戴竹青, 王密華, 賈韌刃,周 盼(.常州大學(xué)環(huán)境與安全工程學(xué)院,江蘇常州 364;.中國(guó)石油天然氣股份有限公司撫順石化分公司,遼寧撫順 300)
微波/過氧化氫降解水中甲基紅
戴竹青1, 王密華1, 賈韌刃2,周 盼1
(1.常州大學(xué)環(huán)境與安全工程學(xué)院,江蘇常州 213164;2.中國(guó)石油天然氣股份有限公司撫順石化分公司,遼寧撫順 113001)
研究了微波/過氧化氫協(xié)同作用下水中甲基紅的降解。考察了甲基紅初始質(zhì)量濃度、pH、H2O2加入量、反應(yīng)時(shí)間、溫度等因素對(duì)降解率和降解量的影響,并建立了甲基紅降解的數(shù)學(xué)模型。結(jié)果表明,堿性條件下、反應(yīng)時(shí)間延長(zhǎng)有利于甲基紅的降解,甲基紅初始質(zhì)量濃度越大,則氧化苛刻度Z值越大,甲基紅降解反應(yīng)動(dòng)力學(xué)為一級(jí)反應(yīng),反應(yīng)速率常數(shù)為0.172 4 min-1,降解量的活化能126.6 kJ/mol。在H2O2加入體積分?jǐn)?shù)為1.6%、甲基紅初始質(zhì)量濃度為130 mg/L、反應(yīng)溫度473 K、反應(yīng)時(shí)間為12 min、pH=10的條件下,甲基紅的降解率可達(dá)到78%。
甲基紅;微波;過氧化氫;降解
對(duì)于水和廢水的微波處理是一種有效方法。使用微波技術(shù),可以使農(nóng)藥等各種有機(jī)化合物降解[5-8]。但僅僅單獨(dú)依靠微波的能量不足以破壞許多化合物的化學(xué)鍵。因此,使用微波結(jié)合各種高級(jí)氧化技術(shù)來(lái)增強(qiáng)各種污染物的處理效率、縮短反應(yīng)時(shí)間的各種微波協(xié)同氧化劑氧化染料的各種方法多有報(bào)道[9-11]。應(yīng)用微波加熱結(jié)合過氧化氫(MW-H2O2)處理污染物已被證明是一種有效的氧化技術(shù)[12-13],因?yàn)樗鼤?huì)產(chǎn)生活性物質(zhì),由帶有一個(gè)+2.8 eV氧化還原電位的羥基自由基組成,可以非選擇性降解大部分有機(jī)化合物。同時(shí),相比一些混合的微波系統(tǒng),MW-H2O2體系不需要催化劑分離,并且沒有污染環(huán)境的潛在風(fēng)險(xiǎn),具有更大的優(yōu)越性。
本文研究了微波/過氧化氫輻射下偶氮染料甲基紅水溶液降解過程,考察各反應(yīng)時(shí)間、溫度、過氧化氫加入量等因素對(duì)甲基紅降解量和降解率的影響,并提出甲基紅實(shí)驗(yàn)條件下的降解數(shù)學(xué)模型。
1.1 實(shí)驗(yàn)儀器與試劑
MDS-10微波消解儀,上海新儀微波化學(xué)科技有限公司;pHB-9901酸度計(jì),上海艾旺工貿(mào)有限公司;Specord50紫外可見光分光光度計(jì),德國(guó)Jena公司。H2O2溶液(質(zhì)量分?jǐn)?shù)30%)、甲基紅均為分析純。
1.2 實(shí)驗(yàn)方法
將20 mL甲基紅水溶液放入微波消解儀中,在600 W的功率下消解后,取適量溶液用紫外可見分光光度計(jì)于436 nm處測(cè)其吸光度。利用甲基紅溶液標(biāo)準(zhǔn)曲線A=0.066 2ρ-0.018 8(R2=0.999 4),計(jì)算出甲基紅溶液反應(yīng)前的質(zhì)量濃度ρ0和反應(yīng)后的質(zhì)量濃度ρt,以計(jì)算甲基紅溶液的降解率和降解量。
2.1 甲基紅降解模型的建立
配制質(zhì)量濃度不同的甲基紅溶液,在微波條件下,考察溶液初始質(zhì)量濃度在50~150 mg/L、pH在2~12、過氧化氫加入體積分?jǐn)?shù)在0.2%~1.6%、反應(yīng)溫度413~493 K、反應(yīng)時(shí)間在4~16 min,各因素對(duì)降解率和降解量的影響。
考察不同參數(shù)設(shè)定下甲基紅的降解量和降解率,對(duì)不同實(shí)驗(yàn)參數(shù)下獲得的所有降解量、降解率數(shù)據(jù)進(jìn)行多元非線性回歸,得到降解量和降解率的公式如下:
