林展圖等
摘要:干旱是影響甘蔗(Saccharum officinarum L.)正常生長(zhǎng)發(fā)育和糖分運(yùn)輸累積的最重要逆境因子。如何解決干旱條件下甘蔗的產(chǎn)量問(wèn)題是目前生產(chǎn)上面臨的重要課題。近年來(lái),隨著基因工程技術(shù)的發(fā)展,甘蔗中許多抗旱相關(guān)基因已被克隆,這些基因是甘蔗抗旱性改良中的重要基因資源。綜述了近幾年甘蔗抗旱相關(guān)基因的研究進(jìn)展及其在基因工程上的應(yīng)用現(xiàn)狀。
關(guān)鍵詞:甘蔗(Saccharum officinarum L.);干旱;調(diào)節(jié)基因;功能基因
中圖分類號(hào):S566.1;Q948.112+3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)02-0249-06
Researches of Drought-resistance Related Genes in Sugarcane
LIN Zhan-tu1,LI Tao2,WANG Cai-yun1,ZHANG Xiao-dong2,LI Fu-sheng1
(1.Yunnan Agricultural University,Kunming 650201,China; 2.Yuxi Normal University,Yuxi 653100,Yuunan,China)
Abstract: Drought is the most important stress factor significantling destroying the normal growth and sucrose accumulation of sugarcane. Solving the sugarcane production under drought condition is an emergent issue in practice. In recent years, many drought-resistance related genes of sugarcane have been cloned which are important resources for breeding sugarcane with drought-resistance. This paper is aimsed to provide a review of these functional genes for drought tolerance and the activity of their application in drought tolerance.
Key words: Saccharum officinarum L.; drought; regulatory genes; functional genes
甘蔗(Saccharum officinarum L.)為禾本科甘蔗屬植物,是世界糖料生產(chǎn)的重要作物之一[1]。2009年全球甘蔗種植面積已達(dá)2 300萬(wàn)hm2,約占全球耕地面積的5%[2]。巴西是世界上最大的蔗糖生產(chǎn)國(guó),每年可生產(chǎn)蔗糖3 100萬(wàn)t,約占全球產(chǎn)量的2/3[3]。甘蔗也是生物乙醇生產(chǎn)的重要原材料。有學(xué)者估計(jì)甘蔗生物乙醇在未來(lái)15~20年間可以取代10%以上的世界精煉石油[4,5]。在生產(chǎn)上,甘蔗容易受到惡劣氣候和土壤條件等環(huán)境因子的影響。
非生物脅迫是造成全球重要作物減產(chǎn)的主要因素之一,其中干旱脅迫居首位,對(duì)作物適應(yīng)性和產(chǎn)量造成很大影響,如干旱影響甘蔗生長(zhǎng)發(fā)育和糖分的運(yùn)輸累積,導(dǎo)致甘蔗產(chǎn)量減少40%以上[6]。因而,發(fā)掘甘蔗抗旱相關(guān)基因已成為甘蔗育種、遺傳資源與品種改良研究的熱點(diǎn)。通過(guò)基因工程手段,將抗旱相關(guān)基因克隆并將其導(dǎo)入非抗旱甘蔗品種,定向改良該品種的抗旱性,將是未來(lái)甘蔗品種改良的一種有效手段。近年來(lái),國(guó)內(nèi)外研究者利用現(xiàn)代分子生物學(xué)技術(shù),已克隆出一些與抗旱相關(guān)的基因。根據(jù)作用方式的不同,可以將抗旱基因分為兩類,一類是功能基因,其編碼產(chǎn)物在植物抗旱中直接起保護(hù)作用,如滲透調(diào)節(jié)物質(zhì)生物合成途徑的關(guān)鍵酶基因(如脯氨酸合成酶基因P5CS)和具有抗氧化功能的酶基因(如超氧化物歧化酶基因SOD);另一類是調(diào)節(jié)基因,其編碼產(chǎn)物在信號(hào)轉(zhuǎn)導(dǎo)和基因表達(dá)過(guò)程中能夠調(diào)節(jié)功能基因的表達(dá),如bZIP(堿性亮氨酸拉鏈)轉(zhuǎn)錄因子和蛋白激酶基因MAPK等[7]。
1 甘蔗抗旱相關(guān)的功能基因
1.1 滲透調(diào)節(jié)物質(zhì)生物合成途徑相關(guān)基因
