rèn)識(shí)。2007年Thines在茉莉酸合成突變體opr3中發(fā)現(xiàn)了8個(gè)JAZ蛋白[34]。在擬南芥中有12個(gè)JAZ蛋白,它們都有Jas和ZIM兩個(gè)保守結(jié)構(gòu)域[35]。JAZ蛋白通過(guò)Jas結(jié)構(gòu)域與COI1相作用,通過(guò)ZIM結(jié)構(gòu)域與MYC2發(fā)生作用[36]。因此,許多研究者認(rèn)為,JAZ蛋白是COI1的靶蛋白,JAZ蛋白的降解是解除JA途徑抑制的關(guān)鍵步驟。然而,2010年Sheard等通過(guò)晶體結(jié)構(gòu)的分析又對(duì)茉莉酸受體提出了不同觀點(diǎn),并證實(shí)COI1-JAZ復(fù)合物是茉莉酸的高親和受體,即COI1與JAZ是茉莉酸信號(hào)的共同受體[37]。目前認(rèn)為,當(dāng)植物受到外界環(huán)境刺激后,生成的JA-Ile與COI1-JAZ復(fù)合體直接結(jié)合,形成的復(fù)合物轉(zhuǎn)移到26s蛋白酶體后被降解,同時(shí)激活了下游基因的轉(zhuǎn)錄(圖2)。
圖2 茉莉酸信號(hào)的轉(zhuǎn)導(dǎo)通路
從圖2看,茉莉酸信號(hào)通過(guò)JAZ蛋白直接啟動(dòng)的是MYC類轉(zhuǎn)錄因子,不過(guò)最新的研究發(fā)現(xiàn),MYB類轉(zhuǎn)錄因子也可以通過(guò)與JAZ蛋白的結(jié)合而被茉莉酸信號(hào)激活。此外,受茉莉酸信號(hào)調(diào)控的還有NAC、ERF、WRKY等幾類轉(zhuǎn)錄因子。茉莉酸信號(hào)通過(guò)這些轉(zhuǎn)錄因子進(jìn)而調(diào)節(jié)眾多基因的表達(dá)、影響植物的生長(zhǎng)發(fā)育過(guò)程特別是植物對(duì)環(huán)境的響應(yīng)與適應(yīng)。也有研究表明,茉莉酸信號(hào)還能誘發(fā)MAP級(jí)聯(lián)反應(yīng)途徑[38]、鈣離子通道[39],以及與乙烯、水楊酸、脫落酸等信號(hào)分子互作調(diào)控植物生命活動(dòng)的眾多過(guò)程[40]。
3.2.1 MYC類轉(zhuǎn)錄因子
在MYC類轉(zhuǎn)錄因子中,MYC2蛋白是大家所熟知的調(diào)節(jié)蛋白。MYC2屬于bHLH(堿性螺旋-環(huán)-螺旋)類轉(zhuǎn)錄因子,由JIN1基因編碼。JAZ蛋白家族中的大多數(shù)成員都可與MYC2相互作用[41]。很長(zhǎng)時(shí)間以來(lái),人們認(rèn)為只有MYC2蛋白可以與JAZ蛋白直接作用,2011年Fernandez-Calvo等鑒定出另外兩種bHLH類蛋白——MYC3與MYC4,發(fā)現(xiàn)它們也可以與JAZ蛋白相互作用,并與MYC2功能疊加[42],不過(guò)這3種MYC蛋白在茉莉酸信號(hào)途徑中的分工以及它們相互之間的作用機(jī)制還不是很清楚。
3.2.2 MYB類轉(zhuǎn)錄因子
MYB類轉(zhuǎn)錄因子屬于R2R3-MYB轉(zhuǎn)錄因子家族,在植物應(yīng)答環(huán)境過(guò)程中起著重要的調(diào)節(jié)作用。Dombrecht等通過(guò)MYC2突變體jin1證明,在茉莉酸處理的情況下,MYC2可以通過(guò)調(diào)節(jié)MYB51和MYB34的表達(dá)量達(dá)到負(fù)調(diào)節(jié)色氨酸及吲哚族芥子油苷合成的作用,由此推斷MYB轉(zhuǎn)錄因子在MYC2的下游起作用[41]。但近期的研究發(fā)現(xiàn),有一些MYB類轉(zhuǎn)錄因子可以與JAZ蛋白結(jié)合,如MYB75、Glabra1、MYB21和MYB24,從而影響植物花青素積累、毛狀體形成以及雄蕊成熟等發(fā)育過(guò)程。這些MYB類轉(zhuǎn)錄因子與JAZ作用的機(jī)制與MYC2相似,都是通過(guò)JAZ蛋白的降解來(lái)啟動(dòng)下游基因的轉(zhuǎn)錄[43- 44]。
3.2.3 NAC類轉(zhuǎn)錄因子
NAC類轉(zhuǎn)錄因子在生物與非生物脅迫時(shí)也被茉莉酸信號(hào)誘導(dǎo),并且在植物的生長(zhǎng)發(fā)育過(guò)程中起到重要作用。擬南芥NAC家族中的ATAF1、ATAF2轉(zhuǎn)錄因子都受到茉莉酸信號(hào)的誘導(dǎo),茉莉酸信號(hào)通過(guò)對(duì)ATAF1、ATAF2的調(diào)節(jié)提高了植物對(duì)干旱、鹽脅迫、灰霉病菌及其他一些病原體的抵抗能力,同時(shí)對(duì)植物的氧化應(yīng)激反應(yīng)、開(kāi)花、角果發(fā)育有著重要的調(diào)節(jié)作用。此外,ATAF1與ATAF2還調(diào)節(jié)著茉莉酸與水楊酸信號(hào)途徑之間的相互作用[45- 46]。擬南芥中NAC家族中的另2個(gè)轉(zhuǎn)錄因子ANAC019與ANAC055也存在于MYC2轉(zhuǎn)錄因子的下游,并與MYC2起平行作用,可促進(jìn)種子萌發(fā)、細(xì)胞分裂、細(xì)胞次生壁的合成以及影響脫落酸信號(hào)[47]。
