華中科技大學(xué)附屬協(xié)和醫(yī)院 袁莉 賴嬌
袁莉 教授、主任醫(yī)師、博士生導(dǎo)師,華中科技大學(xué)附屬協(xié)和醫(yī)院內(nèi)分泌研究室主任,德國海德堡大學(xué)醫(yī)學(xué)博士、博士后。中華醫(yī)學(xué)會(huì)糖尿病分會(huì)全國委員兼流行病學(xué)組副組長,湖北省內(nèi)分泌學(xué)會(huì)副主任委員。兼任《臨床內(nèi)科》雜志、《臨床心血管》雜志、《華中科技大學(xué)學(xué)報(bào)》等雜志編委。長期致力于2型糖尿病病因機(jī)制及其慢性并發(fā)癥防治的研究,造詣深厚。先后負(fù)責(zé)承擔(dān)2項(xiàng)國家自然科學(xué)基金以及國家支撐計(jì)劃、衛(wèi)生部、教育部和省科技課題10余項(xiàng),數(shù)次獲得省市科技進(jìn)步獎(jiǎng),在國內(nèi)外核心期刊上發(fā)表論著260余篇,SCI收錄文章30余篇。
腸促胰素類藥物由于其良好的降糖效應(yīng)及其安全性而廣受國內(nèi)外關(guān)注。這類藥物不僅控制血糖良好、低血糖發(fā)生率低,還可減輕體重,在一定程度上改善胰島細(xì)胞功能、減輕胰島素抵抗[1]。同時(shí),新近研究顯示,腸促胰素類藥物還具有一系列降糖外的作用。本文將主要介紹腸促胰素類藥物降糖之外的研究進(jìn)展。
胰高血糖素樣肽-1(glucagonlike peptide -1,GLP-1)是一種主要在腸道L細(xì)胞(它主要分布于回腸和結(jié)腸黏膜)分泌產(chǎn)生的腸促胰島素,由胰高血糖素原基因翻譯后經(jīng)特異性剪切,含30個(gè)氨基酸殘基組成的多肽,與胰高血糖素的氨基酸序列有50%同源性,故而得名,通過與特異性的GLP-1受體(GLP-1R)相結(jié)合從而發(fā)揮生物學(xué)作用[2,3]。GLP-1受體分布可能存在物種差異[2,4]。目前明確的是GLP-1受體在體內(nèi)廣泛分布于胰島、腦、心臟、腎臟、胃腸道、肺等器官組織,而在脂肪、肌肉及肝臟組織中的分布尚有爭議。
當(dāng)食物進(jìn)入胃腸道時(shí)可刺激腸道L細(xì)胞短時(shí)間內(nèi)快速分泌GLP-1,促進(jìn)攝入的營養(yǎng)素的快速處理,同時(shí)生成的GLP-1與特異性受體結(jié)合后對(duì)全身多個(gè)器官組織產(chǎn)生一系列生理作用[5]。
GLP-1發(fā)揮對(duì)神經(jīng)元細(xì)胞的增殖,新生和抗凋亡作用,刺激神經(jīng)元軸突生長,促進(jìn)神經(jīng)生長因子誘導(dǎo)的細(xì)胞分化,并提高神經(jīng)生長因子從PC12細(xì)胞撤出后的細(xì)胞存活率,另外GLP-1受體分布在與食欲調(diào)節(jié)關(guān)系密切的下丘腦室旁核、垂體等處,受體激活后可抑制食欲[5,6]。
GLP-1與β細(xì)胞表面的GLP-1R結(jié)合后激活環(huán)磷酸腺苷(cyclic AMP,cAMP)、蛋白激酶A(protein kinase A,PKA)及磷脂酰肌醇-3-激酶(phosphotidylinositol 3-kinase,Pl3K)等信號(hào)通路,增強(qiáng)葡萄糖介導(dǎo)的胰島素分泌[3,7],降低血糖。同時(shí)調(diào)節(jié)胰島素基因的活性,促進(jìn)胰島素合成與分泌,同時(shí)還發(fā)揮抑制胰高血糖素分泌,增加β細(xì)胞的生長、增殖和分化,和抑制β細(xì)胞凋亡的作用[8-14]。
GLP-1呈現(xiàn)出對(duì)五肽胃泌素、膳食刺激的胃酸分泌和胃排空有強(qiáng)效抑制作用, GLP-1通過抑制迷走神經(jīng)而抑制胃和十二指腸平滑肌蠕動(dòng),增加幽門部的壓力,從而延緩胃排空,抑制胃酸分泌,延緩食物吸收,降低餐后高血糖[15]。
研究發(fā)現(xiàn),GLP-l在肝臟通過激活Pl3K、蛋白激酶B(protein kinase B,PKB)、蛋白激酶C(protein kinase C,PKC)和l型蛋白磷酸酶(PP-1)等信號(hào)通路增加糖原合酶a活性,促進(jìn)肝糖原合成,抑制肝葡萄糖生成。
GLP-1刺激脂肪組織和肌肉對(duì)葡萄糖的攝取和儲(chǔ)存,增加骨骼肌糖原合成,GLP-1治療還可降低腹圍及皮下脂肪面積[16],增加外周組織對(duì)胰島素的敏感性,改善胰島素抵抗[17-19]。
GLP-1通過胃排空的減慢和胰高血糖素分泌的葡萄糖依賴性抑制以及外周組織對(duì)胰島素敏感性的提高發(fā)揮糖調(diào)節(jié)作用,使血糖維持穩(wěn)態(tài)[5]。
GLP-1可提高心臟功能(即收縮壓、舒張壓、平均動(dòng)脈血壓和心率的增加),包括增加心輸出量和左心室射血分?jǐn)?shù)[5,6,20]。
