李 釗 劉瑞雪 王 琳 馬 丹
?
MU-MIMO下行鏈路基于關(guān)聯(lián)干擾的先驗(yàn)式用戶調(diào)度
李 釗*劉瑞雪 王 琳 馬 丹
(西安電子科技大學(xué)綜合業(yè)務(wù)網(wǎng)理論及關(guān)鍵技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071)
該文針對(duì)MU-MIMO下行(廣播)信道提出一種基于空間子信道關(guān)聯(lián)干擾的先驗(yàn)式調(diào)度算法。該方法將用戶調(diào)度轉(zhuǎn)換為子信道的選擇問題,通過綜合考慮候選子信道的傳輸增益,以及候選者與已選的和潛在的、將來可能被選中的子信道間的相互干擾,獲得一組相互干擾較小的子信道。仿真結(jié)果表明,合理地選取關(guān)聯(lián)干擾參數(shù),該算法能夠獲得計(jì)算復(fù)雜度與傳輸性能的良好折中,有效改善系統(tǒng)和速率。
無線通信;多用戶;MIMO系統(tǒng);調(diào)度;干擾
多輸入多輸出(Multiple Input Multiple Output, MIMO)技術(shù)能夠在不增加發(fā)射功率與通信帶寬的前提下改善傳輸速率,提升鏈路可靠性,在過去的十幾年受到廣泛關(guān)注,已經(jīng)成為多種寬帶無線通信標(biāo)準(zhǔn)的關(guān)鍵技術(shù),如LTE-A[1]和802.16m。通過與其它技術(shù)相結(jié)合,如正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing, OFDM),認(rèn)知無線電(Cognitive Radio, CR)[2],干擾協(xié)調(diào)(Interference Alignment, IA)[3], MIMO技術(shù)的研究呈現(xiàn)出多元化。相比于單用戶MIMO,多用戶MIMO (Multi-User MIMO, MU-MIMO)能夠進(jìn)一步提升系統(tǒng)性能,也更符合實(shí)際通信的需求[4]。在MU-MIMO系統(tǒng)中,由于基站能力的限制,通常需要從多個(gè)用戶中選擇一組進(jìn)行服務(wù),合理的用戶調(diào)度可以獲得多用戶分集(Multi-User Diversity, MUD)增益,實(shí)現(xiàn)通信資源的充分利用。
在MU-MIMO用戶調(diào)度中,不同激活用戶的數(shù)據(jù)是同時(shí)、同頻并發(fā)傳輸?shù)?,它們之間存在共道干擾(Co-Channel Interference, CCI),這一因素也成為多種調(diào)度算法的設(shè)計(jì)依據(jù)。當(dāng)信道狀態(tài)信息(Channel State Information, CSI)已知時(shí),基站可以利用窮舉搜索選擇一組相互影響最小的用戶,獲得最大系統(tǒng)和速率,但該方法復(fù)雜度高,在實(shí)際應(yīng)用中難以實(shí)現(xiàn)。為了降低復(fù)雜度,一些次優(yōu)的方法相繼被提出。如基于信道相關(guān)性的次優(yōu)貪婪用戶選擇算法[5],該方法首先確定一個(gè)通信質(zhì)量最好的用戶,然后以系統(tǒng)和速率最大化為目標(biāo)依次激活其它用戶。文獻(xiàn)[6]提出一種準(zhǔn)正交的用戶調(diào)度方法,基于用戶的空間分布關(guān)系選擇一組較好的用戶,文獻(xiàn)[7]在不損失通信性能的前提下對(duì)文獻(xiàn)[6]進(jìn)行改進(jìn),使其復(fù)雜度降低。文獻(xiàn)[8]從降低反饋開銷出發(fā),設(shè)計(jì)了基于預(yù)設(shè)門限的用戶調(diào)度方法,僅對(duì)優(yōu)于門限的用戶進(jìn)行調(diào)度。文獻(xiàn)[9]提出一種分布式的用戶調(diào)度算法,根據(jù)與已選用戶之間的干擾,由用戶和基站共同實(shí)現(xiàn)調(diào)度。以上研究主要以系統(tǒng)和速率優(yōu)化為目標(biāo)設(shè)計(jì)調(diào)度算法。也有一些工作采用其它準(zhǔn)則,如文獻(xiàn)[10]基于誤碼率進(jìn)行用戶選擇,進(jìn)一步提升系統(tǒng)和速率。文獻(xiàn)[11]基于與已選用戶弦距離的大小實(shí)現(xiàn)用戶調(diào)度,降低復(fù)雜度。
在用戶調(diào)度的基礎(chǔ)上,還可以通過多種編碼技術(shù),如污紙編碼(Dirty Paper Coding, DPC)[12],塊對(duì)角化(Block Diagonalization, BD)[13],迫零(Zero Forcing, ZF)[14]等,對(duì)共道干擾進(jìn)行消除或抑制。由于具體的編碼技術(shù)只有在合理的用戶調(diào)度基礎(chǔ)上進(jìn)行應(yīng)用,才能獲得更好的效果,因此本文僅關(guān)注用戶子集的選取。
圖1 MU-MIMO BC系統(tǒng)模型
對(duì)式(6)進(jìn)行化簡(jiǎn)可得
根據(jù)SINR的推導(dǎo),容易計(jì)算系統(tǒng)和速率為
定義關(guān)聯(lián)干擾數(shù)是指在進(jìn)行空間子信道選擇時(shí),考察的與當(dāng)前待選子信道相關(guān)的已選子信道和潛在的、將來可能被選中的子信道個(gè)數(shù)之和。
其中
根據(jù)前文敘述,將用戶調(diào)度轉(zhuǎn)換為空間子信道的選擇問題,因此在下面的討論中,將用戶集合轉(zhuǎn)換為相應(yīng)的用戶-子信道集合進(jìn)行闡述。以下給出調(diào)度算法的具體步驟如表1所示。
表1 先驗(yàn)式調(diào)度算法
表2計(jì)算復(fù)雜度比較
算法計(jì)算步驟實(shí)際運(yùn)算次數(shù) ESSVD 計(jì)算 RSSVD 計(jì)算,其中 PSSVD 計(jì)算,其中 構(gòu)造
圖2 采用PS的系統(tǒng)和速率隨SNR及變化的3維圖
圖3 SNR取不同值時(shí)采用PS的系統(tǒng)和速率與的關(guān)系
圖4 取不同值時(shí)采用PS的系統(tǒng)和速率與的關(guān)系
圖5 不同調(diào)度算法的系統(tǒng)和速率比較
[1] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; General description. TS 36.201 V11.1.0[S]. France, 3GPP Organizational Partners, 2012.