3.2.4 ERF類轉(zhuǎn)錄因子
在擬南芥中,ERF轉(zhuǎn)錄因子家族有122個(gè)成員[48]。近幾年基因水平的微陣列實(shí)驗(yàn)證實(shí)茉莉酸信號(hào)可以誘導(dǎo)許多EFR轉(zhuǎn)錄因子的轉(zhuǎn)錄。在擬南芥中,EFR1、EFR2、EFR4轉(zhuǎn)錄因子位于MYC2轉(zhuǎn)錄因子的下游,同樣受到茉莉酸信號(hào)的誘導(dǎo),但EFR4卻與EFR1、EFR2相互抑制[49- 50]。此外,茉莉酸信號(hào)通過(guò)誘導(dǎo)ORA59轉(zhuǎn)錄因子增加了對(duì)灰霉病的抵抗性[51]。在煙草中,OPBP1轉(zhuǎn)錄因子也受到茉莉酸信號(hào)的誘導(dǎo)[52]。由于ERF轉(zhuǎn)錄因子是一類乙烯應(yīng)答因子,因而也介導(dǎo)著茉莉酸信號(hào)途徑與乙烯信號(hào)途徑之間的相互作用[48]。
3.2.5 WRKY類轉(zhuǎn)錄因子
WRKY類轉(zhuǎn)錄因子在植物發(fā)育、衰老及應(yīng)對(duì)環(huán)境脅迫過(guò)程中具有重要調(diào)控作用。擬南芥中有74個(gè)WRKY家族成員[53]。近年來(lái)的研究表明,有一些WRKY類轉(zhuǎn)錄因子是受茉莉酸信號(hào)調(diào)控的,如擬南芥中的WRKY70[54]、WRKY18[55]、WRKY33[56]、WRKY53[57]、WRKY62[58]等,它們多與植物的防御功能相關(guān)。通過(guò)基因敲除、超表達(dá)等實(shí)驗(yàn)推測(cè)它們處于COI的下游,且受到COI蛋白的抑制作用。在煙草中,2個(gè)WRKY類轉(zhuǎn)錄因子——NaWRKY3和NaWRKY6可以調(diào)節(jié)茉莉酸生物合成相關(guān)基因(LOX、AOS、AOC、OPR)的表達(dá)從而提高JA和JA-Ile的水平,對(duì)茉莉酸信號(hào)起到反饋?zhàn)饔肹59]。此外,WRKY蛋白也是MAP激酶的作用目標(biāo)[53]。
大量研究表明,茉莉酸類化合物是與抗性密切相關(guān)的植物生長(zhǎng)物質(zhì),作為內(nèi)源信號(hào)分子參與植物在干旱、鹽脅迫、低溫等條件下的抗逆反應(yīng)。
4.1.1 光
植物受光的影響并觀察到茉莉酸信號(hào)變化的主要體現(xiàn)在兩個(gè)方面,即植物的光形態(tài)建成和UV-B對(duì)植物的傷害。在擬南芥和水稻中都觀察到紅光/遠(yuǎn)紅光介導(dǎo)的光形態(tài)建成伴隨著茉莉酸信號(hào)的變化,在藍(lán)光介導(dǎo)的擬南芥光形態(tài)建成中也發(fā)現(xiàn)茉莉酸信號(hào)途徑的參與[60- 61]。UV-B輻射的增強(qiáng)能夠誘導(dǎo)煙草屬和曼陀羅屬植物體內(nèi)茉莉酸的生物合成從而啟動(dòng)茉莉酸信號(hào)途徑,并且這些過(guò)程與植物的化學(xué)防御相關(guān)聯(lián)[62- 63]。
4.1.2 溫度
Zhao等[64]對(duì)香蕉(Musaacuminata)的研究發(fā)現(xiàn),低溫處理后內(nèi)源茉莉酸含量會(huì)略有降低,但變化不顯著。不過(guò),在寒冷中MYC基因會(huì)對(duì)外源MeJA快速反應(yīng),并在體內(nèi)重新合成大量的茉莉酸,抵御寒害。此外,對(duì)番茄(Lycopersiconesculentum)[65]、石榴(Punicagranatum)[66]、枇杷(Eribotryajaponica)[67]、芒果(Mangiferaindica)[68]、番石榴(Psidiumguajava)[69]等植物的研究都表明,外源MeJA處理能夠誘導(dǎo)熱激蛋白家族轉(zhuǎn)錄、增加抗氧化劑合成、降低脂氧合酶活性從而增加植物抵御寒害(零上低溫)的能力,說(shuō)明茉莉酸信號(hào)途徑參與了植物對(duì)低溫的響應(yīng)與適應(yīng)過(guò)程。最近對(duì)香蕉的研究發(fā)現(xiàn),冷儲(chǔ)存后MeJA可明顯誘導(dǎo)MYC家族轉(zhuǎn)錄因子以及許多冷敏感基因(MaCBF1,MaCBF2,MaCOR1,MaKIN2,MaRD2,MaRD5等)的表達(dá),由此減緩寒害對(duì)植物的傷害[64]。
