尹靜靜等
摘要:本研究分析了水稻野生型和phyB突變體中脯氨酸代謝途徑關(guān)鍵基因的表達(dá)水平。結(jié)果顯示,干旱處理能夠誘導(dǎo)脯氨酸生物合成相關(guān)基因OsP5CS1和OsOAT的表達(dá),抑制脯氨酸生物降解基因OsP5CDH的表達(dá)。且phyB突變體中OsP5CS1基因的表達(dá)水平明顯高于野生型,據(jù)此推測phyB負(fù)調(diào)控OsP5CS1基因的表達(dá)。為了分析OsP5CS1基因的高水平表達(dá)是否與phyB突變體較強(qiáng)的干旱脅迫耐性有關(guān),本研究進(jìn)一步培育了轉(zhuǎn)OsP5CS1基因煙草。離體葉片失水速率結(jié)果表明,轉(zhuǎn)基因煙草的失水速率小于野生型;鹽脅迫條件下,轉(zhuǎn)基因煙草的分化率明顯高于野生型。綜上所述,phyB對脯氨酸代謝途徑的調(diào)控是phyB突變體具有較強(qiáng)干旱脅迫耐性的重要因素之一。
關(guān)鍵詞:水稻;phyB突變體;脯氨酸;干旱;鹽脅迫
中圖分類號:Q786:Q945.79 文獻(xiàn)標(biāo)識號:A 文章編號:1001-4942(2014)03-0001-04
AbstractThe expression levels of key genes involved in proline metabolic pathway were compared in rice wild type (WT) and phyB mutant. The results showed that dehydration treatment induced the expression of proline biosynthetic gene OsP5CS1 and OsOAT, but suppressed the expression of proline catabolic gene OsP5CDH. And the expression level of OsP5CS1 gene in phyB mutant was obviously higher than that in WT, which suggesting that phyB negatively regulated its expression. To explore the relation between high OsP5CS1 transcript level and stronger drought tolerance in phyB mutant, the OsP5CS1 transgenic tobacco was obtained. Water loss rate assays of detached leaves revealed that transgenic tobacco showed a slower water loss rate compared to non-transgenic tobacco. In addition, the leaf disk differentiation rate under high salinity of transgenic tobacco was higher than that of non-transgenic tobacco. These findings suggested that the regulation of phyB on proline metabolic pathway was one of the important factors contributing to stronger drought tolerance in phyB mutant.
Key wordsRice; phyB mutant; Proline; Drought; Salt stress
植物受到非生物脅迫后,能夠誘導(dǎo)許多基因的表達(dá),其中一類基因編碼參與滲透調(diào)節(jié)物質(zhì)合成和解毒作用的酶及轉(zhuǎn)運(yùn)蛋白[1]。脯氨酸是一種重要的滲透調(diào)節(jié)物質(zhì),其在植物中的主要作用可分為兩部分:一是保持原生質(zhì)與環(huán)境的滲透平衡[2],它可與胞內(nèi)一些化合物形成聚合物,類似親水膠體,防止水分散失;二是保持膜結(jié)構(gòu)的完整性[3]。脯氨酸與蛋白質(zhì)相互作用能增加蛋白質(zhì)的可溶性,減少可溶性蛋白的沉淀,增強(qiáng)蛋白質(zhì)的水合作用。
植物體脯氨酸的合成有兩條途徑:谷氨酸途徑和鳥氨酸途徑[4]。谷氨酸途徑的初始底物是谷氨酸,在吡咯琳-5-羧酸合成酶[P5CS,Delta(1)-pyrroline-5-carboxylate synthetase]的催化下生成谷氨酸半醛(GSA),GSA在吡咯琳-5-羧酸還原酶 (P5CR)的催化下生成脯氨酸。研究表明,P5CS是脯氨酸合成途徑中起主要調(diào)控作用的關(guān)鍵酶[4],是整個(gè)反應(yīng)的限速酶并受脯氨酸的反饋抑制[5]。吡咯琳-5-羧酸脫氫酶[P5CDH,Delta(1)-pyrroline-5-carboxylate dehydrogenase]催化GSA生成谷氨酸,參與脯氨酸的降解途徑。鳥氨酸途徑的底物是鳥氨酸,在鳥氨酸轉(zhuǎn)氨酶(OAT,Ornithine-δ-aminotransferase)的催化下生成GSA,從而參與脯氨酸的合成。在滲透脅迫和氮饑餓情況下,脯氨酸經(jīng)由谷氨酸途徑合成占主導(dǎo)。
已有的研究表明,水稻光敏色素B(phyB)突變體具有較強(qiáng)的干旱脅迫耐性,生理機(jī)理分析結(jié)果表明,其具有較強(qiáng)的滲透調(diào)節(jié)能力,干旱條件下phyB突變體中脯氨酸含量高于野生型[6]。據(jù)此推測phyB影響脯氨酸代謝。為了分析phyB影響脯氨酸代謝及干旱脅迫耐性的機(jī)制,本研究比較了正常及干旱處理?xiàng)l件下野生型和phyB突變體中脯氨酸代謝相關(guān)基因的表達(dá)水平。此外,構(gòu)建了OsP5CS1基因的過表達(dá)載體,獲得了轉(zhuǎn)基因煙草,并對其干旱和鹽脅迫耐性進(jìn)行分析。
1材料與方法
1.1植物材料
本研究所用水稻材料(野生型和phyB突變體)為日本晴(Oryza sativa L. cv. Nipponbare)[7],所用煙草品種為SR(Nicotiana tabacum cv. Petit Havana SR)。
1.2水稻的干旱處理
野生型和phyB突變體水稻種子表面消毒后,播種于0.4%(W/V)的瓊脂培養(yǎng)基中,光照培養(yǎng)箱(寧波江南)中培養(yǎng)7 d后,移栽至溫室 (光照14 h,28℃;黑暗10 h,23℃) 土壤中繼續(xù)培養(yǎng)至六葉一心期。取第五葉在光照培養(yǎng)箱中(相對濕度60%,25℃,4 900 lx)失水處理4 h,取材保存于液氮中,用于分析脯氨酸代謝相關(guān)基因的表達(dá)模式。
1.3基因表達(dá)模式分析
按照RNAiso Plus(TaKaRa)說明書提取水稻RNA。利用RNase-free DNase(TaKaRa)除去RNA中的DNA,根據(jù)PrimeScript RT Enzyme Mix I(TaKaRa)說明書合成第一鏈。本研究所用基因在GenBank數(shù)據(jù)庫中的序列號、引物序列及擴(kuò)增條件如表1所示。以ACTIN為內(nèi)參基因。引物由上海英濰捷基生物有限公司合成。
2結(jié)果與分析
2.1干旱處理后水稻脯氨酸代謝相關(guān)基因表達(dá)模式分析
如圖1所示,正常條件下,OsP5CS1、OsP5CDH和OsOAT基因在野生型和phyB突變體中的表達(dá)水平無顯著差別。干旱處理4 h后,OsP5CS1基因在野生型中的表達(dá)略有提高,但在phyB突變體中的表達(dá)明顯提高。OsP5CDH基因的表達(dá)受干旱處理的抑制,且在phyB突變體中的抑制效果更明顯。干旱處理同樣誘導(dǎo)了OsOAT基因在野生型和phyB突變體中的表達(dá)。這些結(jié)果表明,干旱處理誘導(dǎo)脯氨酸合成途徑相關(guān)基因的表達(dá),抑制降解途徑相關(guān)基因的表達(dá),且phyB負(fù)調(diào)控干旱處理對OsP5CS1基因的誘導(dǎo)。