一項(xiàng)納入25個(gè)隨機(jī)對(duì)照試驗(yàn)的薈萃分析顯示,患有或無糖尿病者以及體質(zhì)指數(shù)(body mass index,BM I)≥25kg/m2者在接受GLP-1受體激動(dòng)劑治療至少20周后比接受其他治療(安慰劑、口服降糖藥、胰島素)者獲得更大的體重減輕[21]。關(guān)于2型糖尿病,AM IGO三年延伸研究及LEAD-1~6研究均顯示患者在使用GLP-1受體激動(dòng)劑治療后體重下降[17,18,22-25]。而在非糖尿病的肥胖患者中,亦有研究顯示利拉魯肽呈劑量依賴性減輕體重,范圍從4.8~7.2kg(平均體重)[26]。GLP-1減重的作用與其減少食欲、增加飽腹感和減少能量攝入有關(guān)。一項(xiàng)雙盲交叉對(duì)照研究的結(jié)果表明,GLP-1通過抑制2型糖尿病患者的饑餓感顯著減少能量攝取,與安慰劑組相比,GLP-1組能量攝取降低27%(P=0.034),增加飽腹感(P=0.026),同時(shí)通過增加2型糖尿病患者的飽腹感、減少能量攝入,GLP-1對(duì)減少食欲的效果顯著[27]。在健康志愿者中的數(shù)據(jù)發(fā)現(xiàn),外源性的GLP-1于人類能量攝取和食欲控制可發(fā)揮生理調(diào)節(jié)作用[28]。另外,還有多項(xiàng)研究顯示在體瘦者和超重者中GLP-1均可抑制隨意能量攝入,且該效應(yīng)是呈劑量依賴性的,不受GLP-1輸注的影響[29]。研究發(fā)現(xiàn),GLP-1可通過迷走神經(jīng)調(diào)節(jié)參與飽食信號(hào)的傳導(dǎo)。此外,GLP-1受體存在于腦中的多個(gè)區(qū)域,在腦干(極后區(qū)和穹窿)的受體被認(rèn)為涉及誘導(dǎo)飽腹感,不管胃中是否有食物存在[30]。另有實(shí)驗(yàn)發(fā)現(xiàn)迷走神經(jīng)根除術(shù)和腦干-下丘腦截?cái)嘈g(shù)后大鼠攝食量明顯減少,表明GLP-1抑制食欲減少能量攝入的機(jī)制與迷走神經(jīng)-腦干-下丘腦相關(guān)[31]。生理水平的GLP-1可通過延遲胃排空、減少胃酸分泌、增加飽腹感以減少機(jī)體每次食物攝入量、延長進(jìn)食間隔。臨床研究表明,GLP-1受體激動(dòng)劑還可以通過血糖依賴性控制胰島素分泌、恢復(fù)第一時(shí)相胰島素分泌、抑制胰高血糖素分泌和減少肝糖輸出等多種途徑達(dá)到持續(xù)控制HbA1c并降低體重的臨床療效[2]。
Ban等[4]通過組織染色,除胰島外可見GLP-1R在小鼠心內(nèi)膜、血管內(nèi)皮、平滑肌細(xì)胞、心肌細(xì)胞、左室、右室、室間隔和心房中均有分布,其中于心內(nèi)膜分布最多,GLP-1R存在于小鼠心血管系統(tǒng)的多個(gè)部位,這是GLP-1可以作用于心血管的基礎(chǔ)?;罨腉LP-1R在心血管功能障礙的臨床前模型中發(fā)揮多種心血管保護(hù)作用,人類受試者的短期研究似乎也證明GLP-1對(duì)缺血性心臟疾病患者的心臟功能有溫和而有益的作用。GLP-1主要通過增加葡萄糖利用、減少脂肪酸代謝、增強(qiáng)葡萄糖刺激的胰島素分泌、抑制胰高血糖素分泌等,從而發(fā)揮對(duì)心血管系統(tǒng)的直接和間接作用[32]。
2.1 降低血壓 關(guān)于艾塞那肽治療6 個(gè)月的薈萃分析顯示,2171例2型糖尿病患者使用艾塞那肽治療后收縮壓(systolic blood pressure,SBP )顯著降低[33]。另一項(xiàng)薈萃分析也顯示,經(jīng)GLP-1治療至少20周后,受試者的收縮壓及舒張壓均有所下降[21]。LEAD-1~6研究分析顯示2型糖尿病患者的收縮壓每下降5.6mmHg,可減少9%的主大血管和微血管事件風(fēng)險(xiǎn)以及18%的心血管疾病死亡風(fēng)險(xiǎn)[34]。GLP-1可滲入血腦屏障,刺激迷走神經(jīng)纖維(通過腸道和肝門靜脈),腦干和下丘腦的信號(hào)傳導(dǎo)激活迷走神經(jīng)的傳出纖維和交感神經(jīng)元,繼而影響心率、心臟的收縮力、血管張力、兒茶酚胺的分泌,以及腎臟中尿液和鈉排出,進(jìn)而調(diào)節(jié)血壓。其對(duì)血壓的影響機(jī)制主要有:①改善血管內(nèi)皮功能;②促進(jìn)尿排泄和尿鈉排泄;③直接作用于血管上的GLP-1R使血管舒張;④激活神經(jīng)通路而降低交感神經(jīng)系統(tǒng)活性;⑤激動(dòng)GLP-1R受體使體重降低;⑥增加胰島素導(dǎo)致血管舒張[35]。