目前,有關(guān)茉莉酸信號(hào)參與植物抗熱性的報(bào)道相對(duì)較少,但在紅掌(Spathiphyllumfloribundum)幼苗和蝴蝶蘭(Phalaenopsisamabilis)中已發(fā)現(xiàn)外源MeJA處理能提高它們的耐熱性[70]。
4.1.3 水
已有不少研究發(fā)現(xiàn)干旱脅迫中有茉莉酸信號(hào)途徑的參與。在擬南芥[71]、柑橘(Citrusparadisi×Poncirustrifoliata)[72]中發(fā)現(xiàn),干旱脅迫后內(nèi)源茉莉酸含量的增加是快速、瞬時(shí)的,而后隨著脅迫時(shí)間的延長(zhǎng)逐漸降低到基礎(chǔ)水平。另一方面,外源茉莉酸施加也可以有效地緩解干旱對(duì)植物造成的損傷。早期潘瑞熾等用MeJA處理提高了花生(Arachishypogaea)幼苗的抗旱性[73],在水稻(Oryzasativa)[74]、大豆(Glycinemax)[75]、花椰菜(Brassicaoleracea)[76]中也觀察到MeJA處理可以通過(guò)調(diào)整新陳代謝來(lái)抵御干旱脅迫。對(duì)蠶豆(Viciafaba)和大麥(Hordeumvulgare)的研究表明,MeJA可能是通過(guò)K+通道調(diào)控氣孔運(yùn)動(dòng)、從而提高植株抗旱能力的[77- 78]。
4.1.4 鹽分
在擬南芥[79]、番茄[80]、大麥[81]等植物中都發(fā)現(xiàn),鹽處理后內(nèi)源茉莉酸含量明顯增加。而且,在鹽敏感的植物中茉莉酸含量增加迅速而又持久,而耐鹽植物中茉莉酸含量的變化則不明顯[81]。人們也觀察到,外源茉莉酸可以提高大豆[82]、胡椒(Capsicumannuum)[83]和葡萄藤(Rupestrisriparia)[84]等植物對(duì)鹽脅迫的抵御能力。
4.1.5CO2濃度
Allhornl等發(fā)現(xiàn),高濃度CO2(500、700、1000 μmol/mol)環(huán)境導(dǎo)致利馬豆(Phaseoluslunatus)向空氣中釋放茉莉酸類化合物(MeJA和cis-JA)的量增加[85]。不過(guò),有關(guān)CO2作用下植物體內(nèi)茉莉酸信號(hào)途徑的研究還比較少。
4.1.6 臭氧
經(jīng)臭氧處理后野生型擬南芥的內(nèi)源茉莉酸含量明顯增加,而用臭氧敏感突變體rcd1(radical- induced cell death 1)[86]、oji1(ozone-sensitive and jasmonate-insensitive 1)[87]以及茉莉酸信號(hào)突變體jar1[88]開(kāi)展的實(shí)驗(yàn)表明,外源MeJA可以抑制由臭氧導(dǎo)致的細(xì)胞程序性死亡的傳播,而阻斷茉莉酸信號(hào)則會(huì)使植物對(duì)臭氧產(chǎn)生更強(qiáng)烈的過(guò)敏反應(yīng)。施加外源MeJA也導(dǎo)致雜交楊樹(shù)(Populusmaximowizii×P.trichocarpa)[89]、番茄[88]對(duì)臭氧的敏感性降低。但是,最近對(duì)棉花的研究顯示,只有在高濃度(685體積分?jǐn)?shù))臭氧下,MeJA才顯示出對(duì)臭氧損傷擴(kuò)散的抑制,并伴隨著與乙烯的拮抗作用[90]。
近年發(fā)展起來(lái)的基因芯片和蛋白組學(xué)等系統(tǒng)生物學(xué)研究手段,可以從全局角度在基因和蛋白質(zhì)水平上檢測(cè)植物各種生理過(guò)程的反應(yīng)和變化,從而分析各代謝途徑間的相互關(guān)系。
Jung等采用基因芯片技術(shù)在MeJA處理的擬南芥中鑒定了137個(gè)表達(dá)水平發(fā)生變化的基因。其中有74個(gè)基因上調(diào)表達(dá),包括茉莉酸生物合成相關(guān)基因、各種防御基因(如pdf1.2、黑芥子酶結(jié)合蛋白的編碼基因)、氧化應(yīng)激基因(氧化酶類、谷胱甘肽轉(zhuǎn)移酶、cyp450家族的編碼基因)、衰老相關(guān)基因、細(xì)胞壁修飾相關(guān)基因、激素代謝相關(guān)酶(如負(fù)責(zé)乙烯合成的ACC氧化酶)基因,以及涉及儲(chǔ)藏、信號(hào)轉(zhuǎn)導(dǎo)、初生和次生代謝相關(guān)的基因。63個(gè)基因下調(diào)表達(dá),包括光合作用相關(guān)基因(Rubisco酶基因、葉綠素蛋白基因、早期光誘導(dǎo)蛋白基因)、寒冷調(diào)節(jié)基因、干旱調(diào)節(jié)基因、防御反應(yīng)相關(guān)基因、植物生長(zhǎng)發(fā)育相關(guān)基因、細(xì)胞壁修飾相關(guān)基因和一些其他的未知功能基因等[91]。
