胡有婧,紀(jì)永強(qiáng)
(1.寧夏大學(xué) 數(shù)學(xué)計(jì)算機(jī)學(xué)院,銀川 750021; 2.湖州師范學(xué)院 理學(xué)院,浙江 湖州 313000)
deSitter空間中的緊致極大類時(shí)子流形
胡有婧1,紀(jì)永強(qiáng)2
(1.寧夏大學(xué) 數(shù)學(xué)計(jì)算機(jī)學(xué)院,銀川 750021; 2.湖州師范學(xué)院 理學(xué)院,浙江 湖州 313000)
采用活動(dòng)標(biāo)架法,得到de Sitter空間中類時(shí)子流形的Ricci恒等式和第二基本形式長(zhǎng)度平方的Laplacian,并得到de Sitter空間中緊致極大類時(shí)子流形成為全測(cè)地子流形的一些充分條件.
de Sitter空間; Ricci恒等式; 類時(shí); 全測(cè)地
對(duì)于de Sitter空間中的緊致類空子流形,目前已有許多研究結(jié)果[1-4].文獻(xiàn)[5-6]將de Sitter空間中的子流形分類為類空、 類光和類時(shí)子流形.本文參考文獻(xiàn)[7-12],通過(guò)計(jì)算de Sitter空間中類時(shí)子流形的Ricci恒等式和第二基本形式長(zhǎng)度平方的Laplacian,獲得了如下de Sitter空間中的緊致極大類時(shí)子流形成為全測(cè)地子流形的充分條件.
約定各類指標(biāo)范圍如下:
1≤i,j,k,…≤n;n+1≤α,β,γ,…≤n+p; 1≤A,B,C,…≤n+p.
將ω1,…,ωn+p限制到Mn上,由于ωα(e1)=…=ωα(en)=0,于是有
對(duì)式(6)外微分并利用Cartan引理[8]得
又由式(2),(3),(4),(6),(7),經(jīng)過(guò)計(jì)算可得[8]
在偽Riemann標(biāo)準(zhǔn)正交標(biāo)架下,有[5-8]
從而可得de Sitter空間中類時(shí)子流形的Ricci恒等式[9]:
設(shè)曲率張量場(chǎng)Kαijk的一階共變導(dǎo)數(shù)為Kαijk;l,類似式(8),則有
由式(5),(9),(11),得
經(jīng)過(guò)計(jì)算有
仿文獻(xiàn)[10-11]的技巧,對(duì)一切實(shí)數(shù)A,有
3.1定理1的證明
將式(13)代入式(12)得
將式(15)兩邊關(guān)于α求和,再由式(13)得
經(jīng)過(guò)計(jì)算易得
將式(17)兩邊關(guān)于α,β求和,有
此外,有如下Lincoln不等式[8]成立:
在式(14)中,令A(yù)≥1>0,又由式(16),(18),(19),得
從而
3.2定理2的證明
由文獻(xiàn)[7],有
在式(14)中,令A(yù)≥1>0,由式(16),(18)和(21),得
從而
當(dāng)σ=n(c-2Rmax)時(shí),不等式(16),(18),(21)均為等式,從而有:
Rijij=Rmax,
[1] 許志才.de Sitter空間中具有常均曲率的類空超曲面(Ⅱ) [J].數(shù)學(xué)雜志,1998,18(4): 466-468.(XU Zhicai.Spacelike Hypersurfaces with Constant Mean Curvature in de Sitter Space(Ⅱ) [J].Journal of Mathematics,1998,18(4): 466-468.)
[2]舒世昌,劉三陽(yáng).de Sitter空間中具平行平均曲率向量的完備類空子流形(Ⅱ) [J].應(yīng)用數(shù)學(xué),2002,15(3): 76-80.(SHU Shichang,LIU Sanyang.Complete Spacelike Submanifolds in a de Sitter Space with Parallel Mean Curvature Vector(Ⅱ) [J].Mathematica Applicata,2002,15(3): 76-80.)