2.2. 減少心肌梗死面積,提高存活率,減少心肌細(xì)胞凋亡 Noyan-Ashraf等[35]的研究顯示給雄性C57BL/6糖尿病小鼠每天2次利拉魯肽(對(duì)照組給予生理鹽水)治療7d后誘導(dǎo)心肌梗死,利拉魯肽可明顯提高心肌梗死后小鼠存活率,預(yù)防心臟破裂(12/60 vs 46/60,P=0.0001),減少心肌梗死面積(21%±2% vs 29%±3%,P=0.02),增加心輸出量和每搏輸出量(12.4±0.6m l/m in vs 9.7±0.6m l/m in,P=0.002),且在停止治療的第4天仍能觀察到利拉魯肽對(duì)心臟的保護(hù)作用。其機(jī)制可能為利拉魯肽在心臟激活心臟保護(hù)信號(hào)通路,誘導(dǎo)cAMP形成,抑制胱天蛋白酶的激活,增強(qiáng)細(xì)胞保護(hù)作用,減少心肌細(xì)胞凋亡,增加心肌葡萄糖攝取,改善內(nèi)皮依賴性血流介導(dǎo)的血管擴(kuò)張(flow-mediated dilation,F(xiàn)MD),增加心肌血流灌注,減輕心肌缺血再灌注損傷(ischem ia reperfusion injury,I/R injury),同時(shí)還調(diào)節(jié)心臟保護(hù)性基因的活性表達(dá)[4,36-38]。
2.3 改善血脂譜,降低TC和LDL-C 在1項(xiàng)長達(dá)三年半的研究中發(fā)現(xiàn),艾塞那肽在降低患者體重的同時(shí)可降低12%的甘油三酯(triglyceride,TG)、6%的低密度脂蛋白膽固醇(low density lipoprotein cholesterol,LDL-C)、5%的總膽固醇(total cholesterol,TC),且增加24%的高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)[24]。另外,在一項(xiàng)8個(gè)月的前瞻性試驗(yàn)研究和DURATION-5研究中,艾塞那肽治療可使TC和LDL-C水平顯著下降[39,40]。
2.4 改善氧化應(yīng)激、減少炎癥 GLP-1能合理控制氧化應(yīng)激的發(fā)生,減少炎癥反應(yīng)[41],顯著減少頸動(dòng)脈內(nèi)中膜厚度(intima-media thickness,IMT)[39]。GLP-1及其類似物通過一氧化氮(nitric oxide,NO)和非NO途徑,使NO合成增多,同時(shí)GLP-1還能改善內(nèi)皮功能,進(jìn)而使動(dòng)脈內(nèi)膜增生減緩,延緩動(dòng)脈粥樣硬化的發(fā)生和進(jìn)展[32]。
2.5 GLP-1潛在的心血管保護(hù)作用機(jī)制 動(dòng)脈粥樣硬化是重要的心血管危險(xiǎn)因素,GLP-1通過多種直接或間接途徑減少粥樣斑塊形成:①GLP-1 抑制食欲,延緩胃排空,減少脂類、碳水化合物等攝入[32];②非胃排空依賴性地調(diào)節(jié)腸淋巴流,減少載脂蛋白B-48(ApoB-48)生成,減少空腹TG,尤其是極低密度脂蛋白膽固醇
(very low density lipoprotein cholesterol,VLDL-C),減少游離脂肪酸分泌[42,43];③抑制單核/巨噬細(xì)胞在動(dòng)脈壁上的浸潤、聚集和泡沫化,抑制TNF-α等炎性介質(zhì)的合成及分泌[44];④減少活性氧(reactive oxygen species,ROS)生成,促進(jìn)NO分泌,減輕局部炎癥,保護(hù)內(nèi)皮細(xì)胞[32,45];⑤減少主動(dòng)脈、冠脈平滑肌細(xì)胞增生[32],減輕動(dòng)脈粥樣硬化。
3.1 改善血管內(nèi)皮 有研究顯示,給予維格列汀、艾塞那肽、胰島素治療12周后,腸促胰素類藥物能顯著改善糖尿病大鼠心臟微血管的完整性,顯著減少穿過血管內(nèi)皮細(xì)胞的硝酸鑭,改善內(nèi)皮細(xì)胞通透性,且此心臟內(nèi)皮細(xì)胞保護(hù)作用不依賴降糖作用[46]。GLP-1能劑量依賴性的抑制ROS生成并降低NADPH活性,特別是 GLP-1 在10-8mol/L濃度下對(duì)ROS及NADPH的抑制最顯著[46]。GLP-1還能明顯減少半胱氨酸天冬氨酸蛋白酶3(caspase-3)在高糖誘導(dǎo)的CMECs內(nèi)的表達(dá),減少心肌內(nèi)皮細(xì)胞凋亡(46.1%±8.5% vs 29.8%±5.3%,P<0.05)[46]。一項(xiàng)隨機(jī)交叉單盲的試驗(yàn)性研究顯示,GLP-1改善FMD,從而改善2型糖尿病合并冠心病患者的內(nèi)皮功能[47]。Golpon等[48]的研究也證明了GLP-1對(duì)血管的舒張功能,同時(shí)認(rèn)為這種功能是NO依賴性的。Gaspari等[49]在體外試驗(yàn)顯示利拉魯肽可減弱1型纖溶酶原激活物抑制劑(PAI-1)和血管黏附分子(VAM)在人血管內(nèi)皮細(xì)胞(hVECs)上的表達(dá),并且對(duì)糖尿病早期血管病變內(nèi)皮細(xì)胞功能障礙(ECD)提供細(xì)胞保護(hù);在體內(nèi)試驗(yàn)中利拉魯肽治療可增加內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)和降低細(xì)胞間黏附分子-1(ICAM-1)在血管內(nèi)皮細(xì)胞中的表達(dá),經(jīng)治療的小鼠表現(xiàn)出顯著改善血管內(nèi)皮功能,且呈GLP-1R依賴效應(yīng)。