(1)
(2)
式中:ρ0為甲基紅初始質(zhì)量濃度,mg/L;T為反應(yīng)溫度,K;φ(H2O2)為H2O2加入體積分?jǐn)?shù),%;t為反應(yīng)時(shí)間,min。
降解量回歸公式相關(guān)系數(shù)為0.927 0,降解率回歸公式的相關(guān)系數(shù)為0.904 8,自由度為66。
將實(shí)驗(yàn)值與計(jì)算值對(duì)比,列于表1和表2,結(jié)果表明,兩個(gè)回歸公式中,降解量的計(jì)算誤差在±2.5%,降解率的計(jì)算誤差為±2.0%,說(shuō)明回歸公式的準(zhǔn)確度較高,可以用于微波/過氧化氫輻射下甲基紅水溶液降解過程中降解量和降解率的預(yù)測(cè)。
表1 降解量實(shí)驗(yàn)值與計(jì)算值的比較Table 1 Comparison of mathematical and experimental degradation amount
表2 降解率實(shí)驗(yàn)值與計(jì)算值的比較Table 2 Comparison of mathematical and experimental degradation rate
2.2 各參數(shù)對(duì)甲基紅降解的影響
2.2.1 甲基紅初始質(zhì)量濃度的影響 根據(jù)多元非線性回歸所獲得的公式,在pH=10、H2O2加入體積分?jǐn)?shù)為1.0%,反應(yīng)溫度473 K、反應(yīng)時(shí)間為12 min的條件下,考察甲基紅初始質(zhì)量濃度對(duì)降解率及降解量的影響,結(jié)果見圖1。由圖1可知,隨著甲基紅初始質(zhì)量濃度的增加,微波消解后水中甲基紅含量也相應(yīng)增加,即降解率減??;但甲基紅的降解量是隨著初始質(zhì)量濃度的增加而增加。表明反應(yīng)后水中剩余甲基紅含量與其初始質(zhì)量濃度有很大的相關(guān)性。如需要控制反應(yīng)降解后甲基紅含量相對(duì)穩(wěn)定或呈恒定值,則反應(yīng)溫度、反應(yīng)時(shí)間、H2O2加入量、pH等條件需相應(yīng)調(diào)整。
為評(píng)價(jià)在甲基紅不同初始質(zhì)量濃度下,微波消解后使水中甲基紅剩余濃度保持定值的難易程度,引用苛刻度的概念,以氧化條件苛刻度Z值來(lái)表征其對(duì)降解量的影響,Z值與反應(yīng)溫度、時(shí)間、溶液pH、H2O2加入量有關(guān),即Z=f[T,t,pH,φ(H2O2)]。甲基紅初始質(zhì)量濃度對(duì)氧化苛刻度Z值的影響見圖2。隨著水中甲基紅初始質(zhì)量濃度的增加,即控制微波降解后甲基紅含量相對(duì)穩(wěn)定時(shí),降解氧化條件的苛刻度Z值相應(yīng)增加,并且控制微波降解后水中甲基紅剩余質(zhì)量濃度越低,則氧化苛刻度Z值越高,表明控制條件的難度越大。
圖1 甲基紅初始質(zhì)量濃度對(duì)降解率及降解量的影響
Fig.1Influenceofinitialmassconcentrationofmethylred
tothedegradationamount/rate
圖2 甲基紅初始質(zhì)量濃度與氧化苛刻度的關(guān)系
Fig.2Relationshipofinitialmassconcentrationofmethyl
redandoxidationseverity
2.2.2 pH的影響 在H2O2加入體積分?jǐn)?shù)為1.0%、甲基紅初始質(zhì)量濃度為130 mg/L,反應(yīng)溫度473 K、反應(yīng)時(shí)間為12 min的條件下,考察溶液pH對(duì)甲基紅降解率、降解量的影響,結(jié)果見圖3。由圖3可知,降解率和降解量隨著pH的增加而提高,表明在堿性條件下更有利于甲基紅的降解。Zhou Minghua等[14]在采用電-芬頓化學(xué)法降解甲基紅時(shí)發(fā)現(xiàn)在pH=3的條件下,甲基紅降解率最高,而Zaki Ajji[15]采用伽馬射線輻射甲基紅水溶液使其降解的研究表明在酸性和堿性條件下,甲基紅均能發(fā)生降解,并且堿性條件下的降解與輻照強(qiáng)度指數(shù)相關(guān),酸性條件下的降解與輻照強(qiáng)度線性相關(guān)。