Chen等通過(guò)蛋白組學(xué)方法比較了擬南芥中MeJA處理前后各類蛋白含量變化,發(fā)現(xiàn)了186個(gè)差異表達(dá)的蛋白。這些蛋白涉及到植物的光合作用、碳水化合物代謝、激素代謝、次生代謝、產(chǎn)物運(yùn)輸、脅迫和防御以及基因轉(zhuǎn)錄等[92]。
基因芯片和蛋白組學(xué)的研究結(jié)果進(jìn)一步證實(shí)了茉莉酸信號(hào)途徑所涉及的植物生理代謝過(guò)程的廣泛性。
近年來(lái),關(guān)于植物環(huán)境信號(hào)分子——茉莉酸的研究取得了較大的進(jìn)展,但由于植物對(duì)環(huán)境的反應(yīng)是一個(gè)多種信號(hào)相互作用的復(fù)雜體系,茉莉酸信號(hào)在植物-環(huán)境關(guān)系中的作用機(jī)制還有待進(jìn)一步闡明。
有關(guān)茉莉酸信號(hào)的合成、傳遞等一系列轉(zhuǎn)導(dǎo)途徑已經(jīng)較為清晰,但是對(duì)于不同的環(huán)境信號(hào)如何被植物感知并啟動(dòng)茉莉酸合成的研究還不系統(tǒng)。由于細(xì)胞膜上受體以及激酶種類較多,且不同的生物以及非生物信號(hào)會(huì)刺激不同的酶活化,同時(shí)伴隨著鈣離子通道、鉀離子通道開(kāi)放等一系列復(fù)雜的反應(yīng),所以環(huán)境信號(hào)的感知尚有很大的研究空間。
茉莉酸受體的研究已取得較大進(jìn)展,茉莉酸信號(hào)轉(zhuǎn)導(dǎo)模式也已經(jīng)建立,但這一調(diào)控過(guò)程中還有許多細(xì)節(jié)不甚清楚。如,茉莉酸信號(hào)如何誘導(dǎo)下游轉(zhuǎn)錄因子轉(zhuǎn)錄,以及這些下游轉(zhuǎn)錄因子間如何相互作用共同調(diào)控植物生長(zhǎng)發(fā)育等,都是一系列有待解決的問(wèn)題。
隨著對(duì)激素信號(hào)網(wǎng)絡(luò)作用機(jī)制研究的不斷深入,人們發(fā)現(xiàn)水楊酸、乙烯、生長(zhǎng)素等植物激素會(huì)與茉莉酸信號(hào)相互作用,以調(diào)節(jié)植物適應(yīng)環(huán)境。目前對(duì)植物接受環(huán)境信號(hào)后的復(fù)雜調(diào)控網(wǎng)絡(luò)及生物代謝過(guò)程的認(rèn)識(shí)還很有限。
:
[1] Udea J, Kato J. Isolation and identification of a senescence promoting substance from worm wood (ArtemisiaabsinthiunL.). Plant Physiology, 1980, 66(2): 246- 249.
[2] Pearce G, Strydom D, Johnson S, Ryan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253(5022): 895- 897.
[3] McGurl B, Pearee G, Orozeo-Cardenas M, Ryan C A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science, 1992, 255(5051): 1570- 1573.
[4] Scheer J M, Ryan C A. The systemin receptor SR160 fromLycopersiconperuvianumis a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(14): 9585- 9590.
[5] Ryan C A, Pearce G. Systemins: A functionally defined family of peptide signals that regulate defensive genes in solanaceae species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(S2): 14577- 14580.
[6] Farmer E E, Ryan C A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. The Plant Cell, 1992, 4(2): 129- 134.