[2] Nguyen D N and Krunz M. Spectrum management and power allocation in MIMO cognitive networks[C]. Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Orlando, 2012: 2023-2031.
[3] Lee Jung-hoon and Choi Wan. Interference alignment by opportunistic user selection in 3-user MIMO interference channels[C]. Proceedings of the IEEE International Conference on Communication (ICC), Kyoto, 2011: 1-5.
[4] Spencer Q H, Peel C B, Swindlehurst A L,.. An introduction to the multi-user MIMO downlink[J]., 2004, 42(10): 60-67.
[5] Dimic G and Sidiropoulos N D. On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm[J]., 2005, 53(10): 3857-3868.
[6] Yoo T and Goldsmith A. On the optimality of multi-antenna broadcast scheduling using zero-forcing beamforming[J]., 2006, 24(3): 528-542.
[7] Mao J, Gao J, Liu Y,.. Simplified semi-orthogonal user selection for MU-MIMO systems with ZFBF[J]., 2012, DIO: 10.1109/WCL.2012.010912.110119.
[8] Bayesteh A and Khandani A K. On the user selection for MIMO broadcast channels[C]. Proceedings of the IEEE International Symposium on Information Theory (ISIT), Adelaide, 2005: 2325-2329.
[9] Li Z, Yang J, and Yao J. Distributed scheduling algorithm for multiuser MIMO downlink with adaptive feedback[J]., 2009, 4(3): 164-169.
[10] Ko K, Cho H, and Lee J. Eigenmode BER based MU-MIMO scheduling for rate maximization with linear precoding and power allocation[C]. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Paris, 2012: 142-146.
[11] Ko K and Lee J. Multiuser MIMO user selection based on chordal distance[J].2012, 60(3): 649-654.
[12] Costa M. Writing on dirty paper[J]., 1983, 29(3): 439-441.
[13] Choi L U and Murch R D. A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach[J]., 2004, 3(1): 20-24.
[14] Spencer Q H, Swindlehurst A L, and Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J]., 2004, 52(2): 461-471.
[15] Wang M, Li F, Evans J S,.. Dynamic multi-user MIMO scheduling with limited feedback in LTE-Advanced[C]. Proceedings of the IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, 2012: 1627-1632.
[16] Nguyen K D, Rasmussen L K, Guillen I Fabregas A,.. MIMO ARQ with multibit feedback: outage analysis[J]., 2012, 58(2): 765-779.
[17] Yang Y, Xun L, and Shaoqian L. Low complexity MIMO scheduling with block diagonalization using capacity lower-bound[J]., 2011, 15(12): 1298-1300.
李 釗: 男,1981年生,博士,副教授,研究方向?yàn)镸IMO無線通信、認(rèn)知無線電.
劉瑞雪: 女,1987年生,碩士生,研究方向?yàn)镸IMO多用戶調(diào)度、無線資源分配.
王 琳: 女,1987年生,碩士生,研究方向?yàn)闊o線資源分配、數(shù)字移動(dòng)無線電.
MU-MIMO Downlink Proactive Scheduling Based on Associative Interference
Li Zhao Liu Rui-xue Wang Lin Ma Dan
(,,710071,)
In this paper a proactive scheduling algorithm is proposed based on associative interference of spatial subchannels for MU-MIMO downlink (broadcast) channel. The strategy converts user scheduling into subchannel selection issue. With comprehensive consideration of candidate subchannel transmission gain, along with mutual interference among candidate and selected subchannels, as well as those to be selected potentially. A set of subchannels with less mutual interference are achieved. Simulation results show that by choosing proper associative interference parameters, the proposed algorithm can achieve good tradeoff between computational complexity and transmission performance, and improve system sum rate effectively.
Wireless communication; Multiuser; MIMO system; Scheduling; Interference
TN92
A
1009-5896(2014)01-0067-07
10.3724/SP.J.1146.2013.00046
2013-01-11收到,2013-09-26改回
國(guó)家自然科學(xué)基金(61102057, 61231008),國(guó)家科技重大專項(xiàng)(2012ZX03003005-005),國(guó)家973計(jì)劃項(xiàng)目(2009CB320404),高等學(xué)校引智計(jì)劃項(xiàng)目(B08038),長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT0852), ISN項(xiàng)目(ISN1103005)和中央高校基本科研業(yè)務(wù)費(fèi)(K5051301014)資助課題
李釗 zli_19912@126.com