Hong Jun等[16]研究發(fā)現(xiàn)羅丹明B染料在堿性條件下更有利于降解。本實(shí)驗(yàn)得出在堿性條件下有利于甲基紅降解的結(jié)論與黃衛(wèi)紅等[17]的研究結(jié)論一致。這是因?yàn)樵趬A性環(huán)境下,甲基紅中—COOH會(huì)形成—COO-,而增加甲基紅在水中的溶解度;并且在堿性條件下,溶解的偶氮體會(huì)較多地轉(zhuǎn)化為醌腙體,在OH自由基及高溫環(huán)境下,醌腙體的亞胺基極易被氧化并與苯環(huán)斷裂可加快甲基紅的降解。
圖3 pH對(duì)降解率和降解量的影響
Fig3InfluenceofpHtothedegradationamount/rate
2.2.3 H2O2加入量的影響 在pH=10、甲基紅初始質(zhì)量濃度為130 mg/L,反應(yīng)溫度473 K、反應(yīng)時(shí)間為12 min的條件下,考察H2O2加入體積分?jǐn)?shù)對(duì)降解率和降解量的影響,結(jié)果見圖4。由圖4可知,當(dāng)甲基紅初始質(zhì)量濃度一定時(shí),隨著H2O2加入體積分?jǐn)?shù)的增加,甲基紅的降解率和降解量均相應(yīng)增加,H2O2加入體積分?jǐn)?shù)為1.6%時(shí),降解量為100 mg/L,而降解率為78%。在這是因?yàn)樵谖⒉ㄝ椪障掠袡C(jī)物發(fā)生直接熱解作用,溶液中H2O2溶液濃度的增大將導(dǎo)致有更多的·OH產(chǎn)生,單位分子獲得的·OH濃度相對(duì)值提高,有利于甲基紅的降解。
圖4 H2O2加入量對(duì)降解率和降解量的影響
Fig.4InfluenceofH2O2tothedegradationamount/rate
2.2.4 反應(yīng)溫度的影響 在H2O2加入質(zhì)量分?jǐn)?shù)為1.0%、甲基紅初始質(zhì)量濃度為130 mg/L,反應(yīng)時(shí)間為12 min、pH=10的條件下,考察反應(yīng)溫度對(duì)降解率、降解量的影響,結(jié)果見圖5,由圖5可知,反應(yīng)溫度1/T與降解量均成線性關(guān)系,反應(yīng)級(jí)數(shù)為一級(jí)。采用Fenton體系對(duì)甲基紅降解進(jìn)行研究同樣發(fā)現(xiàn)甲基紅的降解為一級(jí)反應(yīng)[18]。本實(shí)驗(yàn)反應(yīng)常數(shù)為0.172 4 min-1,相關(guān)系數(shù)為0.993 1。根據(jù)阿侖尼烏斯(Arrhenius)公式以及公式(1)、(2),可以計(jì)算出降解量的活化能為126.6 kJ/mol。
圖5 反應(yīng)溫度對(duì)降解率和降解量的影響
Fig.5Influenceoftemperaturetothe
degradationamount/rate
2.3 甲基紅降解吸收光譜
圖6 甲基紅降解光譜變化
Fig.6Spectrachangesofmethylredindegradationcourse
隨著甲基紅的初始質(zhì)量濃度的增加,其降解量增加而降解率下降。如要保持甲基紅降解后殘余質(zhì)量濃度不變,殘余質(zhì)量濃度越低、初始質(zhì)量濃度越高,則氧化條件苛刻度Z值越高,控制條件越嚴(yán)格;隨著溶液pH的增加,甲基紅降解量和降解率增加,堿性條件有利于甲基紅的降解;增加H2O2加入量同樣可以增加甲基紅的降解量和降解率;甲基紅降解為一級(jí)反應(yīng),反應(yīng)常數(shù)為0.172 4 min-1,降解量的活化能126.6 kJ/mol。
[1]Hankare P P,Patil R P,Jadhav A V ,et al.Enhanced photocatalytic degradation of methyl red and thymol blue using titania-alumina-zinc ferrite nanocomposite[J].Applied Catalysis B:Environmental,2011,107:333-339.