[7] Narváez-Vásqueza J, Florin-Christensen J, Ryan C A. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. The Plant Cell, 1999, 11(11): 2249- 2260.
[8] Yamaguchi Y, Huffaker A, Bryan A C, Tax F E, Ryan C A. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses inArabidopsis. The Plant Cell, 2010, 22(2): 508- 522.
[9] Ryan C A. The systemin signaling pathway: differential activation of plant defensive genes. Biochimica et Biophysica Acta, 2000, 1477(1/2): 112- 121.
[10] Dombrowski J E, Pearce G, Ryan C A. Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12947- 12952.
[11] Ellinger D, Sting N, Kubigsteltig I I, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller M J. DGL and DAD1 lipases are not essential for wound- and pathogeninduced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiology, 2010, 153(1): 114- 127.
[12] Wang X. Lipid signaling. Current Opinion in Plant Biology, 2004, 7(3): 329- 336.
[13] Wasternack C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007, 100(4): 681- 697.
[14] Jiang J K, Pi Y, Hou S, Tang K X. Jasmonate biosynthetic pathway: its physiological role and potential application in plant secondary metabolic engineering. Chinese Bulletin of Botany, 2010, 45(2): 137- 148.
[15] Schilmiller A L, Koo A J, Howe G A. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiology, 2007, 143(2): 812- 824.
[16] Bruce T J, Matthes M C, Chamberlain K, Woodcock C M, Mohib A, Webster B, Smart L E, Birkett M A, Pickett J A, Napier J A.Cis-Jasmone inducesArabidopsisgenes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4553- 4558.
[17] Ryan C A, Moura D S. Systemic wound signaling in plants: a new perception. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(10): 6519- 6520.
[18] Schilmiller A L, Howe G A. Systemic signaling in the wound response. Current Opinion in Plant Biology, 2005, 8(4): 369- 377.
[19] Heil M, Ton J. Long-distance signalling in plant defence. Trends in Plant Science, 2008, 13(6): 264- 272.
[20] Thorpe M R, Ferrieri A P, Herth M M, Ferrieri R A.11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta, 2007, 226(2): 541- 551.
