賈雁兵 楊曉麗? 孫中奎
(1.陜西師范大學(xué),數(shù)學(xué)與信息科學(xué)學(xué)院,西安 710062)(2.西北工業(yè)大學(xué),應(yīng)用數(shù)學(xué)系,西安 710072)
異質(zhì)性和時滯作用下神經(jīng)元網(wǎng)絡(luò)的共振動力學(xué)*
賈雁兵1楊曉麗1?孫中奎2
(1.陜西師范大學(xué),數(shù)學(xué)與信息科學(xué)學(xué)院,西安 710062)(2.西北工業(yè)大學(xué),應(yīng)用數(shù)學(xué)系,西安 710072)
利用參數(shù)互異的Fitzhugh-Nagumo神經(jīng)元構(gòu)建了含耦合時滯的無標度神經(jīng)元網(wǎng)絡(luò)模型,通過數(shù)值模擬的方法,提出研究參數(shù)異質(zhì)性和耦合時滯影響下神經(jīng)元網(wǎng)絡(luò)的共振動力學(xué).結(jié)果發(fā)現(xiàn),當耦合項中不含時滯時,適中的參數(shù)異質(zhì)性能夠使得神經(jīng)元網(wǎng)絡(luò)對外界弱周期信號的響應(yīng)達到最優(yōu),即適中的參數(shù)異質(zhì)性能夠誘導(dǎo)神經(jīng)元網(wǎng)絡(luò)的共振響應(yīng),而且異質(zhì)性誘導(dǎo)共振對耦合強度具有魯棒性.更重要的是,耦合時滯對參數(shù)異質(zhì)性作用下神經(jīng)元網(wǎng)絡(luò)的共振特性也有著顯著性影響.當時滯約為信號周期的整數(shù)倍時,神經(jīng)元網(wǎng)絡(luò)能夠周期性地出現(xiàn)共振現(xiàn)象,即適當?shù)鸟詈蠒r滯能夠誘導(dǎo)神經(jīng)元網(wǎng)絡(luò)的多重共振,而且這種現(xiàn)象在異質(zhì)性參數(shù)的適當范圍內(nèi)都能明顯出現(xiàn).
共振, 異質(zhì)性, 時滯, 神經(jīng)元網(wǎng)絡(luò), 譜放大因子
2013-07-31 收到第 1 稿,2013-09-23 收到修改稿.
*國家自然科學(xué)基金(11272258,11172342)和中央高?;究蒲袠I(yè)務(wù)費專項資金(GK201302001)資助項目
在過去的幾十年里,許多研究者致力于研究噪聲和非線性系統(tǒng)的相互作用.一些經(jīng)典的現(xiàn)象如隨機共振[1]、相干共振[2]、噪聲誘導(dǎo)或增強同步[3-4]、噪聲誘導(dǎo)相變[5]等見證了噪聲對非線性系統(tǒng)有序動力學(xué)的積極影響.而且,研究對象也從簡單的低維系統(tǒng),逐漸擴展到耦合系統(tǒng)以至復(fù)雜網(wǎng)絡(luò)系統(tǒng),有興趣的讀者可參考綜述文獻[6-8].
對于網(wǎng)絡(luò)系統(tǒng),出于數(shù)學(xué)模型的簡化,大部分研究工作認為所有的耦合單元是完全相同的.事實上,許多真實體系如生物網(wǎng)絡(luò)和社會網(wǎng)絡(luò)等,網(wǎng)絡(luò)的個體之間往往是存在差異的.這種差異性在理論研究中通常通過模型方程中的某些關(guān)鍵參數(shù)不同來體現(xiàn),它被稱為參數(shù)異質(zhì)性[9,10].類似于噪聲,參數(shù)異質(zhì)性對網(wǎng)絡(luò)系統(tǒng)的混沌、同步、共振等集體動力學(xué)具有深刻的影響.例如文獻[11]報道了最近鄰耦合的單擺振列中,擺長多樣性能夠?qū)螖[振子由混沌運動轉(zhuǎn)變?yōu)橹芷谶\動;在神經(jīng)元網(wǎng)絡(luò)中,參數(shù)異質(zhì)性可以將神經(jīng)元由振動狀態(tài)轉(zhuǎn)變到可激狀態(tài)[12],也能夠增強網(wǎng)絡(luò)的相干共振[9,13];在 Josephson結(jié)陣列中,Braiman等發(fā)現(xiàn)參數(shù)異質(zhì)性對同步動力學(xué)具有增強作用[14].
