国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

融合,讓合和數(shù)學(xué)課堂向更深處漫

2014-08-20 16:40溯楊琴
文理導(dǎo)航 2014年12期
關(guān)鍵詞:密鋪空隙教者

溯楊琴

“合和數(shù)學(xué)課堂”中的“合” 指融合、合作、結(jié)合,“和”指“平和、和順、和諧”,怎樣建立合和數(shù)學(xué)課堂?筆者以為,“合和數(shù)學(xué)課堂”首先要體現(xiàn)教師對教材體系的融會貫通和對學(xué)生認(rèn)知能力的了如指掌,只有這樣,課堂才會真正其樂融融,課堂才會向兒童發(fā)展的更深處漫溯,下面以課例加以說明。

《奇妙的圖形密鋪》是一節(jié)數(shù)學(xué)實(shí)踐活動課,課前筆者在電腦課件上大做文章,學(xué)生猜想驗(yàn)證并欣賞電腦刷屏帶來的視覺沖擊,課堂氣氛看似熱烈,但問題出現(xiàn):1.始終有孩子認(rèn)為正五邊形能密鋪。2.為了追求圖形奇妙,孩子們設(shè)計(jì)的不是密鋪的圖案。學(xué)生出現(xiàn)的問題折射出教者對實(shí)踐活動課的片面理解,其次,也顯示出教者對教材理解的膚淺。于是筆者重新研究學(xué)生,走進(jìn)教材,自問并思考了以下幾個(gè)問題:

一、是“奇妙的圖形”密鋪還是“圖形密鋪”是奇妙的?

課題理解,是教者定位教學(xué)目標(biāo),設(shè)計(jì)教學(xué)預(yù)案,開展教學(xué)過程的關(guān)鍵。第一次教學(xué)中教者極力展示生活中的密鋪現(xiàn)象,利用多媒體讓學(xué)生欣賞著名設(shè)計(jì)家埃舍爾用“奇妙的圖形”密鋪的圖案,學(xué)生驚嘆的是風(fēng)景,卻沒有領(lǐng)悟“圖形密鋪”的實(shí)質(zhì)。教者重新定位課題,制定教學(xué)目標(biāo),讓學(xué)生在猜想、驗(yàn)證的基礎(chǔ)上先了解能密鋪的平面圖形的特點(diǎn),以此設(shè)計(jì)簡單圖形的密鋪圖案,在此基礎(chǔ)上通過欣賞神奇的密鋪世界,激發(fā)學(xué)生去追求設(shè)計(jì)更奇妙的密鋪圖案。

二、密鋪概念的內(nèi)涵是什么?

第一次教學(xué),有學(xué)生提出“一塊玻璃打碎后粘合起來就是密鋪”,“密鋪就是密密麻麻地鋪著”,還有學(xué)生認(rèn)為正五邊形也能密鋪,因?yàn)殇伋梢慌艜r(shí)沒有空隙,也不重疊。由于教師對密鋪的理解僅僅停留于“無空隙,不重疊”,所以對學(xué)生的疑問僅通過“將五邊形鋪了之后發(fā)現(xiàn)有空隙”這一現(xiàn)象進(jìn)行了反駁,學(xué)生并沒有看到概念的本質(zhì),甚至以為一種圖形這樣鋪不是密鋪,換成那樣鋪就可能是密鋪。到底什么是密鋪?百度上說:用形狀、大小完全相同的一種或幾種平面圖形進(jìn)行拼接,彼此之間不留空隙、不重疊地鋪成一片,這就是平面圖形的密鋪,又稱做鑲嵌。原來“鋪成一片”意味著一種或幾種平面圖形進(jìn)行拼接,可以繼續(xù)無空隙不重疊地向四面八方鋪下去。

三、學(xué)生認(rèn)知提升障礙的突破點(diǎn)在哪里?

當(dāng)學(xué)生對能不能密鋪只能用直覺判斷時(shí),教者必須幫助學(xué)生突破認(rèn)知上的障礙,“鋪成一片”可以通過電腦動畫的設(shè)計(jì),向左向右向四面八方鋪下去,學(xué)生通過觀察、思考、想像出密鋪現(xiàn)象的可延展性。第一次教學(xué)后,教者翻閱各個(gè)教材版本,融會貫通之后,終于找到了學(xué)生研究的瓶頸,為什么有人認(rèn)為正五邊形能密鋪,是因?yàn)榈谝淮谓虒W(xué)時(shí)教者呈現(xiàn)的是長方形和正方形地磚實(shí)物圖,學(xué)生缺乏由實(shí)物抽象到圖形這樣一個(gè)重要的思維過程。只有將正方形和長方形密鋪后的圖形動態(tài)呈現(xiàn)給學(xué)生看,他們才能領(lǐng)悟到能密鋪的這些常見的平面圖形它們鋪成后能形成一個(gè)周角。

【再實(shí)踐】

帶著這些追問和積淀,筆者重新打磨課堂:

一、理解密鋪概念

師:從字面上你怎樣理解“密鋪”?