3.2 改善微循環(huán)
3.2.1 胰島微循環(huán) 胰島是分散在整個(gè)胰腺的高度血管化結(jié)構(gòu),所包含有的毛細(xì)血管網(wǎng)是胰腺外分泌部的5~10倍[50],其體積大約只有整個(gè)胰腺的1%,但其血流灌注卻占胰腺的7%~10%[51]。OLETF和LETO大鼠的動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),在非糖尿病大鼠胰島內(nèi),胰島微血管致密成簇,形成典型的球狀結(jié)構(gòu),β細(xì)胞均勻彌散分布;肥胖的糖尿病大鼠中,胰島略纖維化,胰島微血管可形成球狀結(jié)構(gòu),但毛細(xì)血管網(wǎng)數(shù)量減少,β細(xì)胞成團(tuán)散布但數(shù)量相對(duì)豐富;消瘦的糖尿病大鼠胰島大部分被增生的結(jié)締組織占據(jù),胰島微血管數(shù)量少且稀疏,β細(xì)胞稀疏分布[52]。糖耐量異常和糖尿病動(dòng)物模型均存在胰島微循環(huán)異常,長期胰島高灌注和由此產(chǎn)生的毛細(xì)血管內(nèi)高壓導(dǎo)致毛細(xì)血管功能和結(jié)構(gòu)的破壞,造成胰島血流量(islet blood f l ow,IBF)相對(duì)或絕對(duì)不足且局部血流調(diào)節(jié)受損,能進(jìn)一步損傷胰島功能。GLP-1受體激動(dòng)劑降低大鼠高糖負(fù)荷后IBF,從而逆轉(zhuǎn)胰島毛細(xì)血管內(nèi)高壓,可能是其促進(jìn)β細(xì)胞增殖分化,抑制β細(xì)胞凋亡以外的另一個(gè)β細(xì)胞保護(hù)機(jī)制[53]。另外,有研究顯示GLP-1能抑制脂質(zhì)過氧化,還原內(nèi)源性抗氧化劑的活性,從而逆轉(zhuǎn)oxLDL對(duì)小鼠胰島內(nèi)皮細(xì)胞造成的損傷[54]。
3.2.2 腎臟微循環(huán) 糖尿病早期即存在急性腎小球肥大,隨著系膜細(xì)胞基質(zhì)增加,毛細(xì)血管表面積減少,濾過面積減少?;啄ぴ龊駥?dǎo)致了通透性的改變,濾過屏障損傷,腎小球細(xì)胞外基質(zhì)的堆積,最終導(dǎo)致腎小球栓塞、纖維化、濾過能力下降、尿蛋白增多[55]。M ima等[56]的免疫雙標(biāo)研究表明,糖尿病小鼠與非糖尿病小鼠相比腎小球內(nèi)皮細(xì)胞GLP-1R表達(dá)降低了43%±12%。同時(shí)M ima[56]的研究也顯示艾塞那肽可以抑制AngⅡ誘導(dǎo)的PAI-1增加,抑制氧化應(yīng)激,顯著降低糖尿病小鼠的尿蛋白,減少糖尿病小鼠胞外基質(zhì)堆積,延緩糖尿病腎病進(jìn)展。
在動(dòng)物模型中發(fā)現(xiàn)了使用GLP-1治療減少脂肪肝的證據(jù)[57],而12個(gè)RCT研究的薈萃分析,3900例病例,也發(fā)現(xiàn)經(jīng)利拉魯肽治療≥20周后,ALT下降(-2.2IU/L,-3.6~0.9)[21]。同時(shí),另一研究顯示艾塞那肽治療3年,ALT顯著降低,作用可長期維持,且ALT改善程度與體重減輕相關(guān),體重下降越多,ALT降低越明顯[21]。一項(xiàng)納入LEAD-1~6研究的薈萃分析顯示,GLP-1可改善2 型糖尿病患者的肝功能且具有劑量依賴性[58]。另外,2006年的一個(gè)病例報(bào)告,一例59歲的2型糖尿病患者在接受GLP-1受體激動(dòng)劑(艾塞那肽)治療44周后,經(jīng)肝臟光譜測定肝臟平均脂肪含量從15.8%下降到4.3%[59]。還有一些研究發(fā)現(xiàn),GLP-1減少肥胖小鼠肝細(xì)胞脂肪[60],明顯改善肝細(xì)胞脂肪變性[61],在TZD基礎(chǔ)上能進(jìn)一步減少肝臟脂肪。越來越多的證據(jù)表明,GLP-1具有逆轉(zhuǎn)或延緩非酒精性脂肪肝進(jìn)展至肝硬化的潛在作用。