特別地,Tessone等于2006年在PRL上報道了在全局耦合的神經(jīng)元或雙穩(wěn)振子網(wǎng)絡(luò)中,模型參數(shù)的差異性能夠增強網(wǎng)絡(luò)系統(tǒng)對弱周期信號的響應(yīng)并引起共振現(xiàn)象[10].相對于經(jīng)典的噪聲誘導(dǎo)隨機共振,這種現(xiàn)象被稱為異質(zhì)性誘導(dǎo)共振.隨后,異質(zhì)性誘導(dǎo)共振在轉(zhuǎn)子體系[15]、電子電路[16]、細胞鈣體系[17]等耦合體系中得到了廣泛的研究.最近,異質(zhì)性與網(wǎng)絡(luò)結(jié)構(gòu)、噪聲、時滯等因素的相互影響也引起了一些學(xué)者的關(guān)注.例如,在神經(jīng)元網(wǎng)絡(luò)中,Gassel等研究了噪聲與參數(shù)異質(zhì)性誘導(dǎo)共振的關(guān)系,發(fā)現(xiàn)噪聲的出現(xiàn)使得誘導(dǎo)共振出現(xiàn)的參數(shù)異質(zhì)性減?。?8];針對由雙穩(wěn)振子構(gòu)成的小世界網(wǎng)絡(luò)系統(tǒng),吳丹等發(fā)現(xiàn)隨機長程連接能夠增強異質(zhì)性誘導(dǎo)的共振,而時滯卻對共振有削弱作用[19].
在神經(jīng)科學(xué)中,耦合的神經(jīng)元之間是存在差異的,這意味著神經(jīng)元網(wǎng)絡(luò)模型中參數(shù)異質(zhì)性普遍存在[9,10].同時,由于動作電位沿軸突的有限傳播速度以及突觸間隙的存在,神經(jīng)信息的傳遞存在時滯效應(yīng)[20].因此,探索參數(shù)異質(zhì)性與耦合時滯對神經(jīng)元網(wǎng)絡(luò)的集體動力學(xué)的影響有著重要的理論意義和潛在的應(yīng)用價值.
已有的研究結(jié)果表明,參數(shù)異質(zhì)性能夠誘導(dǎo)全局耦合的神經(jīng)元網(wǎng)絡(luò)[10]和小世界神經(jīng)元網(wǎng)絡(luò)[21]的共振.然而,大腦皮層中一些區(qū)域內(nèi)神經(jīng)網(wǎng)絡(luò)的連接形式具有無標度特性[22].那么,參數(shù)異質(zhì)性能否誘導(dǎo)無標度神經(jīng)元網(wǎng)絡(luò)的共振?另外,在噪聲的作用下,時滯能夠誘導(dǎo)由全同神經(jīng)元耦合構(gòu)成的神經(jīng)元網(wǎng)絡(luò)的多重共振響應(yīng)[23-25].那么,在參數(shù)異質(zhì)性作用下,時滯對非全同神經(jīng)元構(gòu)成的神經(jīng)元網(wǎng)絡(luò)的共振動力學(xué)又有著怎樣的影響呢?通過查閱文獻,我們發(fā)現(xiàn)這些問題還沒有得到研究.本文將通過構(gòu)造節(jié)點上是Fitzhugh-Nagumo(FN)神經(jīng)元的無標度神經(jīng)元網(wǎng)絡(luò),并利用數(shù)值模擬方法來探討參數(shù)異質(zhì)性和耦合時滯對神經(jīng)元網(wǎng)絡(luò)共振動力學(xué)的關(guān)鍵影響.