[21] Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. The Plant Journal, 2000, 24(1): 113- 126.
[22] Hause B, Hause G, Kutter C, Miersch O, Wasternack C. Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant and Cell Physiology, 2003, 44(6): 643- 648.
[23] Koo A J K, Gao X, Jones A D, Howe G A. A rapid wound signal activates systemic synthesis of bioactive jasmonates in Arabidopsis. The Plant Journal, 2009, 59(6): 974- 986.
[24] Wang L, Allmann S, Wu J, Baldwin I T. Comparisons of LOX3- and JAR4/6-silenced plants reveal that JA and JA-AA conjugates play different roles in herbivore resistance ofNicotianaattenuata. Plant Physiology, 2007, 146(3): 904- 915.
[25] Nelson C E, Walker-simmons M, Makus D, Zuroske G, Graham J, Ryan C A. Regulation of synthesis and accumulation of proteinase-inhibitors in leaves of wounded tomato plants. ACS Symposium Series, 1983, 208(6): 103- 122.
[26] Malone M. Rapid, long-distance signal transmission in higher plants // Callow J A, ed. Advances in Botanical Research. 1996, 22: 163- 228.
[27] Farmer E E, Ryan C A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(19): 7713- 7716.
[28] Park S W, Kaimoyo E, Kumar D, Mosher S, Klessig D F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007, 318(5847): 113- 116.
[29] Kost C, Heil M. The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. Journal of Chemical Ecology, 2008, 34(1): 2- 13.
[30] Karban R, Baldwin I T, Baxter K J, Laue G, Felton G W. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia, 2000, 125(1): 66- 71.
[31] Feys B, Benedetti C E, Penford C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell, 1994, 6(5): 751- 759.
[32] Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G.COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280(5366): 1091- 1094.
[33] Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex inArabidopsis. The Plant Journal, 2002, 32(4): 457- 466.
[34] Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCFCOI1complex during jasmonate signalling. Nature, 2007, 448(7154): 661- 665.
[35] Staswick P E. JAZing up jasmonate signaling. Trends in Plant Science, 2008, 13(2): 66- 71.
[36] Chini A, Fonseca S, Chico J M, Fernández-Calvo P, Solano R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. The Plant Journal, 2009, 59(1): 77- 87.
[37] Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J, Howe G A, Zheng N. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature, 2010, 468(7322): 400- 405.
[38] Takahashia F, Yoshida R, Ichimurac K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shimozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6is an important part of the jasmonate signal transduction pathway inArabidopsis. The Plant Cell, 2007, 19(3): 805- 818.
[39] Kenton P, Mur L A J, Draper J. A requirement for calcium and protein phosphatase in the jasmonate-induced increase in tobacco leaf acid phosphatase specific activity. Journal of Experimental Botany, 1999, 50(337): 1331- 1341.
[40] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature, 2009, 459(7250): 1071- 1078.
[41] Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions inArabidopsis. The Plant Cell, 2007, 19(7): 2225- 2245.
[42] Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizerd F, Godoy M, Franco-Zorrillae J M, Pauwels L, Witters E, Puga M I, Paz-Aresa J, Goossens A, Reymond P, De Jaeger G, Solano R. TheArabidopsisbHLH transcription factors MYC3and MYC4are targets of JAZ repressors and act additively with MYC2in the activation of jasmonate responses. The Plant Cell, 2011, 23(2): 701- 715.
[43] Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development inArabidopsis. The Plant Cell, 2011, 23(3): 1000- 1013.
[44] Qi T, Song S, Ren Q, Wn D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation inArabidopsisthaliana. The Plant Cell, 2011, 23(5): 1795- 1814.
[45] Delessert C, Kazan K, Wilson I W, van der Straeten D, Manners J, Dennis E S, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-relatedgenes inArabidopsis. The Plant Journal, 2005, 43(5): 745- 757.
[46] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene,ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes inArabidopsis. Plant Molecular Biology, 2007, 63(2): 289- 305.
[47] Bu Q, Jiang H, Li C B, Zhai J, Wu X, Sun J, Xie Q, Li C. Role of theArabidopsisthalianaNAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Reasearch, 2008, 18(7): 756- 767.
[48] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiology, 2006, 140(2): 411- 432.
[49] McGrath K C, Dombrecht B, Manners J M, Schenk P M, Edgar C I, Maclean D J, Scheible W R, Udvardi M K, Kazzan K. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen ofArabidopsistranscription factor gene expression. Plant Physiology, 2005, 139(2): 949- 959.