其機(jī)制可能是通過分布于肝細(xì)胞上的受體發(fā)揮作用,減少肝細(xì)胞內(nèi)脂滴沉著,降低肝細(xì)胞內(nèi)TG,提高胰島素的敏感性,改善肝細(xì)胞脂肪變性[60,61];降低肝細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),來防止肝細(xì)胞脂肪酸相關(guān)性死亡,同時(shí)通過激發(fā)自噬作用減低肝細(xì)胞的脂負(fù)荷,從而延緩肝臟脂肪變性的發(fā)展[57]。
隨著對(duì)GLP-1的不斷研究,發(fā)現(xiàn)中樞孤束核尾部亦存在能分泌GLP-1的GLP-1神經(jīng)元。Perry等[62,63]研究顯示GLP-1在大鼠嗜鉻細(xì)胞瘤細(xì)胞和人神經(jīng)母細(xì)胞瘤細(xì)胞系具有刺激神經(jīng)突向外生長的作用,類似神經(jīng)生長因子(nerve grow th factor,NGF),并且GLP-1通過增加cAMP的釋放,減少谷氨酸誘導(dǎo)的海馬神經(jīng)元凋亡。用施旺細(xì)胞條件培養(yǎng)基培養(yǎng)小鼠背根神經(jīng)節(jié)(dorsal root ganglion,DRG)以模仿糖尿病神經(jīng)病變的實(shí)驗(yàn)中明確了GLP-1R在DRG神經(jīng)元中的表達(dá),同時(shí)發(fā)現(xiàn)GLP-1R激動(dòng)劑可顯著促進(jìn)DRG受損的神經(jīng)突生長[64]。研究發(fā)現(xiàn),GLP-1能提高小鼠的空間學(xué)習(xí)、認(rèn)知和記憶功能, 在Morris水迷宮(Morris water maze, MWM)實(shí)驗(yàn)中觀察到GLP-1改善了大鼠的行為:大鼠用更短的途程找到目標(biāo)(平臺(tái)),當(dāng)去掉平臺(tái)后大鼠在正確區(qū)域停留時(shí)間更長。此試驗(yàn)顯示GLP-1可增強(qiáng)聯(lián)想學(xué)習(xí)和空間學(xué)習(xí),且這些作用能被GLP-1R拮抗劑阻斷;通過海馬基因轉(zhuǎn)移增加GLP-1R的表達(dá)能有效地增強(qiáng)學(xué)習(xí)和記憶;聯(lián)想學(xué)習(xí)模式的訓(xùn)練還可使GLP-1R轉(zhuǎn)錄合成相應(yīng)上調(diào)[65]。此外,有研究表明GLP-1可使β-淀粉樣蛋白斑在皮層減少40%~50%,改善阿茲海默病模型小鼠的認(rèn)知功能[66]。
綜上所述,GLP-1R在體內(nèi)分布廣泛,不僅在調(diào)節(jié)血糖穩(wěn)態(tài)中發(fā)揮重要作用,也有越來越多降糖外效應(yīng)的研究證據(jù),包括:①減輕體重,增加飽感,減少食欲和能量攝入;②心血管與內(nèi)皮的保護(hù)作用;③改善微循環(huán)的作用;④減少肝內(nèi)脂肪,改善非酒精性脂肪肝的作用;⑤一定的神經(jīng)保護(hù)作用。這些作用的研究機(jī)制雖然尚不清楚,有些是直接通過GLP-1受體,有些可能是降糖和減重的間接作用,需要更長期的臨床驗(yàn)證,但是GLP-1R激動(dòng)劑的降糖及降糖外作用在未來的臨床應(yīng)用將有更廣闊的前景。
[1] 中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì).中國2型糖尿病防治指南(2013)[J].中華糖尿病雜志, 2014(6): 447-498.
[2] Holst JJ. The physiology of glucagon-like peptide 1[J]. Physiological reviews, 2007, 87(4): 1409-1439.
[3] Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J]. American journal of physiology Endocrinology and metabolism, 2004, 287(2): E199-206.
[4] Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 recep tor-dependent and -independent pathways[J]. Circulation, 2008, 117(18): 2340-2350.
[5] Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP[J]. Gastroenterology, 2007, 132(6): 2131-2157.
[6] Gallw itz B. Glucagon-like peptide-1 analogues for type 2 diabetes mellitus: current and emerging agents[J]. Drugs, 71(13): 1675-1688.
