国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于全概率公式的運(yùn)載火箭控制系統(tǒng)可靠性模型研究

2014-08-09 22:20胡海峰翟邵蕾孫海峰
航天控制 2014年3期
關(guān)鍵詞:系統(tǒng)可靠性框圖總線

胡海峰 翟邵蕾 孫海峰

北京航天自動(dòng)控制研究所,北京 100854

?

基于全概率公式的運(yùn)載火箭控制系統(tǒng)可靠性模型研究

胡海峰 翟邵蕾 孫海峰

北京航天自動(dòng)控制研究所,北京 100854

以運(yùn)載火箭典型復(fù)雜容錯(cuò)控制系統(tǒng)為研究對(duì)象,基于全概率公式和系統(tǒng)功能框圖將復(fù)雜系統(tǒng)分解,推導(dǎo)建立了控制系統(tǒng)可靠性模型,給出了系統(tǒng)可靠性定量分析的方法和公式,并進(jìn)行了計(jì)算分析。結(jié)果表明本文建模方法簡(jiǎn)單可行,對(duì)于復(fù)雜容錯(cuò)系統(tǒng)可靠性建模及定量分析具有很好的參考價(jià)值,可以在運(yùn)載火箭可靠性建模分析、方案優(yōu)化中推廣應(yīng)用。

全概率公式;運(yùn)載火箭;復(fù)雜容錯(cuò);飛行控制系統(tǒng);可靠性模型

可靠性模型是一種概率模型,通常以概率表達(dá)式或概率分布函數(shù)的形式表示。可靠性模型包括可靠性框圖和數(shù)學(xué)表達(dá)式,用以表示系統(tǒng)完成任務(wù)與系統(tǒng)組成結(jié)構(gòu)的關(guān)系。建立可靠性模型是可靠性研究的基礎(chǔ),根據(jù)系統(tǒng)特點(diǎn),可以有多種可靠性建模方法,如可靠性框圖、網(wǎng)絡(luò)可靠性模型、故障樹(shù)模型、事件樹(shù)模型、馬爾可夫模型、Pe-tri網(wǎng)模型、GO圖模型等[1]。為預(yù)計(jì)或估算產(chǎn)品的可靠性所建立的可靠性方框圖和數(shù)學(xué)模型稱(chēng)為可靠性框圖模型,它是對(duì)系統(tǒng)進(jìn)行方案分析、系統(tǒng)優(yōu)化、可靠性評(píng)估最直觀和通用的方法,得到了廣泛的應(yīng)用[2-3]。

運(yùn)載火箭控制系統(tǒng)可靠性定量分析和計(jì)算都是在模型上進(jìn)行的,一旦系統(tǒng)的使用要求和功能、結(jié)構(gòu)初步確定,就可以利用系統(tǒng)功能框圖所表示的各單元之間的物理關(guān)系和信息流程,建立系統(tǒng)的可靠性框圖,以進(jìn)一步揭示系統(tǒng)與各單元之間的邏輯關(guān)系,并推導(dǎo)出系統(tǒng)可靠性數(shù)學(xué)模型。當(dāng)控制系統(tǒng)采用系統(tǒng)級(jí)冗余并具備容錯(cuò)功能時(shí),建立可靠性模型將變得異常復(fù)雜。本文基于全概率公式和系統(tǒng)功能框圖,以典型復(fù)雜容錯(cuò)控制系統(tǒng)為研究對(duì)象進(jìn)行了可靠性建模,研究推導(dǎo)給出了系統(tǒng)可靠性定量分析的公式,并進(jìn)行了算例分析。

1 全概率公式簡(jiǎn)介

全概率公式是概率論中最基本和最重要的公式之一,利用全概率公式可以把復(fù)雜事件發(fā)生的概率計(jì)算問(wèn)題轉(zhuǎn)化為計(jì)算若干互斥的簡(jiǎn)單事件情形下該事件的條件概率以及這些情形事件發(fā)生的概率。實(shí)際問(wèn)題中為了求復(fù)雜事件的概率,往往把它分解成兩個(gè)或若干個(gè)互不相容的簡(jiǎn)單事件,求出這些簡(jiǎn)單事件的概率,利用加法公式求出復(fù)雜事件的概率[4]。為此引入樣本空間的劃分概念和全概率公式。

定義1[5]:設(shè)(Ω,F,P)為概率空間,若

Ai∈F(i=1,2,…,n)