[2]Ne′stor Javier Bejarano-Pe′rez,Marco Fidel Sua′rez-Herrera.Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2as a catalyst[J].Ultrasonics Sonochemistry,2007,14:589-595.
[3]Zhou Minghua,Yu Qinghong,Lei Lecheng,et al.Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J].Separation and Purification Technology, 2007,57:380-387.
[4]Tavares M G,da SilvaLozele V A,Sales Solano A M,et al.Electrochemical oxidation of methyl red using Ti/Ru0.3Ti0.7O2and Ti/Pt anodes[J].Chemical Engineering Journal,2012(204-206):141-150.
[5]Remya N,Jih-Gaw Lin.Current status of microwave application in wastewater treatment-A review[J].Chemical Engineering Journal,2011,166:797-813.
[6]黃衛(wèi)紅,阮介兵,陳義群,等.微波輔助芬頓試劑降解聯(lián)苯胺廢水的研究[J].環(huán)境科學(xué)與技術(shù),2009,32(8):130-133.Huang Weihong,Ruan Jiebing,Chen Yiqun,et al.Synergetic degradation of benzidine wastewater by microwave/Fenton reagent[J].Environmental Science & Technology,2009,32(8):130-133.
[7]Zhang Lei, Guo Xingjia, Yan Fei, et al.Study of the degradation behaviour of dimethoate under microwave irradiation[J].Journal of Hazardous Materials,2007,149:675-679.
[8]Lai T L,Yong K F,Yu J W,et al.High efficiency degradation of 4-nitrophenol by microwave-enhanced catalytic method[J].Journal of Hazardous Materials,2011,185:366-372.
[9]李莉,張秀芬,馬禹,等.微波增強(qiáng)TiO2光催化降解染料和水楊酸[J].化工學(xué)報(bào),2008,59(12):3067-3072.Li Li,Zhang Xiufen,Ma Yu,et al.Photodegradation of dyes and salicylic acid with microwave-enhanced TiO2catalyst[J].Journal of Chemical Industry and Engineering (China),2008,59(12):3067-3072.
[10]張朝紅,沈曼莉,王冬梅,等.碳酸鈉溶液改性活性炭催化微波照射降解結(jié)晶紫[J].中國(guó)給水排水,2008,24(23):80-84. Zhang Zhaohong,Shen Manli,Wang Dongmei, et al.Degradation of crystal violet by modified activated carbon with sodium carbonate solution under microwave irradiation[J].China Water & Wastewater, 2008,24(23):80-84.