脯氨酸是植物體內(nèi)重要的相容性滲透調(diào)節(jié)物質(zhì),一般以游離狀態(tài)存在于植物細(xì)胞中。研究表明增加植物細(xì)胞中脯氨酸的含量,可以有效提高植物抗旱性和耐鹽性[8]。因此,脯氨酸的積累與植物干旱、鹽脅迫密切相關(guān)。高等植物脯氨酸生物合成分為兩條途徑:谷氨酸途徑和鳥(niǎo)氨酸途徑。通常在植物受到逆境脅迫時(shí),脯氨酸的合成主要來(lái)源于后者?!?-吡咯啉-5-羧酸合成酶(P5CS)基因是脯氨酸合成中谷氨酸途徑的限速酶基因,干旱和鹽脅迫處理下P5CS基因的誘導(dǎo)表達(dá),往往伴隨著脯氨酸含量的增加[9]?!?鳥(niǎo)氨酸氨基轉(zhuǎn)移酶(δ-OAT)基因是脯氨酸合成中鳥(niǎo)氨酸途徑的一個(gè)關(guān)鍵酶基因。
近年來(lái)研究表明這兩種酶已經(jīng)從許多植物中分離和克隆出來(lái)。Kishor等[10]將烏頭葉豇豆(Vigna aconitifolia)中的P5CS基因?qū)霟煵葜邪l(fā)現(xiàn),轉(zhuǎn)基因煙草的脯氨酸含量比對(duì)照組高10~18倍,其抗?jié)B透能力也大大提高。Huang等[11]運(yùn)用同源克隆技術(shù)獲得甘蔗栽培種“ROC22”的P5CS基因(Sc-P5CS)編碼序列,其推斷的氨基酸序列與前人克隆的Sc-P5CS基因相似性為92%,該基因可能是甘蔗P5CS基因家族的一個(gè)新成員。Patade等[12]克隆了甘蔗栽培種“Co86032”的P5CS基因,在鹽脅迫和聚乙二醇(PEG)脅迫下進(jìn)行分析,結(jié)果發(fā)現(xiàn)鹽脅迫2 h后該基因表達(dá)量比對(duì)照組減少30%,鹽脅迫2 h以上,其表達(dá)量均比對(duì)照組高;PEG脅迫4 h后其表達(dá)量是對(duì)照組的1.3倍,PEG脅迫16 h和24 h后其表達(dá)量均比對(duì)照組低,這些結(jié)果表明甘蔗P5CS基因在鹽脅迫或PEG脅迫下的作用不同。
You等[8]報(bào)道在水稻(Oryza sativa)中過(guò)表達(dá)水稻OsOAT基因可明顯增強(qiáng)其δ-OAT活性、提高脯氨酸含量和增強(qiáng)水稻的抗旱和抗?jié)B透能力。張積森等[13]通過(guò)消減文庫(kù)技術(shù)首次從甘蔗栽培種“富農(nóng)95-1702”中克隆到OAT基因(δ-OAT),表達(dá)模式研究結(jié)果表明δ-OAT在根、莖、葉中表達(dá)并沒(méi)有明顯的組織特異性。張積森等[14]從斑茅(Erianthus arundinaceus)中克隆到EaOAT基因,表達(dá)模式分析結(jié)果表明其在干旱脅迫下被誘導(dǎo),脅迫初期其表達(dá)被抑制,脅迫后期其表達(dá)被上調(diào)。因此,可以推測(cè)δ-OAT基因在甘蔗響應(yīng)干旱脅迫中起著重要作用,其具體作用機(jī)制還需要進(jìn)一步研究。
1.2 抗氧化防御體系相關(guān)酶基因
3 展望
甘蔗是重要的經(jīng)濟(jì)作物。目前,雖然利用同源克隆和電子克隆技術(shù)已克隆和鑒定了一些甘蔗抗旱相關(guān)基因,并通過(guò)基因工程方法,獲得一些轉(zhuǎn)基因甘蔗株系,提高了其抗旱耐鹽性,在甘蔗抗旱育種中具有重要意義。但是,甘蔗抗旱相關(guān)基因的克隆和轉(zhuǎn)基因研究方面仍存在以下幾個(gè)方面的問(wèn)題:①甘蔗是復(fù)雜的無(wú)性繁殖多倍體植物,利用分子標(biāo)記技術(shù)定位抗旱相關(guān)基因有一定的難度,需要改變分子標(biāo)記技術(shù)策略來(lái)定位和克隆甘蔗抗旱相關(guān)基因。由于近幾年來(lái)測(cè)序技術(shù)的快速發(fā)展,今后通過(guò)轉(zhuǎn)錄組測(cè)序技術(shù)來(lái)進(jìn)一步挖掘和克隆甘蔗抗旱功能基因和調(diào)控基因?qū)⑹欠浅=?jīng)濟(jì)和高效的手段;②過(guò)去的研究一直以某一個(gè)或幾個(gè)基因?yàn)榛A(chǔ),在獲得某一個(gè)抗旱功能基因后,沒(méi)有對(duì)這些基因進(jìn)行詳細(xì)功能和調(diào)控機(jī)制研究,今后要對(duì)這些基因分別進(jìn)行過(guò)表達(dá)、RNAi、互補(bǔ)試驗(yàn)和酶活性測(cè)定等方面的研究,對(duì)于轉(zhuǎn)錄因子還需要通過(guò)染色質(zhì)免疫共沉淀(ChIP)和凝膠阻滯(EMSA)等試驗(yàn)確定它們的功能。③轉(zhuǎn)基因過(guò)程中使用的啟動(dòng)子主要是組成型啟動(dòng)子,轉(zhuǎn)化效率及表達(dá)效率不高,影響甘蔗的抗旱能力。在今后的研究中,可以分離和鑒定高效表達(dá)的啟動(dòng)子和甘蔗誘導(dǎo)型的啟動(dòng)子,有助于提高甘蔗轉(zhuǎn)基因的表達(dá)效率。④在轉(zhuǎn)基因過(guò)程中,相比導(dǎo)入或改良個(gè)別功能基因來(lái)提高某種抗性的方法,導(dǎo)入或改良轉(zhuǎn)錄因子是提高甘蔗抗逆性更為有效的方法和途徑,因此有必要進(jìn)一步挖掘與抗旱相關(guān)的轉(zhuǎn)錄因子基因。⑤目前甘蔗的轉(zhuǎn)基因技術(shù)主要依賴于農(nóng)桿菌介導(dǎo)的方法,其轉(zhuǎn)化效率不高,今后還需要進(jìn)一步開(kāi)發(fā)甘蔗的高效轉(zhuǎn)化程序。目前,甘蔗的基因組還未測(cè)序,但是已經(jīng)開(kāi)發(fā)出甘蔗的基因芯片,這為基因的表達(dá)檢測(cè)提供了高效手段。隨著分子生物學(xué)技術(shù)的不斷發(fā)展,越來(lái)越多抗旱相關(guān)基因被克隆和功能解析,這將為甘蔗抗旱新品種的選育和改良奠定基礎(chǔ)。