滿(mǎn)足

AiAj=φ(i≠j,i,j=1,2,…,n)

則稱(chēng)A1,A2,…,An為Ω的一個(gè)完備事件組或稱(chēng)為Ω的一個(gè)劃分。

定理1[5]:設(shè)(Ω,F,P)為概率空間,A1,A2,…,An為Ω的一個(gè)劃分,且

P(Ai)>0 (i=1,2,…,n)

則對(duì)于任一事件B∈F,有

(1)

上式稱(chēng)為全概率公式。顯然,全概率公式給出了計(jì)算某一復(fù)雜事件B的概率的公式,只要知道使B發(fā)生的各種原因Ai發(fā)生的概率p(Ai)以及在各種原因發(fā)生的條件下B發(fā)生的條件概率P(B|Ai),那么事件B發(fā)生的概率就可以利用全概率公式來(lái)計(jì)算。

2 復(fù)雜容錯(cuò)控制系統(tǒng)可靠性建模

2.1 復(fù)雜容錯(cuò)控制系統(tǒng)

運(yùn)載火箭控制系統(tǒng)運(yùn)行的環(huán)境條件是惡劣的,失敗的損失是巨大的,對(duì)控制系統(tǒng)提出高可靠性要求[6]。冗余容錯(cuò)技術(shù)成為提高運(yùn)載火箭飛行控制系統(tǒng)可靠性的重要手段。某型運(yùn)載火箭控制系統(tǒng)采用圖1的系統(tǒng)級(jí)冗余方案,為便于分析,系統(tǒng)模型中僅考慮箭機(jī)、慣組和綜合控制器三類(lèi)典型設(shè)備,全箭通過(guò)1553B總線網(wǎng)絡(luò)連接3套完整的電氣系統(tǒng),形成相對(duì)獨(dú)立的系統(tǒng)級(jí)三冗余系統(tǒng)。設(shè)備均為三冗余,每一套由1條雙通道1553B總線連接,其中箭機(jī)和綜合控制器均為3臺(tái)單機(jī)冗余在1個(gè)設(shè)備中,3臺(tái)單機(jī)之間通過(guò)機(jī)內(nèi)總線通信。

圖1 運(yùn)載火箭復(fù)雜容錯(cuò)控制系統(tǒng)框圖

對(duì)于慣組和BC,若3個(gè)模塊均正常,則系統(tǒng)以三模冗余3取2表決方式工作;若其中1個(gè)模塊失效,則系統(tǒng)通過(guò)故障檢測(cè)定位將其切除,系統(tǒng)降級(jí)為雙冗余系統(tǒng);若又有1個(gè)模塊失效并被定位切除,則系統(tǒng)以單機(jī)模式運(yùn)行。對(duì)于綜合控制器,其輸出通過(guò)硬件實(shí)現(xiàn)3取2表決,可通過(guò)表決屏蔽1個(gè)故障模塊;若有2個(gè)及以上模塊失效,系統(tǒng)即失效。因此控制系統(tǒng)成為箭載計(jì)算機(jī)計(jì)算冗余表決、控制器指令解析冗余表決、輸出級(jí)功率放大冗余表決同步、總線網(wǎng)絡(luò)冗余的復(fù)雜冗余容錯(cuò)系統(tǒng)結(jié)構(gòu)。

2.2 基于全概率公式的系統(tǒng)可靠性建模

在分析圖1系統(tǒng)可靠性時(shí),雖然每套1553B總線均有A,B雙通道,當(dāng)A總線出故障時(shí)可以切換為B通道,但是考慮到A,B均故障、總線協(xié)議芯片故障以及切換失敗的情況,應(yīng)考慮總線本身的可靠性,這相當(dāng)于在系統(tǒng)中串聯(lián)1個(gè)單元,系統(tǒng)功能框圖如圖2。