我們將FN神經(jīng)元作為BA無標度網(wǎng)絡(luò)的節(jié)點,在外界弱周期信號激勵下,神經(jīng)元網(wǎng)絡(luò)的動力學(xué)方程為
顯然,σ決定不同神經(jīng)元特征參數(shù)的差異性程度:當σ=0時有ai=a0成立,即N個神經(jīng)元完全相同;當σ>0時,不同神經(jīng)元的特征參數(shù)存在差異,而且σ越大,差異性就越顯著.因此,我們也稱σ為異質(zhì)性參數(shù).另外,fsin(Ωt)表示幅值為f、頻率為Ω=2π/T的弱周期信號(T代表周期信號的周期).在以下研究中,我們固定ε=0.01,a0=1.12,f=0.05,T=5.0,并假定 ai是服從正態(tài)分布的隨機變量.
為了定量刻畫系統(tǒng)對激勵信號的響應(yīng),我們引入譜放大因子η[10],其定義為
在這一部分,我們首先討論當方程(1)中的耦合項不含時滯(即τ=0時),神經(jīng)元網(wǎng)絡(luò)在參數(shù)異質(zhì)性作用下的共振響應(yīng).然后,我們在耦合項中引入時滯,并探究時滯對神經(jīng)元網(wǎng)絡(luò)共振特性的影響.
當耦合項中的時滯τ為0時,我們來研究異質(zhì)性參數(shù)σ對神經(jīng)元網(wǎng)絡(luò)集體動力學(xué)的顯著性影響.首先通過時空圖來刻畫神經(jīng)元網(wǎng)絡(luò)的時空動力學(xué).當g=0.01時,圖1刻畫了不同σ取值下神經(jīng)元網(wǎng)絡(luò)的時空圖.由圖1可以觀察到參數(shù)異質(zhì)性對耦合神經(jīng)元的放電行為產(chǎn)生了深刻的影響.當σ=0時,弱周期信號激勵仍不足以使原本處于靜息態(tài)的神經(jīng)元產(chǎn)生放電行為,此時所有耦合神經(jīng)元都沒有放電,如圖1(a)所示.隨著σ的增大,部分神經(jīng)元的特征參數(shù)減小而產(chǎn)生放電行為,放電神經(jīng)元通過耦合作用帶動其它神經(jīng)元也放電,如圖1(b)所示.有趣的是,當σ取值大小適中時,時空圖達到了一個最規(guī)則狀態(tài),如圖1(c)所示,此時不同神經(jīng)元的放電動力學(xué)基本同步,而且絕大部分神經(jīng)元放電周期約為5.0,這與弱周期信號的節(jié)律一致.但是,隨著σ的進一步增大,大的異質(zhì)性參數(shù)σ導(dǎo)致神經(jīng)元的特征參數(shù)ai的分布比較廣泛,這使得小部分神經(jīng)元的特征參數(shù)遠大于1.0而不能放電,同時也使得部分放電神經(jīng)元的放電節(jié)律不能跟隨弱周期信號的節(jié)律,如圖1(d)與圖1(e)所示,神經(jīng)元網(wǎng)絡(luò)的時空圖反而又變的不規(guī)則了,耦合神經(jīng)元的放電節(jié)律與弱周期信號節(jié)律的一致性被破壞.以上現(xiàn)象說明當異質(zhì)性參數(shù)取值大小適中時,神經(jīng)元網(wǎng)絡(luò)的集體動力學(xué)對弱周期激勵的響應(yīng)達到了最優(yōu),即適中的參數(shù)異質(zhì)性能夠誘導(dǎo)神經(jīng)元網(wǎng)絡(luò)的共振行為.
