謝世清
摘 要:通過(guò)分析長(zhǎng)壽債券的市場(chǎng)發(fā)展以及連續(xù)型和觸發(fā)型兩類長(zhǎng)壽債券的運(yùn)行機(jī)制,采用風(fēng)險(xiǎn)中性定價(jià)方法推導(dǎo)出當(dāng)死亡率服從雙指數(shù)跳躍(DEJD)分布時(shí),長(zhǎng)壽債券的定價(jià)解析式,研究發(fā)現(xiàn),無(wú)論從理論還是實(shí)踐看,設(shè)計(jì)并發(fā)行觸發(fā)型長(zhǎng)壽債券是一種應(yīng)對(duì)長(zhǎng)壽風(fēng)險(xiǎn)更為明智的選擇。
關(guān)鍵詞: 壽險(xiǎn)證券化;長(zhǎng)壽風(fēng)險(xiǎn);長(zhǎng)壽債券;定價(jià)模型
中圖分類號(hào):F832 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào):1003-7217(2014)02-0035-05
一、引言
近年來(lái),隨著我國(guó)老齡化問(wèn)題的加劇,保險(xiǎn)公司和社保機(jī)構(gòu)所面臨的長(zhǎng)壽風(fēng)險(xiǎn)越來(lái)越突出,未來(lái)養(yǎng)老年金的支付壓力愈加沉重,長(zhǎng)壽養(yǎng)老問(wèn)題已成為我國(guó)一個(gè)重大的社會(huì)問(wèn)題。為減緩壓力,延遲退休等政策已經(jīng)被多次提及,但市場(chǎng)化的解決方案在國(guó)內(nèi)并沒(méi)有得到足夠的重視。針對(duì)長(zhǎng)壽風(fēng)險(xiǎn),國(guó)外著名保險(xiǎn)公司已提出了壽險(xiǎn)產(chǎn)品的套期保值、再保險(xiǎn)以及長(zhǎng)壽風(fēng)險(xiǎn)證券化等應(yīng)對(duì)方案。
其中,長(zhǎng)壽債券是國(guó)際上新興的有效管理長(zhǎng)壽風(fēng)險(xiǎn)的金融工具,是指其息票或面值與生存概率相關(guān)聯(lián)的債券。通過(guò)長(zhǎng)壽債券,養(yǎng)老基金和保險(xiǎn)公司可以將長(zhǎng)壽風(fēng)險(xiǎn)轉(zhuǎn)移給其它金融機(jī)構(gòu)或更為廣泛的投資者,達(dá)到分散長(zhǎng)壽風(fēng)險(xiǎn)的目的。實(shí)際上,由于套期保值面臨壽險(xiǎn)產(chǎn)品缺失,而再保險(xiǎn)面臨高成本等問(wèn)題,作為應(yīng)對(duì)長(zhǎng)壽風(fēng)險(xiǎn)的創(chuàng)新性解決方案,長(zhǎng)壽債券在國(guó)際保險(xiǎn)市場(chǎng)上受到越來(lái)越多的關(guān)注。
目前,國(guó)外對(duì)長(zhǎng)壽債券的研究主要集中在兩個(gè)方面
圖1 EIB長(zhǎng)壽債券的運(yùn)行機(jī)制
五、結(jié) 語(yǔ)
由于長(zhǎng)壽債券市場(chǎng)的不完全性以及長(zhǎng)壽風(fēng)險(xiǎn)的特殊性,長(zhǎng)壽債券的定價(jià)模型不同于一般傳統(tǒng)的固定收益證券的定價(jià)方法。目前運(yùn)用較為廣泛的是概率分布扭曲定價(jià)法和風(fēng)險(xiǎn)中性定價(jià)方法,但兩種定價(jià)方式都存在一定的局限性??梢灶A(yù)期,長(zhǎng)壽債券的合理定價(jià)問(wèn)題仍是今后研究所關(guān)注的重點(diǎn)之一。
長(zhǎng)壽債券是長(zhǎng)壽風(fēng)險(xiǎn)證券化的重要產(chǎn)物,也是應(yīng)對(duì)長(zhǎng)壽風(fēng)險(xiǎn)不可或缺的管理工具。但是由于死亡率預(yù)測(cè)、定價(jià)方法、市場(chǎng)參與者等原因,長(zhǎng)壽債券并未得到應(yīng)有的重視與發(fā)展。目前國(guó)際保險(xiǎn)市場(chǎng)上出現(xiàn)過(guò)的長(zhǎng)壽債券僅為EIB長(zhǎng)壽債券和Kortis長(zhǎng)壽債券,而前者發(fā)行失敗,后者則發(fā)行成功。Kortis長(zhǎng)壽債券正確的定價(jià)固然是其發(fā)行成功的重要原因之一,但其設(shè)計(jì)才是關(guān)鍵性的成功因素。