圖2 控制系統(tǒng)功能框圖

系統(tǒng)既非串并聯(lián)又非并串聯(lián)系統(tǒng),而是介于2者之間的相互交叉的復(fù)雜系統(tǒng),很難將其簡(jiǎn)化為簡(jiǎn)單的并聯(lián)、串聯(lián)等典型結(jié)構(gòu)的組合。如果用狀態(tài)枚舉法,需要列出212種組合,計(jì)算量龐大,本文將基于全概率分解法進(jìn)行控制系統(tǒng)可靠性建模分析,借助于全概率公式把復(fù)雜網(wǎng)絡(luò)系統(tǒng)分解,直到簡(jiǎn)化為一般的串、并聯(lián)系統(tǒng)。在具體運(yùn)用全概率公式的時(shí)候,如何選擇樣本空間Ω的劃分A1,A2,…,An尤其重要。首先以BC1,BC2和BC3的狀態(tài)為條件,應(yīng)用全概率公式對(duì)系統(tǒng)進(jìn)行分解。設(shè)系統(tǒng)中每個(gè)單元只取正常或失效2種狀態(tài),取“1”代表單元正常,取“0”代表單元失效,則BC1,BC2和BC3的狀態(tài)共有23種組合:000,001,010,011,100,101,110,111,令A(yù)表示BC1,BC2和BC3的狀態(tài)組合集合,R(Ai)為BC1,BC2和BC3在Ai狀態(tài)下的概率,R(S|Ai)為控制系統(tǒng)在Ai狀態(tài)下的系統(tǒng)可靠性,則:

A={A1,A2,A3,A4,A5,A6,A7,A8}=

{000,001,010,011,100,101,110,111}

(2)

根據(jù)定義1,A1,A2,…,An為Ω的一個(gè)劃分。根據(jù)全概率公式,控制系統(tǒng)可靠性計(jì)算公式如下:

(3)

其中,R(001)是BC1,BC2和BC3的狀態(tài)分別為失效、失效和正常的概率;R(S|001)是BC1,BC2和BC3的狀態(tài)分別為失效、失效和正常時(shí)系統(tǒng)正常的概率;……。

為方便計(jì)算,假設(shè)系統(tǒng)中各單元可靠度均為R,根據(jù)概率知識(shí)可得:

R(001)=R(010)=R(100)=R(1-R)2
R(011)=R(101)=R(110)=R2(1-R)
R(111)=R3

(4)

下面計(jì)算條件概率R(S|Ai),其中i=1,2,…,8。

1)R(S|001),即BC1,BC2和BC3的狀態(tài)分別為失效、失效、正常時(shí)系統(tǒng)正常的概率。此時(shí)的功能框圖如圖3。

圖3 BC為001狀態(tài)控制系統(tǒng)功能框圖

由于BC是系統(tǒng)的核心,BC失效相當(dāng)于整條總線失效,因此BC1,BC2所對(duì)應(yīng)的IMU1,IMU2均失效;但由于綜合控制器3臺(tái)單機(jī)可以通過(guò)內(nèi)部雙口RAM進(jìn)行通訊,因此只要綜合控制器3和另外1臺(tái)單機(jī)正常工作(由系統(tǒng)冗余容錯(cuò)功能診斷),輸出部分即能正常。系統(tǒng)可靠性框圖可簡(jiǎn)化如圖4。

由以上分析可知:

R(S|001)=R3(2R-R2)

(5)

當(dāng)BC1,BC2和BC3的狀態(tài)為010,100時(shí),情況同001類(lèi)似,可得:

R(S|010)=R(S|100)=
R(S|001)=R3(2R-R2)

(6)

2)R(S|011),即BC1,BC2和BC3的狀態(tài)分別為失效、正常、正常時(shí)系統(tǒng)正常的概率。此時(shí)的功能框圖如圖5。

圖4 BC為001狀態(tài)控制系統(tǒng)可靠性框圖

圖5 BC為011狀態(tài)控制系統(tǒng)功能框圖

由框圖可以看出,此時(shí)第1條總線失效,余下的系統(tǒng)情況仍然比較復(fù)雜,因此選擇以總線2和總線3的狀態(tài)為條件,基于全概率公式繼續(xù)向下分解??偩€2和總線3的狀態(tài)共有22=4種組合,分別是:00,01,10,11,根據(jù)全概率公式可得:

R(S|011)=R(00)R(S|011,00)+R(01)
R(S|011,01)+R(10)R(S|011,10)+
R(11)R(S|011,11)

(7)

其中,R(01)表示總線2和總線3的狀態(tài)分別為失效、正常的概率;R(S|011,01)表示當(dāng)BC1,BC2,BC3的狀態(tài)分別為失效、正常、正常,且總線2和總線3的狀態(tài)分別為失效、正常時(shí)系統(tǒng)正常的概率;……。

則:

R(01)=R(10)=R(1-R),R(11)=R2

(8)

求R(S|011,01)時(shí),框圖如圖6。

可得:

R(S|011,01)=R2(2R-R2)

(9)

同理,可得:

R(S|011,10)=R2(2R-R2)