[50] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165- 178.
[51] Pré M, Atallah M, Champion A, de Vos M, Pieterse C M J, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology, 2008, 147(3): 1347- 1357.
[52] Gu Y Q, Yang C, Thara V K, Zhou J, Martin G B.Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. The Plant Cell, 2000, 12(5): 771- 785.
[53] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signalling. Current Opinion in Plant Biology, 2007, 10(4): 366- 371.
[54] Li J, Brader G, Palva E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 2004, 16(2): 319- 331.
[55] Xu X P, Chen C H, Fan B F, Chen Z X. Physical and functional interactions between pathogen-inducedArabidopsisWRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 2006, 18(5): 1310- 1326.
[56] Zheng Z, Qamar S A, Chen Z, Mengsite T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 2006, 48(4): 592- 605.
[57] Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence inArabidopsis. Plant Molecular Biology, 2004, 55(6): 853- 867.
[58] Mao P, Duan M, Wei C, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant and Cell Physiology, 2007, 48(6): 833- 842.
[59] Skibbe M, Qu N, Galis I, Balawin I T. Induced plant defenses in the natural environment:NieotianaattenualaWRKY3 and WRKY6 coordinate responses to herbivory. The Plant Cell, 2008, 20(7): 1984- 2000.
[60] Cerrudo I, Keller M M, Cargnel M D, Demkura P V, Wit M, Patitucci M S, Pierik R, Pieterse C M J, Ballaré C L. Low Red/Far-Red ratios reduceArabidopsisresistance toBotrytiscinereaand jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiology, 2012, 158(4): 2042- 2052.
[61] Moreno J E, Tao Y, Chory J, Ballaré C L. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4935- 4940.
[62] Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. Protoplasma, 2012, 249(12): 137- 145.
[63] Izaguirre M M, Mazza C A, Svato? A, Baldwin I T, Ballaré C L. Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses inNicotianaattenuataandNicotianalongiflora. Annals of Botany, 2007, 99(1): 103- 109.
[64] Zhao M L, Wang J N, Shan W, Fan J G, Kuang J F, Wu K Q, Li X P, Chen W X, He F Y, Chen J Y, Lu W J. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell and Environment, 2012, 36(1): 30- 51.
[65] Siripatrawan U, Assatarakul K. Methyl jasmonate coupled with modified atmosphere packaging to extend shelf life of tomato (LycopersiconesculentumMill.) during cold storage. International Journal of Food Science and Technology, 2009, 44(5): 1065- 1071.
[66] Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry, 2011, 124(3): 964- 970.
[67] Cao S F, Zheng Y H, Wang K T, Jin P, Rui H J. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry, 2009, 115(4): 1458- 1463.
[68] González-Aguilar G A, Fortiz J, Cruz R, Baez R, Wang C Y. Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. Journal of Agricultural and Food Chemistry, 2000, 48(2): 515- 519.
[69] González-Aguilar G A, Tiznado-Hernández M E, Zavaleta-Gatica R, Martínez-Téllez M A. Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochemical and Biophysical Research Communications, 2003, 313(3): 694- 701.
[70] Yang H G, Yan S L, Chen H J, Yang Z F, Yang F S, Liu Z F. Effect of exogenous methyl jasmonate, calcium and salicylic acid on the heat tolerance in phalaenopsis seedlings under high temperature stress. Chinese Agricultural Science Bulletin, 2011, 27(28): 150- 157.
[71] Arbona V, Argamasilla R, Gómez-Cadenas A. Common and divergent physiological, hormonal and metabolic responses ofArabidopsisthalianaandThellungiellahalophilato water and salt stress. Journal of Plant Physiology, 2010, 167(16): 1342- 1350.
[72] Ollas C, Hernando B, Arbona V, Gómez-Cadenas A. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiologia Plantarun, 2013, 147(3): 296- 306.
[73] Pan R C, Gu H Q. Effect of methyl jasmonate on the growth and drought resistance in peanut seedlings. Acta Phytophysiologica Sinica, 1995, 21(3): 215- 220.
[74] Dong T X, Cai K Z, Zang J X, Rong H, Xie G Z, Zeng R S. The physiological roles of methyl jasmonate (MeJA) in drought resistance of rice seedlings. Ecology and Environment, 2007, 16(4): 1261- 1265.