圖1 g=0.01時,不同σ取值下神經(jīng)元網(wǎng)絡(luò)的時空圖:(a)σ =0;(b)σ =0.055;(c)σ =0.07;(d)σ =0.12;(e)σ =0.3Fig.1 The space-time plots of coupled neurons on the networks for different σ:(a)σ =0;(b)σ =0.055;(c)σ =0.07;(d)σ =0.12 and(e)σ =0.3 when g=0.01
進一步地,下面借助于譜放大因子η(方程(4))來定量刻畫神經(jīng)元網(wǎng)絡(luò)對弱周期信號的響應(yīng).當耦合強度為g=0.01時,圖2刻畫了譜放大因子η隨著異質(zhì)性參數(shù)σ變化的曲線(帶實心方格的曲線).如圖所示,隨著σ的增大,η先增大后減小,并當σ≈0.07時達到最大值.該現(xiàn)象意味著適中的參數(shù)異質(zhì)性能夠誘導(dǎo)無標度神經(jīng)元網(wǎng)絡(luò)的共振響應(yīng),這與圖1中定性分析的結(jié)果相一致.
另外,圖2也給出了耦合強度取其它值(如g=0.005,0.02,0.05,0.08 時),η隨著σ的演化曲線.不難發(fā)現(xiàn),對固定的g,隨著σ的增大,η總是先增大再減小,并在適中的σ處達到最大值.這表明神經(jīng)元網(wǎng)絡(luò)中異質(zhì)性誘導(dǎo)共振對耦合強度具有魯棒性.同時,我們也發(fā)現(xiàn)隨著耦合強度的增加,曲線的峰值先增大再減小,這說明存在一個適中的耦合強度,使得神經(jīng)元網(wǎng)絡(luò)的共振特性最佳.
2 對不同的耦合強度,譜放大因子η隨著異質(zhì)性參數(shù)σ變化的曲線Fig.2 The dependence of η on σ for different coupling strength
在上一節(jié)的研究基礎(chǔ)上,下面在耦合項中引入耦合時滯,進一步研究時滯對異質(zhì)性誘導(dǎo)的共振動力學(xué)的影響.不失一般性,固定異質(zhì)性參數(shù)σ=0.07,耦合強度g=0.01.首先通過時空圖來刻畫時滯對神經(jīng)元網(wǎng)絡(luò)時空動力學(xué)的影響.圖3給出不同時滯作用下神經(jīng)元網(wǎng)絡(luò)的時空圖.
圖3 異質(zhì)性參數(shù)σ=0.07、耦合強度g=0.01時不同τ取值下神經(jīng)元網(wǎng)絡(luò)的時空圖:(a)τ=0;(b)τ=2.5;(c)τ=5.0;(d)τ=7.5;(e)τ =10.0;(f)τ=11.0Fig.3 The space- time plots of coupled neurons on the networks for different τ:(a)τ=0;(b)τ=2.5;(c)τ=5.0;(d)τ=7.5;(e)τ=10.0 and(f)τ=11.0 when σ =0.07 and g=0.01
由圖3可知,隨著時滯的增加,時空圖間歇性地呈現(xiàn)規(guī)則和不規(guī)則狀態(tài):當τ=0、5.0和10.0時,分別如圖3(a)、3(c)和3(e)所示,時空圖呈現(xiàn)規(guī)則狀態(tài),此時耦合神經(jīng)元的放電行為基本達到同步,而且絕大部分神經(jīng)元的放電周期約為5.0,這與弱周期信號的節(jié)律一致;而當τ=2.5、7.5和11.0時,分別如圖3(b)、3(d)和3(f)所示,時空圖呈現(xiàn)不規(guī)則狀態(tài),而且神經(jīng)元的放電節(jié)律與弱周期信號的節(jié)律不一致.