(10)

R(S|011,11)=(2R-R2)(3R2-2R3)

(11)

綜合以上分析,可得出:R(S|011)=R(01)R(S|011,01)+R(10)R(S|011,10)+R(11)R(S|011,11)=R(1-R)R2(2R-R2)+R(1-R)R2(2R-R2)+R2(2R-R2)(3R2-2R3)=R2(2R-R2)(2R+R2-2R3)

(12)

當(dāng)BC1,BC2和BC3的狀態(tài)為101,110時(shí),情況同011類(lèi)似,可得:

R(S|101)=R(S|110)=R(S|011)=
R2(2R-R2)(2R+R2-2R3)

(13)

3)R(S|111),即BC1,BC2和BC3的狀態(tài)分別為正常、正常、正常時(shí)系統(tǒng)正常的概率。功能框圖如圖7。

圖7 BC為111狀態(tài)控制系統(tǒng)功能框圖

仍然選擇以總線1,總線2和總線3的狀態(tài)為條件繼續(xù)向下分解,總線1,總線2和總線3的狀態(tài)共有23=8種組合:000,001,010,011,100,101,110,111,根據(jù)全概率公式可得:

R(S|111)=R(000)R(S|111,000)+R(001)R(S|111,001)+…+R(111)R(S|111,111)=
R(001)R(S|111,001)+…+R(111)
R(S|111,111)

(14)

同上面的方法,可求得R(S|111,001),…,R(S|111,111)分別為:

R(S|111,001)=R2(2R-R2),R(S|111,010)=R(S|111,100)=R(S|111,001)=
R2(2R-R2),R(S|111,011)=R(S|111,101)=
R(S|111,110)=(2R-R2)(3R2-2R3),
R(S|111,111)=(3R-3R2+R3)(3R2-2R3)。

(15)

綜合以上分析,可以得出:

R(S|111)=R(001)R(S|111,001)+…+
R(111)R(S|111,111)=3R4(1-R)2(2-R)+
3R5(1-R)(2-R)(3-2R)+
R6(3-3R+R2)(3-2R)

(16)

至此,得到了全部條件概率,計(jì)算過(guò)程結(jié)果見(jiàn)表1。

根據(jù)全概率公式,將計(jì)算過(guò)程綜合,可得系統(tǒng)可靠性計(jì)算模型:

表1 系統(tǒng)可靠性模型計(jì)算過(guò)程結(jié)果

(17)

3 可靠性計(jì)算與分析

3.1 可靠性計(jì)算

運(yùn)載火箭控制系統(tǒng)單元模塊或單機(jī)可靠度R一般不低于0.990,令R在0.990~0.9999變化,將R代入式(17),按控制系統(tǒng)可靠性模型進(jìn)行計(jì)算,主要計(jì)算結(jié)果見(jiàn)表2。

BC1,BC2和BC3共8個(gè)狀態(tài),狀態(tài)為000時(shí)系統(tǒng)失效,其余狀態(tài)可分為3類(lèi):第1類(lèi)為兩度故障,包括001,010,100三個(gè)狀態(tài);第2類(lèi)為一度故障,包括011,101,110三個(gè)狀態(tài);第3類(lèi)為無(wú)故障,即111狀態(tài)。當(dāng)R在0.990~0.9999變化,按BC狀態(tài)分類(lèi)分別統(tǒng)計(jì)對(duì)系統(tǒng)可靠性的影響,統(tǒng)計(jì)結(jié)果見(jiàn)表3。

表3 BC狀態(tài)對(duì)系統(tǒng)可靠性的影響

根據(jù)表2和3的計(jì)算結(jié)果,系統(tǒng)可靠性隨單元模塊可靠度R(0.990~0.9999)變化的趨勢(shì)圖見(jiàn)圖8,BC狀態(tài)對(duì)系統(tǒng)可靠性的影響見(jiàn)圖9~ 11。將BC在兩度故障、一度故障狀態(tài)下系統(tǒng)正常工作的概率與控制系統(tǒng)可靠性的比值進(jìn)行計(jì)算,并轉(zhuǎn)換為百分比,得到BC故障狀態(tài)對(duì)系統(tǒng)可靠性的影響率,其隨單元模塊變化的趨勢(shì)圖見(jiàn)圖12。