[11]Zhang Zhaohong,Xu Yao,Ma Xiping,et al.Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW)[J].Journal of Hazardous Materials,2012(209-210):271-277.
[12]Ju Y M,Yang S G,Dinga Y C,et al.Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions:Intermediates and degradation mechanism[J].Journal of Hazardous Materials, 2009,171:123-132.
[13]戴巍,戴竹青.微波/過氧化氫降解水中苯酚[J].化學(xué)工業(yè)與工程,2011,28(6):39-42.Dai Wei,Dai Zhuqing.Degradation of phenol in water by microwave radiation and hydrogen peroxide[J].Chemical Industry and Engineering,2011,28(6):39-42.
[14]Zhou M H,Yu Q H,Le L C,et al.Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J].Separation and Purification Technology,2007,57:380-387.
[15]Ajji Z.Usability of aqueous solutions of methyl red as high-dose dosimeter for gamma radiation[J].Radiation Measurements,2006,41:438-442.
[16]Hong J,Yuan N,Wang Y X,et al.Efficient degradation of Rhodamine B in microwave-H2O2system at alkaline pH[J].Chemical Engineering Journal,2012,191:364-368.
[17]黃衛(wèi)紅,陳義群,阮介兵,等.微波/活性炭/雙氧水協(xié)同降解甲基紅廢水的研究[J].環(huán)境工程學(xué)報(bào),2008,2(12):1655-1658. Huang Weihong,Chen Yiqun,Ruan Jiebing,et al.Study on synergetic degradation of methyl red wastewater by microwave/active carbon/H2O2[J].Chinese Journal of Environmental Engineering, 2008,2(12):1655-1658.
[18]Ashraf S S,Rauf M A,Alhadrami S.Degradation of methyl red using Fenton’s reagent and the effect of various salts[J].Dyes and Pigments,2006,69:74-78.
[19]張小弟,李偉善,黃啟明,等.Pt/Ti電極的制備及其對(duì)甲基紅的催化氧化[J].材料研究與應(yīng)用,2008,2(4):508-510.Zhang Xiaodi,Li Weishan,Huang Qimin,et al.Preparation of Pt/Ti electrode and its catalytic oxidation for mehtyl red[J].Materials Research and Application, 2008,2(4):508-510.
(編輯 閆玉玲)
Degradation of Methyl Red in Water by Microwave Radiation and Hydrogen Peroxide
Dai Zhuqing1,Wang Mihua1,Jia Renren2,Zhou Pan1
(1.SchoolofEnvironmental&SafetyEngineeringofChangzhouUniversity,ChangzhouJiangsu213164,China;2.ChinaNationalPetroleumCo.,FushunPetrochemicalCompany,FushunLiaoning113001,China)
The synergy effect of microwave/peroxide degradation to the methyl red in water was investigated.The initial concentration of substate, pH, the amount of hydrogen peroxide, reaction time, and temperature were examined respectively, and a mathematical model was established in order to study the degradation of methyl red.The results showed that the degradation was enhanced under alkaline conditions and a longer reaction time.If low residual concentration was demanded with high initial concentration, a high valueZ, the oxidation severity was required.The degradation of methyl red is a first order reaction, of which the reaction rate constant is 0.172 4 min-1and the activation energy is 126.6 kJ/mol.The degradation rate can be as high as 78% in following conditions:initial mass concentration 130 mg/L, volume fraction of hydrogen peroxide 1.6%, reaction at 473 K for 12 min, pH=10.
Methyl Red;Microwave;Peroxide;Degradation
1006-396X(2014)06-0011-05
2014-05-08
:2014-10-23
江蘇省科技攻關(guān)項(xiàng)目“印染廢水提標(biāo)與回用技術(shù)開發(fā)”(BY2012100)。
戴竹青(1962-),女,碩士,高級(jí)工程師,從事環(huán)境監(jiān)測(cè)及水處理技術(shù)的研究;E-mail:daizhq@163.com。
TE991; X52
: A
10.3969/j.issn.1006-396X.2014.06.003