[7] M eloni AR, DeYoung MB, Lowe C, et al. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence[J]. Diabetes, Obesity & Metabolism, 2013, 15(1): 15-27.
[8] D rucker DJ. G lucagon-like pep tide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis[J]. Endocrinology, 2003, 144(12): 5145-5148.
[9] Zhou J, Wang X, Pineyro MA, et al. G lucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulinproducing cells[J]. Diabetes, 1999, 48(12): 2358-2366.
[10] Perfetti R, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats[J]. Endocrinology, 2000, 141(12): 4600-4605.
[11] Buteau J, El-Assaad W, Rhodes CJ, et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity[J]. Diabetologia, 2004, 47(5): 806-815.
[12] Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets[J]. Endocrinology, 2003, 144(12): 5149-5158.
[13] Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1(PDX-1) DNA binding activity in beta(INS-1)-cells[J]. Diabetologia, 1999, 42(7): 856-864.
[14] Leech CA, Holz GG, Chepurny O, et al. Expression of cAMPregulated guanine nucleotide exchange factors in pancreatic beta-cells. Biochem ical and biophysical research communications[J]. 2000, 278(1): 44-47.
[15] Schirra J, Nicolaus M, Woerle HJ, et al. GLP-1 regulates gastroduodenal motility involving cholinergic pathways[J]. Neurogastroenterology and Motility: the Of f i cial Journal of the European Gastrointestinal Motility Society, 2009, 21(6): 609-18, e21-22.
[16] Suzuki D, Toyoda M, Kimura M, et al. Effects of liraglutide, a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients w ith type 2 diabetes mellitus[J]. Internal Medicine, 2013, 52(10): 1029-1034.
[17] M arre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaem ic and weight control compared w ith adding rosiglitazone or placebo in subjects w ith type 2 diabetes(LEAD-1 SU)[J]. Diabetic Medicine: a Journal of the British Diabetic Association, 2009, 26(3): 268-278.
[18] Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes(LEAD-3 Mono): a random ised, 52-week, phase III, double-blind, parallel-treatment trial[J]. Lancet, 2009, 373(9662): 473-481.