圖8 系統(tǒng)隨模塊可靠性變化趨勢(shì)圖

圖9 BC兩度故障對(duì)系統(tǒng)可靠性的影響

圖10 BC一度故障對(duì)系統(tǒng)可靠性的影響

圖11 BC無(wú)故障對(duì)系統(tǒng)可靠性的影響

3.2 分析與討論

全概率公式本質(zhì)是一種平均概率,是條件概率的加權(quán)平均,其中每個(gè)條件概率上的權(quán)重就是作為條件的事件發(fā)生的概率。在應(yīng)用全概率公式進(jìn)行系

圖12 BC故障狀態(tài)對(duì)系統(tǒng)可靠性的影響率

統(tǒng)可靠性建模分析的時(shí)候,如何選擇樣本空間S的劃分A1,A2,…,An顯得尤其重要。在選擇劃分的時(shí)候,一定要把產(chǎn)生結(jié)果的原因全找出來(lái),缺一不可,并且保證A1,A2,…,An為兩兩互不相容事件。本文選擇BC的狀態(tài)進(jìn)行了8個(gè)劃分,選擇恰當(dāng)?shù)膭澐謱?huì)使計(jì)算大為簡(jiǎn)化。本文僅以慣組、箭機(jī)(含BC)、綜合控制器、總線組成的冗余容錯(cuò)控制系統(tǒng)為研究對(duì)象進(jìn)行了可靠性建模分析,并且為計(jì)算方便,將這些單元模塊(或單機(jī))的可靠性指標(biāo)統(tǒng)一設(shè)為R,實(shí)際控制系統(tǒng)組成還包括伺服機(jī)構(gòu)、伺服控制器、電池、配電器等設(shè)備,并且由于任務(wù)需求的差異,不同型號(hào)的控制系統(tǒng)組成也會(huì)有所差別,但均可以本文提供的方法為基礎(chǔ)進(jìn)行可靠性建模分析。將該方法應(yīng)用到具體型號(hào)時(shí),需在模型及框圖中增加相應(yīng)的設(shè)備,同時(shí)由于設(shè)計(jì)方案的復(fù)雜程度、工藝成熟性等不同,各類(lèi)設(shè)備的可靠性也不同,各個(gè)設(shè)備的可靠性可分別用R1,R2,…等代替,代入到系統(tǒng)功能框圖和可靠性模型中,最終得到全系統(tǒng)的可靠性模型,并基于模型進(jìn)行系統(tǒng)可靠性分析、評(píng)估和設(shè)計(jì)。

4 結(jié)束語(yǔ)

全概率公式提供了計(jì)算復(fù)雜函數(shù)概率的有效途徑,本文以簡(jiǎn)化的運(yùn)載火箭冗余容錯(cuò)控制系統(tǒng)為研究對(duì)象,基于全概率公式進(jìn)行了樣本空間劃分,推導(dǎo)建立了復(fù)雜容錯(cuò)系統(tǒng)可靠性計(jì)算模型,給出了可靠性定量分析的公式,并對(duì)可靠性模型進(jìn)行了計(jì)算分析。為便于建模和計(jì)算,對(duì)研究對(duì)象進(jìn)行了簡(jiǎn)化,提供的是一種復(fù)雜容錯(cuò)控制系統(tǒng)可靠性建模通用的方法,在型號(hào)中應(yīng)用時(shí),可以基于該方法根據(jù)具體組成和設(shè)備可靠性水平建立系統(tǒng)可靠性模型,并進(jìn)行可靠性分析、評(píng)估和設(shè)計(jì)。該法對(duì)于運(yùn)載火箭復(fù)雜冗余容錯(cuò)控制系統(tǒng)可靠性建模及定量分析具有很好的參考價(jià)值,可以推廣應(yīng)用。

[1] 曾聲奎,趙廷弟,等.系統(tǒng)可靠性設(shè)計(jì)分析教程[M].北京:北京航空航天大學(xué)出版社,2001.(Zeng Shengkui, Zhao Tingdi, et al. The System Reliability Design and Analysis Tutorial [M]. Beijing: Beihang University press, 2001).[2] 朱士友.架控制動(dòng)系統(tǒng)可靠性模型研究[J].鐵道機(jī)車(chē)車(chē)輛,2012,32(3):80-83.(Zhu Shiyou. Research on Reliability Model of Shelves Control Braking System[J]. Railway Locomotive&Car, 2012,32 (3): 80-83).