圖4 異質(zhì)性參數(shù)σ=0.07、耦合強度g=0.01時不同時滯取值下神經(jīng)元網(wǎng)絡(luò)中耦合神經(jīng)元放電峰峰間期的統(tǒng)計直方圖:(a)τ=0;(b)τ=2.5;(c)τ=5.0;(d)τ =7.5;(e)τ=10.0;(f)τ=11.0ig.4 The histogram of interspike intervals of the networks for different τ:(a)τ=0;(b)τ=2.5;(c)τ=5.0;(d)τ=7.5;(e)τ=10.0 and(f)τ=11.0 when σ =0.07 and g=0.01
為了更形象地刻畫神經(jīng)元的放電節(jié)律,下面進一步來描繪網(wǎng)絡(luò)中耦合神經(jīng)元的放電峰峰間期(ISI).圖4(a)、4(c)和 4(e)分別刻畫了當τ=0、5.0和10.0時耦合神經(jīng)元ISI的統(tǒng)計直方圖.由圖可知,絕大部分神經(jīng)元的峰峰間期集中在5.0附近.圖4(b)、4(d)和 4(f)分別刻畫了τ=2.5、7.5和11.0時神經(jīng)元網(wǎng)絡(luò)ISI的統(tǒng)計直方圖,此時耦合神經(jīng)元的放電峰峰間期分布在較寬的一個區(qū)域上,神經(jīng)元的放電序列沒有明顯的規(guī)律性.根據(jù)以上分析不難得到:耦合時滯對于誘導(dǎo)神經(jīng)元網(wǎng)絡(luò)的時空有序行為起著積極的作用,而且時空有序出現(xiàn)在時滯約等于信號周期T=5.0的整數(shù)倍時.
接下來,我們也借助于譜放大因子η來定量地刻畫耦合時滯對神經(jīng)元網(wǎng)絡(luò)共振動力學(xué)的影響.當σ=0.07,g=0.01時,圖5描繪了譜放大因子η隨著時滯τ的變化曲線.由圖可知,隨著τ的增加,曲線呈現(xiàn)出多峰現(xiàn)象,而且峰值分別出現(xiàn)在τ=0、5.0和10.0處.該結(jié)果表明當τ約為信號周期的整數(shù)倍時,神經(jīng)元網(wǎng)絡(luò)對弱周期信號的響應(yīng)達到最佳,這與圖3和圖4的分析結(jié)果一致,即:適當?shù)鸟詈蠒r滯,能夠使得參數(shù)異質(zhì)性作用下的共振響應(yīng)周期性出現(xiàn),我們也稱這種有趣現(xiàn)象為時滯誘導(dǎo)的多重共振.需要指出的是,越來越多的研究關(guān)注到耦合時滯對神經(jīng)元網(wǎng)絡(luò)動力學(xué)中的影響,一些重要結(jié)果如時滯增強的同步[27,28]、時滯誘導(dǎo)的同步過渡[29,30]、時滯誘導(dǎo)的多重隨機共振[23-25]與相干共振[31]、時滯誘導(dǎo)的時空有序[32]已被揭曉.不同于已有的研究,這里我們研究的是無噪聲情形、由不同神經(jīng)元構(gòu)成的無標度神經(jīng)元網(wǎng)絡(luò)中,耦合時滯對參數(shù)異質(zhì)性作用下網(wǎng)絡(luò)系統(tǒng)共振動力學(xué)的影響.
圖5 當σ=0.07、g=0.01時譜放大因子η隨著時滯τ變化的曲線Fig.5 The dependence of η on when σ =0.07 and g=0.01
圖6 耦合強度為g=0.01時,譜放大因子η隨著耦合時滯τ和異質(zhì)性參數(shù)σ變化的圖像:(a)曲面圖,(b)等高線圖Fig.6 The dependence of η on τ and σ when g=0.01:(a)mesh surface,(b)contour plot
進一步數(shù)值計算的結(jié)果表明,當異質(zhì)性參數(shù)取其它值時,時滯誘導(dǎo)的多重共振也能出現(xiàn).圖6描繪了譜放大因子η隨著耦合時滯τ和異質(zhì)性參數(shù)σ變化的曲面圖及相應(yīng)的等高線圖.由圖可知,對于適中的σ,當τ的取值在0、5.0和10.0附近時,η達到峰值.這表明對于合適的異質(zhì)性參數(shù),當時滯約為信號周期的整數(shù)倍時,即時滯和弱周期信號鎖定時,時滯誘導(dǎo)的多重共振也能明顯出現(xiàn).