師:根據(jù)理解判斷,下面這四幅畫面哪些是密鋪?哪些不是?密鋪的這兩幅圖,它們分別是由哪種圖形鋪成的?是怎樣鋪在一起的?

師:向四周鋪下去會有空隙、會重疊嗎?還能這樣向四面八方鋪下去嗎?

……

二、探究平面圖形能不能密鋪

(學(xué)生驗(yàn)證活動過程略)

師:哪些圖形能密鋪?哪些不能?

生1:平行四邊形、等腰梯形和正三角形是可以密鋪的,而圓和正五邊形不能密鋪。

生2:我鋪了一排沒有空隙,所以正五邊形是可以密鋪的。

生3:你鋪一排看不出來,再鋪一排看看,發(fā)現(xiàn)這里有空隙了吧,所以正五邊形不能密鋪。

生4:我們組將正五邊形拼成了一個(gè)像環(huán)形的圖形,我想把中間的空隙鋪滿,但是不行,所以正五邊形不能密鋪。

生5:其實(shí)正五邊形不需要鋪那么多,我就用了三個(gè),發(fā)現(xiàn)鋪成之后有個(gè)缺口,我就知道正五邊形不能密鋪。

生6:其他的圖形也不需要鋪很多,只要鋪好后沒有缺口,這個(gè)圖形就能密鋪。

師:通過小組合作驗(yàn)證我們知道:圓和正五邊形不能單獨(dú)密鋪,其他四個(gè)圖形不管向哪個(gè)方向鋪都能單獨(dú)密鋪。對這些研究的圖形你們有問題要問嗎?

生1:為什么有的圖形能密鋪?有的圖形不能密鋪?

生2:可能和圖形的什么有關(guān)呢?

生3:和邊有關(guān),也可能和角有關(guān)。

師:我們就來觀察角的情況,(電腦動畫)你發(fā)現(xiàn)了什么?

師:剛才我們研究的梯形和三角形都比較特殊,那么任意三角形能密鋪嗎?任意梯形呢?

生1:用2個(gè)完全一樣的三角形就能拼出平行四邊形,平行四邊形能密鋪,所以任意三角形也能密鋪。生2:任意梯形也可以轉(zhuǎn)化為平行四邊形,所以也能密鋪。

小結(jié):一種圖形,只要能轉(zhuǎn)化成已經(jīng)確認(rèn)能密鋪的基本圖形(如長方形、正方形、平行四邊形等等),那么,這種圖形就能密鋪。

三、探索兩種平面圖形組合密鋪的環(huán)節(jié)

(活動過程略)

師:剛才驗(yàn)證的是七巧板中兩種圖形組合能密鋪,試想一下,如果是3種4種或更多種圖形組合起來能不能密鋪?不能單獨(dú)密鋪的正五邊形與哪種圖形組合就能密鋪呢?再來看圓,是與什么圖形組合密鋪的?

師:還能繼續(xù)密鋪下去嗎?想象一下,可以鋪多大?

四、走進(jìn)密鋪世界的環(huán)節(jié)

師:密鋪圖案美嗎?下面讓我們在優(yōu)美的音樂聲中走進(jìn)奇妙的密鋪世界。

……

【再實(shí)踐后的思考】

再實(shí)踐的過程是教者走進(jìn)教材后,走向?qū)W生的過程。教師、教材、學(xué)生的融合促進(jìn)了學(xué)生的發(fā)展,為課堂注入生命的活力,具體表現(xiàn)在:

一、學(xué)生的簡單操作發(fā)展為學(xué)生的數(shù)學(xué)經(jīng)驗(yàn)。

在這節(jié)課中,教者設(shè)計(jì)了探索一種平面圖形能否密鋪的活動、兩種平面圖形組合密鋪的活動、自主設(shè)計(jì)密鋪圖案等活動。在第一次的教學(xué)中,學(xué)生在教者的指令下操作,沒

(下轉(zhuǎn)第34頁)

(上接第33頁)