[19] Russell-Jones D, Vaag A, Schm itz O, et al. Liraglutide vs insulin glargine and placebo in combination w ith metform in and sulfonylurea therapy in type 2 diabetes mellitus(LEAD-5 met+SU): a randomised controlled trial[J]. Diabetologia, 2009, 52(10): 2046-2055.
[20] Nikolaidis LA, Elahi D, Shen YT, et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs w ith dilated cardiom yopathy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2005, 289(6): H2401-2408.
[21] Vilsboll T, Christensen M, Junker AE, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and metaanalyses of random ised controlled trials[J]. Bri Med J, 2012, 344: d7771.
[22] Nauck M, Frid A, Hermansen K, et al. Ef f i cacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination w ith metform in, in type 2 diabetes: the LEAD(liraglutide effect and action in diabetes)-2 study[J]. Diabetes Car, 2009, 32(1): 84-90.
[23] Zinman B, Gerich J, Buse JB, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination w ith metformin and thiazolidinedione in patients with type 2 diabetes(LEAD-4 Met+TZD)[J]. Diabetes Care, 2009, 32(7): 1224-1230.
[24] K lonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients w ith type 2 diabetes treated for at least 3 years[J]. Current M edical Research and Opinion, 2008, 24(1): 275-286.
[25] Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide tw ice a day for type 2 diabetes: a 26-week random ised, parallel-group, multinational, open-label trial(LEAD-6)[J]. Lancet, 2009, 374(9683): 39-47.
[26] Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a random ised, double-blind, placebo-controlled study[J]. Lancet, 2009, 374(9701): 1606-1616.
[27] Gutzw iller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients w ith diabetes mellitus type 2[J]. The American Journal of Physiology, 1999, 276(5 Pt 2): R1541-1544.
[28] Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans[J]. The Journal of Clinical Investigation, 1998, 101(3): 515-520.
[29] Verdich C, Flint A, Gutzw iller JP, et al. A meta-analysis of the effect of glucagon-like peptide-1(7-36) amide on ad libitum energy intake in humans[J]. The Journal of Clinical Endocrinology and M etabolism, 2001, 86(9): 4382-4389.
[30] A lvarez E, M artinez MD, Roncero I, et al. The expression of GLP-1 receptor mRNA and protein allow s the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem[J]. Journal of Neurochemistry, 2005, 92(4): 798-806.
[31] Abbott CR, M onteiro M, Small CJ, et al. The inhibitory effects of peripheral adm inistration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagalbrainstem-hypothalam ic pathway[J]. Brain Research, 2005, 1044(1): 127-131.
[32] Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system[J]. Endocrine Reviews, 2012, 33(2): 187-215.
[33] Okerson T, Yan P, Stonehouse A, et al. Effects of exenatide on systolic blood pressure in subjects w ith type 2 diabetes[J]. American Journal of Hypertension, 2010, 23(3): 334-339.
[34] Davies MJ, Kela R, Khunti K. Liraglutide - overview of the preclinical and clinical data and its role in the treatment of type 2 diabetes[J]. Diabetes, Obesity & Metabolism, 2011, 13(3): 207-220.
[35] Sivertsen J, Rosenmeier J, Holst JJ, et al. The effect of glucagon-like peptide 1 on cardiovascular risk[J]. Nature Reviews Cardiology, 2012, 9(4): 209-222.
[36] Noyan-Ashraf MH, M omen MA, Ban K, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in m ice[J]. Diabetes, 2009, 58(4): 975-983.
[37] Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury[J]. Journal of the American College of Cardiology, 2009, 53(6): 501-510.
[38] Sonne DP, Engstrom T, Treim an M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) am ide against ischem iareperfusion injury in rat heart[J]. Regulatory Peptides, 2008, 146(1-3): 243-249.
[39] Rizzo M, Chandalia M, Patti AM, et al. Liraglutide decreases carotid intima-media thickness in patients w ith type 2 diabetes: 8-month prospective pilot study[J]. Cardiovascular Diabetology, 2014, 13(1): 49.
[40] Blevins T, Pullman J, Malloy J, Yet al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared w ith exenatide tw ice daily in patients w ith type 2 diabetes[J]. The Journal of Clinical Endocrinology and Metabolism, 2011,96(5): 1301-1310.
[41] Clarke SJ, M cCormick LM, Dutka DP. Optimising cardioprotection during myocardial ischaem ia: targeting potential intracellular pathways w ith glucagon-like peptide-1[J]. Cardiovascular Diabetology, 2014, 13: 12.
[42] Qin X, Shen H, Liu M, et al. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats[J]. American Journal of Physiology Gastrointestinal and LiverPhysiology, 2005, 288(5): G943-949.
[43] Hsieh J, Longuet C, Baker CL, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice[J]. Diabetologia, 2010, 53(3): 552-561.