[3]劉建成,方慧穎.de Sitter空間中具有平行平均曲率向量的完備類空子流形 [J].西北師范大學(xué)學(xué)報(bào): 自然科學(xué)版,2009,45(4): 23-26.(LIU Jiancheng,FANG Huiying.Complete Space-Like Submanifolds with Parallel Mean Curvature Vector in de Sitter Spaces [J].Journal of Northwest Normal University: Natural Science,2009,45(4): 23-26.)
[4]WEN Bo,WANG Qiang,PENG Cuiying.A Totally Umbilical Condition of Compact Space-Like Hypersurfaces in the de Sitter Space [J].Journal of Mathmatical Research & Exposition,2003,23(3): 467-472.
[5]劉海明,苗佳晶,許宏文,等.廣義de Sitter空間中的類時(shí)超曲面 [J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2011,41(16): 193-200.(LIU Haiming,MIAO Jiajing,XU Hongwen,et al.Timelike Hypersurfaces in General de Sitter Space [J].Mathematics in Practice and Theory,2011,41(16): 193-200.)
[6]孔令令,裴東河.四維Mincowski空間中類時(shí)超曲面的de Sitter Gauss映射的奇點(diǎn)分類 [J].中國(guó)科學(xué)A輯: 數(shù)學(xué),2007,37(6): 751-758.(KONG Lingling,PEI Donghe.Singularities of de Sitter Gauss Map of Timelike Hypersurface in Minkowski 4-Space [J].Science in China Series A: Mathematics,2007,37(6): 751-758.)
[7]胡有婧,紀(jì)永強(qiáng),汪文帥.局部對(duì)稱空間中的緊致子流形 [J].數(shù)學(xué)雜志,2013,33(6): 1133-1144.(HU Youjing,JI Yongqiang,WANG Wenshuai.The Compact Submanifold in a Locally-Symmetric Space [J].Journal of Mathematics,2013,33(6): 1133-1144.)
[8]紀(jì)永強(qiáng).子流形幾何 [M].北京: 科學(xué)出版社,2004.(JI Yongqiang.Geometry of Submanifolds [M].Beijing: Science Press,2004.)
[9]白正國(guó),沈一兵,水乃翔,等.黎曼幾何初步 [M].北京: 高等教育出版社,2004.(BAI Zhengguo,SHEN Yibing,SHUI Naixiang,et al.An Introduction to Riemann Geometry [M].Beijing: Higher Education Press,2004.)
[10]YAU Shingtung.Submanifolds with Constant Mean Curvature Ⅰ [J].American Journal of Mathmatics,1974,96(2): 346-366.
[11]YAU Shingtung.Submanifolds with Constant Mean Curvature Ⅱ [J].American Journal of Mathmatics,1975,97(1): 76-100.
[12]Erbacher J.Reduction of the Codimension of an Isometric Immersion [J].Journal of Differential Geometry,1971,5(3/4): 333-340.
(責(zé)任編輯: 趙立芹)
TheCompactTimelikeSubmanifoldsinthedeSitterSpace
HU Youjing1,JI Yongqiang2
(1.CollegeofMathematicsandComputerScience,NingxiaUniversity,Yinchuan750021,China;
2.CollegeofScience,HuzhouTeachersCollege,Huzhou313000,ZhejiangProvince,China)
Based on the moving frams,the Ricci identity and the Laplacian about the squared norm of the second fundamental form for the timelike submanifolds in de Sitter space were calculated,and some necessary conditions for the compact maximal timelike submanifold in de Sitter space were given.
de Sitter space; Ricci identity; timelike; totally geodesic
2013-12-05.
胡有婧(1978—),女,漢族,碩士,講師,從事子流形幾何的研究,E-mail: hyq@nxu.edu.cn.
國(guó)家自然科學(xué)基金青年基金(批準(zhǔn)號(hào): 11201253)和國(guó)家自然科學(xué)基金地區(qū)基金(批準(zhǔn)號(hào): 11261042).
O186.12
A
1671-5489(2014)05-0895-06