有目的和思考,更談不上生成。再實(shí)踐的課堂中,學(xué)生先猜想后驗(yàn)證,經(jīng)過自主探究后,他們向同伴表達(dá)探究的結(jié)果,在表達(dá)中碰撞思維,又發(fā)現(xiàn)新問題,為了解決新問題,又產(chǎn)生新思考。杜威曾說:教育就是經(jīng)驗(yàn)的改造或改組。這種改造或改組,既能增加經(jīng)驗(yàn)的意義,又能提高指導(dǎo)后來經(jīng)驗(yàn)進(jìn)程的能力?!薄耙话凰窘?jīng)驗(yàn)勝過一噸理論”。學(xué)生的數(shù)學(xué)經(jīng)驗(yàn)是他們一輩子的財(cái)富。

二、學(xué)生簡單的思考發(fā)展為學(xué)生的數(shù)學(xué)思維。

密鋪現(xiàn)象生活中很常見,能單獨(dú)密鋪的平面圖形它們有怎樣的共性?這些數(shù)學(xué)問題在孩子心中很模糊,再實(shí)踐的課堂中,當(dāng)實(shí)物密鋪抽象為圖形的密鋪后,學(xué)生開始從數(shù)學(xué)的角度思考問題,回答開始涉及圖形的邊和角,甚至有孩子能說出“邊緊靠著邊”“角緊靠著角”。在觀察任意三角形和任意梯形能否密鋪時(shí),學(xué)生想到了用“轉(zhuǎn)化”的方法來思考。鄭毓信教授說:只有通過深入揭示隱藏在具體數(shù)學(xué)知識內(nèi)容背后的思維方法,向?qū)W生展示的才是“活生生”的數(shù)學(xué)研究。對問題進(jìn)行數(shù)學(xué)地思考,是學(xué)生解決數(shù)學(xué)問題的先決條件,是學(xué)生全面的、終身的、可持續(xù)發(fā)展的重要技能。通過數(shù)學(xué)活動,引發(fā)數(shù)學(xué)思考,發(fā)展數(shù)學(xué)思維,“最終幫助孩子學(xué)會思維”,這是我們數(shù)學(xué)教師不可推卸的社會責(zé)任。

三、教材簡單的數(shù)學(xué)知識發(fā)展為學(xué)生的數(shù)學(xué)文化。

數(shù)學(xué)是人類的一種文化,簡單的密鋪知識中蘊(yùn)含著奇妙的數(shù)學(xué)文化,著名藝術(shù)家埃舍爾從建筑中得到靈感與啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給后世留下深刻印象,欣賞這些圖案不僅能讓學(xué)生再次觸摸密鋪內(nèi)涵,更能打動他們的心靈,激發(fā)他們的創(chuàng)造能力。我們在課堂中要有意識地讓學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中受到數(shù)學(xué)文化感染,產(chǎn)生文化共鳴,讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)美,欣賞數(shù)學(xué)美,進(jìn)而激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的審美能力,形成一定的數(shù)學(xué)文化素養(yǎng)。

“合和數(shù)學(xué)課堂”中,教師深入理解教材,把相應(yīng)教學(xué)內(nèi)容放到數(shù)學(xué)知識的結(jié)構(gòu)鏈中,把握這一知識點(diǎn)在知識鏈中所處的位置,對教學(xué)內(nèi)容、教學(xué)目標(biāo)做出準(zhǔn)確定位,這才是教師與教材的真正融合;教師走進(jìn)兒童的內(nèi)心世界,理解兒童的數(shù)學(xué)思維,認(rèn)識到兒童在已知和新知間“自洽的”、“合理的”的錯誤,從而有的放矢地幫助學(xué)生,這才是教師與學(xué)生的真正融合。教師、教材、學(xué)生融為一體,課堂才會真正走向和諧,走向發(fā)展。

(作者單位:江蘇省如皋市如城實(shí)驗(yàn)小學(xué))

猜你喜歡
密鋪空隙教者
圖形的密鋪教學(xué)設(shè)計(jì)
密密鋪
密鋪圖形里的秘密
空隙
抓住關(guān)鍵點(diǎn),突出實(shí)效性
——《密鋪》教學(xué)及思考
北京樓市新政封堵防炒作空隙
音樂表演技能培養(yǎng)之我見
某生課寢
受教者主體性視角下推進(jìn)中國馬克思主義大眾化
基于空隙率的透水性瀝青路面配合比設(shè)計(jì)
东平县| 资溪县| 蒲江县| 汉源县| 巨鹿县| 达孜县| 禄丰县| 东丰县| 咸阳市| 双辽市| 广德县| 永善县| 台南县| 江山市| 平凉市| 通榆县| 邹平县| 内丘县| 于田县| 兰西县| 天台县| 襄垣县| 木兰县| 颍上县| 阜新市| 汉沽区| 威远县| 浦江县| 玛多县| 景洪市| 枣庄市| 阜阳市| 毕节市| 延吉市| 营山县| 哈巴河县| 禹州市| 西和县| 昆明市| 天门市| 平原县|