考慮到大腦皮層中一些區(qū)域內(nèi)的神經(jīng)元網(wǎng)絡(luò)具有無標度特性,而且參數(shù)異質(zhì)性和時滯在神經(jīng)系統(tǒng)中普遍存在.鑒于此,本文通過構(gòu)建節(jié)點上動力學(xué)不同、含有耦合時滯的無標度神經(jīng)元網(wǎng)絡(luò)模型,首次討論了參數(shù)異質(zhì)性和耦合時滯作用下無標度神經(jīng)元網(wǎng)絡(luò)的共振動力學(xué),并得到了一些重要結(jié)果:當時滯為零時,適中的參數(shù)異質(zhì)性能夠誘導(dǎo)無標度神經(jīng)元網(wǎng)絡(luò)的共振響應(yīng),而且異質(zhì)性誘導(dǎo)共振對耦合強度具有魯棒性;當時滯出現(xiàn)時,在一定的異質(zhì)性參數(shù)范圍內(nèi),適當?shù)臅r滯能夠誘導(dǎo)多重共振現(xiàn)象,即當時滯約是信號周期的整數(shù)倍時,時滯能夠使得異質(zhì)性作用下的共振響應(yīng)周期性出現(xiàn).本文的結(jié)果豐富了神經(jīng)科學(xué)的理論成果,它對理解神經(jīng)系統(tǒng)中弱周期信號的探測將提供一定的幫助.
1 Benzi R,Sutera A,Vulpiani A.The mechanism of stochastic resonance.Journal of Physics A,1981,14:L453 ~L457
2 Pikovsky A,Kurths J.Coherence resonance in a noise driven excitable system.Physical Review Letters,1997,78(5):775~778
3 Maritan A,Banavar J R.Chaos,noise,and synchronization.Physical Review Letters,1994,72(10):1451~1454
4 Zhou C S,Kurths J.Noise-induced phase synchronization and synchronization transitions in chaotic oscillators.Physical Review Letters,2002,88(23):230602
5 Van den Broeck C,Parrondo J,Toral R.Noise-induced nonequilibrium phase transition.Physical Review Letters,1994,73(25):3395~3398
6 Gammaitoni L,H?nggi P,Jung P et al..Stochastic resonance.Reviews of Modern Physics,1998,70(1):223 ~287
7 Sagués F,Sancho J M,García- Ojalvo J.Spatiotemporal order out of noise.Reviews of Modern Physics,2007,79(3):829~882
8 Lindner B,García-Ojalvo J,Neiman A et al..Effects of noise in excitable systems.Physics Reports,2004,392:321~424
9 Zhou C S,Kurths J,Hu B.Array- enhanced coherence resonance:Nontrivial effects of heterogeneity and spatial independence of noise.Physical Review Letters,2001,87(9):098101
10 Tessone C J,Mirasso C R,Toral R et al..Diversity-induced resonance.Physical Review Letters,2006,97(19):194101
11 Qi F,Hou Z H,Xin H W.New characterization of disorder taming spatiotemporal chaos.Physics Letters A,2003,308:405~410
12 Glatt E,Gassel M,Kaiser F.Variability-induced transition in a net of neural elements:From oscillatory to excitable behavior.Physical Review E,2006,73(6):066230
13 Li Y Y,Jia B,Gu H G et al..Parameter diversity induced multiple spatial coherence resonances and spiral waves in neuronal network with and without noise.Communications in Theoretical Physics,2012,57(5):817–824
14 Braiman Y,Ditto W L,Wiesenfeld K et al..Disorderenhanced synchronization.Physics Letters A,1995,206:54~60
15 Lafuerza L F,Colet P,Toral R.Nonuniversal Results Induced by Diversity Distribution in Coupled Excitable Systems.Physical Review Letters,2010,105(8):084101
16 Yao C G,Zhan M.Simple electronic circuit model for diversity-induced resonance.Physics Letters A,2010,374:2446~2451
17 Chen H S,Zhang J Q,Liu J Q.Structural-diversity-enhanced cellular ability to detect subthreshold extracellular signals.Physical Review E,2007,75(4):041910
18 Gassel M,Glatt E,Kaiser F.Doubly diversity-induced resonance.Physical Review E,2007,76(1):016203
19 Wu D,Zhu S Q,Luo X Q.Cooperative effects of random time delays and small-world topologies on diversity-induced resonance.Europhysics Letters,2009,86:50002
20 Kandel E R,Schwartz J H,Jessell T M.Principles of neural science.Elsevier,1991
21 Shen C S,Chen H S,Zhang J Q.Amplified signal response by neuronal diversity on complex networks.Chinese Physics Letters,2008,25(5):1591~1594