[75] Anjum S A, Xie X Y, Farooq M, Wang L C, Xue L L, Shahbaz M, Salhab J. Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. African Journal of Biotechnology, 2011, 10(47): 9640- 9646.
[76] Wu H L, Wu X L, Li Z H, Duan L S, Zhang M C. Physiological evaluation of drought stress tolerance and recovery in cauliflower (BrassicaoleraceaL.) seedlings treated with methyl jasmonate and coronatine. Journal of Plant Growth Regulation, 2012, 31(1): 113- 123.
[77] Evans N H. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiology, 2003, 131(1): 8- 11.
[78] Horton R F. Methyl jasmonate and transpiration in barley. Plant Physiology, 1991, 96(4): 1376- 1378.
[79] Asensi-Fabado M A, Munné-Bosch S. Theaba3- 1 mutant ofArabidopsisthalianawithstands moderate doses of salt stress by modulating leaf growth and salicylic acid levels. Journal of Plant Growth Regulation, 2011, 30(4): 456- 466.
[80] Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Pea-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulations, 2003, 41(2): 149- 158.
[81] Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C. Octadecanoid-derived alteration of gene expression and the ‘oxylipin signature’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiology, 2000, 123(1): 177- 188.
[82] Yoon J Y, Hamayun M, Lee S K, Lee I J. Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 2009, 12(2): 63- 68.
[83] An S H, Choi H W, Hwang I S, Hong J K, Hwang B K. A novel pepper membrane-located receptor-like protein geneCaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. Plant Molecular Biology, 2008, 67(5): 519- 533.
[84] Ismail A, Riemann M, Nick P. The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 2012, 63(5): 2127- 2139.
[85] Ballhorn D J, Reisdorff C, Pfanz H. Quantitative effects of enhanced CO2on jasmonic acid induced plant volatiles of lima bean (PhaseoluslunatusL.). Journal of Applied Botany and Food Quality, 2011, 84(1): 65- 71.
[86] Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H J, Kangasjārvi J. Ozone-sensitiveArabidopsisrcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. The Plant Cell, 2000, 12(10): 1849- 1862.
[87] Kanna M, Tamaoki M, Kubo A, Nakajima N, Rakwal R, Agrawal G K, Tamogami S, Ioki M, Ogawa D, Saji H, Aono M. Isolation of an ozone-sensitive and jasmonate-semi-insensitiveArabidopsismutant (oji1). Plant Cell Physiology, 2003, 44(12): 1301- 1310.
[88] Rao M V, Lee H, Creelman R A, Mullet J E, Davis K R. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. The Plant Cell, 2000, 12(9): 1633- 1646.
[89] Koch J R, Creelman R A, Eshita S M, Seskar M, Mullet J E, Davis K R. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiology, 2000, 123(2): 487- 496.
[90] Grantz D A, Vu H B. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3concentrations. Journal of Experimental Botany, 2012, 63(11): 4303- 4313.
[91] Devoto A, Ellis C, Magusin A, Chang H S, Chilcott C, Zhu T, Turnter J G. Expression profiling revealsCOI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Molecular Biology, 2005, 58(4): 497- 513.
[92] Chen Y Z, Pang Q Y, Dai S J, Wang Y, Chen S X, Yan X F. Proteomic identification of differentially expressed proteins inArabidopsisin response to methyl jasmonate. Journal of Plant Physiology, 2011, 168(10): 995- 1008.
參考文獻(xiàn):
[14] 蔣科技, 皮妍, 候嶸, 唐克軒. 植物內(nèi)源茉莉酸類物質(zhì)的生物合成途徑及其生物學(xué)意義. 植物學(xué)報(bào), 2010, 45(2): 137- 148.
[70] 楊華庚, 顏速亮, 陳慧娟, 洋重法, 楊福孫, 劉子凡. 高溫脅迫下外源茉莉酸甲酯、鈣和水楊酸對(duì)蝴蝶蘭幼苗耐熱性的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(28): 150- 157.
[73] 潘瑞熾, 古煥慶. 茉莉酸甲酯對(duì)花生幼苗生長(zhǎng)和抗旱性的影響. 植物生理學(xué)報(bào), 1995, 21(3): 215- 220.
[74] 董桃杏, 蔡昆爭(zhēng), 張景欣, 榮輝, 謝國(guó)政, 曾任森. 茉莉酸甲酯(MeJA)對(duì)水稻幼苗的抗旱生理效應(yīng). 生態(tài)環(huán)境, 2007, 16(4): 1261- 1265.