參考文獻(xiàn):
[1] GENTILE A,F(xiàn)ERREIRA T H,MATTOSR S,et al. Effects of drought on the microtranscriptome of field-grown sugarcane plants[J]. Planta,2013,237(3):783-798.
[2] LEMBKE C G, NISHIYAMA M Y JR, SATO P M, et al. Identification of sense and antisense transcripts regulated by drought in sugarcane[J]. Plant Molecular Biology,2012,79(4-5):461-467.
[3] MENOSSI M,SILVA-FILHO M C,VINCENTZ M,et al. Sugarcane functional genomics: Gene discovery for agronomic trait development[J]. International Journal of Plant Genomics, 2008, DOI: 10.1155/2008/458732.
[4] SILVA R,NETO J F,PANDOLEI V,et al. Transcriptomics of sugarcane osmoprotectants under drought[M]. Rijeka, Croatia: INTECH Open Access Publisher,2011.
[5] GOLDEMBERG J. Ethanol for a sustainable energy future[J]. Science,2007,315(5813):808-810.
[6] JANGPROMMA N,THAMASIRIRAK S,JAISIL P,et al. Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane(Saccharum officinarum L.)[J]. Australian Journal of Crop Science,2012,6(8):1298-1304.
[7] HOLMBERG N,B?譈LOW L. Improving stress tolerance in plants by gene transfer[J]. Trends in Plant Science,1998,3(2):61-66.
[8] YOU J,HU H H,XIONG L Z. An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice[J]. Plant Science,2012,197:59-69.
[9] KU H M, TAN C W, SU Y S, et al. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana[J]. Biologia Plantarum,2012,56(2):337-343.
[10] KISHOR P B K,HONG Z L,MIAO G H,et al. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology,1995,108(4):1387-1394.
[11] HUANG C M,YANG L T,LI Y R,et al. Isolation and characterization of a gene encoding the △-1-pyrroline-5-carboxylate synthetase in sugar(Saccharum officinarum L.)[J]. Guangxi Agricultural Sciences,2009,40(2):113-119.
[12] PATADE V Y,BHARGAVA S,SUPRASANNA P. Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves[J]. Molecular Biology Reports,2012,39(3):3311-3318.
[13] 張積森,陳由強(qiáng),郭春芳,等. 甘蔗水分脅迫響應(yīng)的δ-鳥(niǎo)氨酸轉(zhuǎn)氨酶基因克隆及分子特征分析[J]. 熱帶作物學(xué)報(bào),2009,30(8):1062-1068.