[44] Arakawa M, M ita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagonlike peptide-1 receptor agonist, exendin-4[J]. Diabetes, 2010, 59(4): 1030-1037.
[45] Erdogdu O, Nathanson D, Sjoholm A, et al. exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor[J]. Molecular and Cellular Endocrinology, 2010, 325(1-2): 26-35.
[46] Wang D, Luo P, Wang Y, et al. Glucagon-like peptide-1 protects against cardiac m icrovascular injury in diabetes via a cAMP/PKA/Rhodependent mechanism[J]. Diabetes, 2013, 62(5): 1697-1708.
[47] Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients w ith stable coronary artery disease[J]. American Journal of Physiology Endocrinology and Metabolism, 2004, 287(6): E1209-1215.
[48] Golpon HA, Puechner A, Welte T, et al. Vasorelaxant effect of glucagonlike peptide-(7-36)amide and amylin on the pulmonary circulation of the rat[J]. Regulatory Peptides, 2001, 102(2-3): 81-86.
[49] Gaspari T, Liu H, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse m odel[J]. Diabetes & Vascular Disease Research: Of f i cial Journal of the International Society of Diabetes and Vascular Disease, 2011, 8(2): 117-124.
[50] El-Gohary Y, Sims-Lucas S, Lath N, et al. Three-dimensional analysis of the islet vasculature[J]. Anatom ical Record, 2012, 295(9): 1473-1481.
[51] Olsson R, Carlsson PO. The pancreatic islet endothelial cell: emerging roles in islet function and disease[J]. The InternationalJournal of Biochemistry & Cell Biology, 2006, 38(5-6): 710-714.
[52] M izuno A, Noma Y, Kuwajima M, et al. Changes in islet capillary angioarchitecture coincide w ith im paired B-cell function but not w ith insulin resistance in male Otsuka-Long-Evans-Tokushima fatty rats: dimorphism of the diabetic phenotype at an advanced ages[J]. Metabolism: Clinical and Experimental, 1999, 48(4): 477-483.
[53] Wu L, Olverling A, Huang Z, et al. GLP-1, exendin-4 and C-peptide regulate pancreatic islet m icrocirculation, insulin secretion and glucose tolerance in ratss[J]. Clinical science, 2012, 122(8): 375-384.
[54] Liu FQ, Zhang XL, Gong L, et al. Glucagon-like peptide 1 protects m icrovascular endothelial cells by inactivating the PARP-1/iNOS/NO pathways[J]. Molecular and Cellular Endocrinology, 2011, 339(1-2): 25-33.
[55] Rask-M adsen C, K ing GL. Vascular com p lications of diabetes: mechanisms of injury and protective factors[J]. Cell Metabolism, 2013, 17(1): 20-33.
[56] M ima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes[J]. Diabetes, 2012 ,61(11): 2967-2979.
[57] Sharma S, Mells JE, Fu PP, et al. GLP-1 analogs reduce hepatocyte steatosis and im prove survival by enhancing the unfolded protein response and promoting macroautophagy[J] PloS One, 2011, 6(9): e25269.
[58] A rmstrong MJ, Houlihan DD, Rowe IA, et al. Safety and efficacy of liraglutide in patients w ith type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program[J]. A limentary Pharmacology & Therapeutics, 2013, 37(2): 234-242.
[59] Tushuizen ME, Bunck MC, Pouwels PJ, et al. Incretin m imetics as a novel therapeutic option for hepatic steatosis[J]. Liver International: Official Journal of the International Association for the Study of the Liver, 2006, 26(8): 1015-1017.
[60] Ding X, Saxena NK, Lin S, et al. exendin-4, a glucagon-like protein-1(GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob m ice[J]. Hepatology, 2006, 43(1): 173-181.
[61] Gupta NA, Mells J, Dunham RM, et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway[J]. Hepatology, 2010, 51(5): 1584-1592.
[62] Perry T, Haughey NJ, Mattson MP, et al. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 302(3): 881-888.
[63] Perry T, Lahiri DK, Chen D, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve grow th factor-mediated differentiation in PC12 cells[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 300(3): 958-966.
[64] Himeno T, Kam iya H, Naruse K, et al. Bene f i cial effects of exendin-4 on experimental polyneuropathy in diabetic m ice[J]. Diabetes, 2011, 60(9): 2397-2406.
[65] During MJ, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection[J]. Nature medicine, 2003, 9(9):1173-1179.
[66] M cClean PL, Parthsarathy V, Faivre E, et al. The diabetes drug liraglutide prevents degenerative processes in a mouse model of A lzheimer's disease[J]. The Journal of Neuroscience: the of f i cial journal of the Society for Neuroscience, 2011, 31(17): 6587-6594.