22 Eguíluz V M,Chialvo D R,Cecchi G A et al..Scale-free brain functional networks.Physical Review Letters,2005,94(1):018102
23 Wang Q Y,Perc M,Duan Z S et al..Delay-induced mutiple stochastic resonances on scale- free neuronal networks.Chaos,2009,19:023112
24 Gan C B,Perc M,Wang Q Y.Delay-aided stochastic mul-tiresonances on scale-free FitzHugh-Nagumo neuronal networks.Chinese Physics B,2010,19(4):040508
25 Yu H T,Wang J,Du J W et al..Effects of time delay on the stochastic resonance in small-world neuronal networks.Chaos,2013,23(1):013128
26 Barabási A L,Albert R.Emergence of scaling in random networks.Science,1999,286:509 ~512
27 Dhamala M,Jirsa V K,Ding M Z.Enhancement of neural synchrony by time delay.Physical Review Letters,2004,92(7):074104
28 張艷嬌,李美生,陸啟韶.ML神經(jīng)元的放電模式及時滯對神經(jīng)元同步的影響.動力學(xué)與控制學(xué)報,2009,7(1):19 ~23(Zhang Y J,Li M S,Lu Q S.Firing patterns and the effect of time-delay coupling on synchronization of two coupled chaotic ML neurons.Journal of Dynamics and Control,2009,7(1):19~23(in Chinese))
29 Gong Y B,Xie Y H,Lin X et al..Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks.Chaos,Solitons&Fractals,2010,43:96~103
30 Wang Q Y,Chen G R,Perc M.Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling.PLoS ONE,2011,6(1):e15851
31 Hao Y H,Gong Y B,Lin X et al..Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise.Science China,2011,54(5):782~787
32 Yang X L,Senthilkumar D V,Kurths J.Impact of connection delays on noise-induced spatiotemporal patterns in neuronal networks.Chaos,2012,22(4):043150
*The project supported by the National Nature Science Foundation of China(11272258,11172342)and the Fundermental Funds Research for the Central Universities(GK201302001)
? Corresponding author E-mail:yangxiaoli@snnu.edu.cn
IMPACT OF DIVERSITY AND DELAYS ON THE RESONANCE DYNAMICS OF NEURONAL NETWORKS*
Jia Yanbing1Yang Xiaoli1?Sun Zhongkui2
(1.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an710062,China)(2.Department of Applied Mathematics,Northwestern Polytechnical University,Xi’an710072,China)
A model of scale-free neuronal networks,which consists of heterogeneous Fitzhugh-Nagumo neurons and time-delayed coupling,was constructed.Then,we explored the nontrivial effects of heterogeneity and time-delayed coupling on the resonance dynamics by numerical simulation in this model.When the delays in the coupling are absent,the result has shown that the response of the neuronal networks to an external subthreshold periodic signal is optimized at an intermediate heterogeneity,namely,an appropriate tuned level of heterogeneity can induce resonance in the neuronal networks.This phenomenon was also confirmed to be robust to the changes of the coupling strength.Most importantly,we find that the delays in the coupling have significant influences on the resonance dynamics.It is revealed that proper delays can induce multiple resonances in the neuronal networks,which appears at each multiple of the oscillation period of the signal.Moreover,the performance of fine tuned delays in inducing multiple resonances can also be clearly observed when the heterogeneity is within an appropriate range.
resonance, diversity, delays, neuronal networks, spectral amplification factor
31 July 2013,
23 September 2013.
10.6052/1672-6553-2013-096
E-mail:yangxiaoli@snnu.edu.cn