[3] 李軍,劉君華.多傳感器融合系統(tǒng)的可靠性模型研究[J].西安交通大學(xué)學(xué)報(bào),2004,38(8):775-778.(Li Jun, Liu Junhua.Study of Reliability Model for the Multi-Sensor Fusion System[J]. Jouranl of Xi’an Jiaotong Uuiversity, 2004,38(8):775-778).

[4] 馬曉麗, 張亮.全概率公式的推廣及其在保險(xiǎn)中的應(yīng)用[J].高等數(shù)學(xué)研究,2010,13(1):70-71.

[5] 楊振明.概率論[M].2版.北京:科學(xué)出版社,2004:34。

[6] 孫凝生.冗余設(shè)計(jì)技術(shù)在運(yùn)載火箭飛行控制系統(tǒng)中的應(yīng)用(一) [J].航天控制,2003,(1):65-81.(Sun Ningsheng. The Redundancy Designs for Guidance and Control System of Launch Vehicle[J]. Aerospace Control, 2003, (1):65-81).

[7] 孫凝生.冗余設(shè)計(jì)技術(shù)在運(yùn)載火箭飛行控制系統(tǒng)中的應(yīng)用(二) [J].航天控制,2003,(2):68-80.(Sun Ningsheng. The Redundancy Designs for Guidance and Control System of Launch Vehicle[J]. Aerospace Control, 2003, (2):68-80).

Study on Reliability Model of Launch Vehicle GNC System Based on Total Probability Formula

HU Haifeng ZHAI Shaolei SUN Haifeng

Beijing Aerospace Automatic Control Institute, Beijing 100854,China

Thetypicallaunchvehicleguidancenavigationandcontrol(GNC)systemwhichisredundantandfaulttolerantisstudied.Thiscomplexsystemisdecomposed,whichisbasedontotalprobabilityformulaandsystemfunctiondiagram.Andthen,itsreliabilitymodelisdeduced,andthequantitativeanalysismethodandformulasofthissystemareproposed,whichareusedtocalculateandanalyzesystemreliability.Theconclusionsaredrawnthatthemethodissimpleandfeasibleandithasgreatreferencedvalueonbuildingreliabilitymodelandreliabilityquantitativeanalysisofcontrolsystemwhichiscomplexandfaulttolerant.Thestudyresultscanbeextensivelyappliedtobuildingreliabilitymodelandoptimizingsysteminlaunchvehicledesign.

Totalprobabilityformula;Launchvehicle;Complexandfaulttolerant;Guidancenavigationandcontrolsystem;Reliabilitymodel

2013-08-21

胡海峰(1978-),男,河北保定人,碩士,高級(jí)工程師,主要研究方向?yàn)檫\(yùn)載火箭控制系統(tǒng)設(shè)計(jì);翟邵蕾(1982-),女,河北深澤人,碩士,工程師,主要研究方向?yàn)檫\(yùn)載火箭控制系統(tǒng)設(shè)計(jì);孫海峰(1976-),男,河北吳橋人,碩士,工程師,主要研究方向?yàn)檫\(yùn)載火箭控制系統(tǒng)設(shè)計(jì)。

TP274.4

A

1006-3242(2014)03-0087-08

猜你喜歡
系統(tǒng)可靠性框圖總線
捷豹I-PACE純電動(dòng)汽車(chē)高壓蓄電池充電系統(tǒng)(三)
試析提高配網(wǎng)系統(tǒng)可靠性的技術(shù)措施
電氣化鐵路牽引系統(tǒng)可靠性分析
基于PCI Express總線的xHC與FPGA的直接通信
機(jī)載飛控1553B總線轉(zhuǎn)以太網(wǎng)總線設(shè)計(jì)
電路圖2017年凱迪拉克XT5
算法框圖的補(bǔ)全
基于故障樹(shù)模型的光伏跟蹤系統(tǒng)可靠性分析
多通道ARINC429總線檢查儀
基于系統(tǒng)可靠性的工程質(zhì)量量化研究
中阳县| 九寨沟县| 怀仁县| 德钦县| 博罗县| 泗阳县| 舟山市| 芷江| 泰兴市| 盐源县| 绥滨县| 靖西县| 永善县| 晋州市| 台前县| 阿克苏市| 南平市| 永修县| 准格尔旗| 内黄县| 永丰县| 巴林左旗| 大兴区| 罗城| 龙江县| 禄丰县| 瑞昌市| 沧州市| 江川县| 苏尼特右旗| 林口县| 察雅县| 侯马市| 汝南县| 高陵县| 淅川县| 武功县| 疏勒县| 元江| 城步| 平凉市|