未來(lái)長(zhǎng)壽債券的發(fā)行者不僅要重視對(duì)債券的有效定價(jià),同時(shí)也應(yīng)當(dāng)強(qiáng)調(diào)其設(shè)計(jì)的合理性。就目前情況看來(lái),連續(xù)型長(zhǎng)壽債券不能將長(zhǎng)壽風(fēng)險(xiǎn)在資本市場(chǎng)上有效分散,不利于吸引投資者積極參與。因此,無(wú)論從理論還是實(shí)踐看,設(shè)計(jì)并發(fā)行觸發(fā)型長(zhǎng)壽債券是一種未來(lái)應(yīng)對(duì)長(zhǎng)壽風(fēng)險(xiǎn)的更為明智的選擇。希望本文對(duì)長(zhǎng)壽債券的探討能夠引起學(xué)術(shù)界對(duì)長(zhǎng)壽債券的關(guān)注,并嘗試用它來(lái)應(yīng)對(duì)我國(guó)日益嚴(yán)峻的長(zhǎng)壽風(fēng)險(xiǎn)。
參考文獻(xiàn):
[1]Blake, D.and W. Burrows.Survivor bonds: helping to hedge mortality risk[J]. Journal of Risk and Insurance,2001,(68):339-348.
[2]Lin, Y.and S. Cox.Securitization of mortality risks in life annuities[J]. Journal of Risk and Insurance,2005,(72):227-252.
[3]Blake, D.A.J.G.Cairns, K.Dowd,and R. MacMinn.Longevity bonds: financial engineering, valuation and hedging[J]. Journal of Risk and Insurance,2006,(73):647-72.
[4]Denuit, M., P. Devolder, and A.Goderniaux.Securitization of longevity risk: pricing survivor bonds with wang transform in the leecarter framework[J]. Journal of Risk and Insurance,2007,74(1): 87-113.
[5]Cairns, A. J. G., D. Blake, and K. Dowd.A twofactor model for stochastic mortality: theory and calibration[J]. Journal of Risk and Insurance,2006,73(4):687-718.
[6]Bauer, D.and J.Ru.Pricing longevity bonds using implied survival probabilities[A]. 2006 meeting of the American Risk and Insurance Association ARIA,2006.
[7]尚勤,秦學(xué)志,周穎穎.死亡強(qiáng)度服從OrnsteinUhlenbeck跳過(guò)程的長(zhǎng)壽債券定價(jià)模型[J].系統(tǒng)管理學(xué)報(bào),2008,17(3):298-302.
[8]Chen, H.and J. D.Cummins.Longevity bond premiums: the extreme value approach and risk cubic pricing[J]. Insurance: Mathematics and Economics,2010,46(1): 150-161.
[9]Wang, S.A class of distortion operations for pricing financial and insurance risks[J]. Journal of Risk and Insurance, 2000,67(1): 15-36.
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責(zé)任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責(zé)任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責(zé)任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model
財(cái)經(jīng)理論與實(shí)踐2014年2期