3討論
在本研究中,干旱脅迫誘導(dǎo)了脯氨酸合成基因OsP5CS1和OsOAT的表達(dá),抑制了降解基因OsP5CDH的表達(dá)。這與已有的報(bào)道一致,OsP5CS1和OsOAT基因被干旱、高鹽等脅迫因素誘導(dǎo)[12,13]。關(guān)于干旱對OsP5CDH基因表達(dá)調(diào)控的研究尚未見報(bào)道。通過比較野生型和phyB突變體中脯氨酸代謝相關(guān)基因的表達(dá)水平,可以看出phyB負(fù)調(diào)控干旱對OsP5CS1基因的表達(dá)。phyB是水稻光敏色素家族成員,主要感受紅光[7,14,15]。ABA是一種重要的植物激素,在調(diào)節(jié)植物滲透脅迫反應(yīng)中具有重要作用。已有研究表明,phyB突變體中ABA的含量以及ABA敏感性均高于野生型[16]。因此,phyB可能通過影響ABA途徑調(diào)控OsP5CS1基因的表達(dá)。除了ABA依賴途徑,脯氨酸的積累還受ABA非依賴途徑的調(diào)控[17],水稻phyB是否參與調(diào)控脯氨酸ABA非依賴途徑的累積還需要進(jìn)一步研究。
通過分析OsP5CS1轉(zhuǎn)基因煙草的干旱和鹽脅迫耐性,初步發(fā)現(xiàn)過表達(dá)OsP5CS1基因能夠降低轉(zhuǎn)基因煙草離體葉片的失水速率并提高葉盤在鹽脅迫下的分化能力,據(jù)此推測OsP5CS1轉(zhuǎn)基因煙草具有較強(qiáng)的干旱脅迫和鹽脅迫耐性。因此,干旱處理后phyB突變體中OsP5CS1基因表達(dá)水平較高可能是phyB突變體具有較強(qiáng)干旱脅迫耐性的因素之一。
參考文獻(xiàn):
[1]Bhatnagar-Mathur P, Vadez V, Sharma K K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects[J]. Plant Cell Rep., 2008, 27(3):411-424.
[2]許祥明,葉和春,李國鳳.脯氨酸代謝與植物抗?jié)B透脅迫的研究進(jìn)展[J].植物學(xué)通報(bào),2000, 17(6):536-542.
[3]Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis [J]. Plant Sci., 2004, 166: 941-948.
[4]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. Plant J., 1993, 4 (2): 215-223.
[5]Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiol., 2000, 122(4): 1129-1136.
[6]Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice [J]. Plant Mol. Biol., 2012, 78 (3):289-300.
[7]Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice [J]. Plant Cell, 2005, 17(12): 3311-3325.
[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.
[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.
[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.
[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因?qū)μ岣邿煵菘鼓嫘阅艿难芯?[J]. 微生物學(xué)報(bào), 2001, 41(4): 427-431.
[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.
[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.
[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.
[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.
[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導(dǎo)光信號影響水稻的脫落酸途徑 [J]. 科學(xué)通報(bào), 2012, 57(25):2371-2379.
[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.
[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.
[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.
[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.
[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因?qū)μ岣邿煵菘鼓嫘阅艿难芯?[J]. 微生物學(xué)報(bào), 2001, 41(4): 427-431.
[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.
[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.
[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.
[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.
[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導(dǎo)光信號影響水稻的脫落酸途徑 [J]. 科學(xué)通報(bào), 2012, 57(25):2371-2379.
[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.
[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.
[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.
[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.
[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因?qū)μ岣邿煵菘鼓嫘阅艿难芯?[J]. 微生物學(xué)報(bào), 2001, 41(4): 427-431.
[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.
[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.
[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.
[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.
[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導(dǎo)光信號影響水稻的脫落酸途徑 [J]. 科學(xué)通報(bào), 2012, 57(25):2371-2379.
[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.