[14] 張積森,闕友雄,李 偉,等. 水分脅迫下斑茅3個(gè)逆境代謝相關(guān)基因表達(dá)的實(shí)時(shí)PCR分析[J]. 中國(guó)農(nóng)學(xué)通報(bào),2007,23(5):49-54.
[15] DE CARVALHO K,DE CAMPOS M K F,DOMINGUES D S,et al. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo[J]. Molecular Biology Reports,2013,40(4):3269-3279.
[16] QUE Y X,LIU J X, XU L P,et al. Molecular cloning and expression analysis of a Mn-superoxide dismutase gene in sugarcane[J]. African Journal of Biotechnology,2012,11(3):552-560.
[17] LI C H,SUN H L,CHEN A Q,et al. Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/ZnSOD) gene from clam Venerupis philippinarum[J]. Fish & Shellfish Immunology,2010,28(3):499-503.
[18] ZHANG Y C,MAO L Y,WANG H,et al. Genome-wide identification and analysis of grape aldehyde dehydrogenase(ALDH) gene superfamily[J]. PLoS One,2012,DOI: 10.1371/journal.pone.0032153.
[19] KIRCH H H, BARTELS D,WEI Y,et al. The ALDH gene superfamily of Arabidopsis[J]. Trends in Plant Science,2004, 9(8):371-377.
[20] KOTCHONI S O, JIMENEZ-LOPEZ J C, KAYOD?魪 A P,et al. The soybean aldehyde dehydrogenase(ALDH) protein superfamily[J]. Gene,2012,495(2):128-133.
[21] XIONG L M,SCHUMAKER K S,ZHU J K,et al. Cell signaling during cold, drought and salt stress[J]. The Plant Cell,2002,14:165-183.
[22] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[23] ISHITANI M, NAKAMURA T, HAN S Y, et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic-stress and abscisic-acid[J]. Plant Molecular Biology,1995,27(2):307-315.
[24] BROCKER C,LASSEN N,ESTEY T,et al. Aldehyde dehydrogenase 7A1(ALDH7A1) is a novel enzyme involved in cellular defense against hyperomsotic stress[J]. The Journal of Biological Chemistry,2010,285(24):18452-18463.
[25] KELLY G J,GIBBS M. A mechanism for the indirect transfer of photosynthetically reduced nicotinamide adenine dinucleotide phosphate from chloroplasts to the cytoplasm[J]. Plant Physiology,1973,52(6):674-676.
[26] JACKSON B,BROCKER C,THOMPSON D C,et al. Update on the aldehyde dehydrogenase gene(ALDH) superfamily[J]. Human Genomics,2011,5(4):283-303.
[27] BROCKER C,VASILIOU M,CARPENTER S,et al. Aldehyde dehydrogenase(ALDH) superfamily in plants: gene nomenclature and comparative genomics[J]. Planta,2012,237(1):189-210.
[28] 張積森,郭春芳,王冰梅,等. 甘蔗水分脅迫響應(yīng)相關(guān)醛脫氫酶基因的克隆及其表達(dá)特征分析[J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2676-2685.
[29] 裴麗麗,郭玉華,徐兆師,等.植物逆境脅迫相關(guān)蛋白激酶的研究進(jìn)展[J]. 西北植物學(xué)報(bào),2012,32(5):1052-1061.
[30] 李 璨,騰 崢,劉開(kāi)雨,等.甘蔗MAP激酶基因SoMAPK4克隆與生物信息學(xué)分析[J].南方農(nóng)業(yè)學(xué)報(bào),2012,43(6):727-732.
[31] LINDEMOSE S, O'SHEA C, JENSEN K M, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences,2013,14(3):5842-5878.
[32] 劉 莉. DREBs、bZIP轉(zhuǎn)錄因子與植物抗旱性研究進(jìn)展[J]. 浙江農(nóng)業(yè)科學(xué),2013(1):98-102.
[33] LI Y,SUN Y,YANG Q C,et al. Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor[J]. Molecular Biology Reports,2013,40(2):1227-1239.
[34] HUANG X S,LIU J H,CHEN X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biology,2010,10(1):1-18.
[35] WU Y,ZHOU H,QUE Y X,et al. Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance[J]. Sugar Tech,2008,10(1):36-41.
[36] SCHL?魻GL P S, KOBARG J,MOREAU V H,et al. Expression, purification and characterization of a novel bZIP protein from sugarcane[J]. Plant Science,2004,167(3):583-595.
[37] DU H,ZHANG L,LIU L,et al. Biochemical and molecular characterization of plant MYB transcription factor family[J]. Biochemistry (Moscow),2009,74(1):1-11.
[38] PRABU G,PRASAD D T. Functional characterization of sugarcane MYB transcription factor gene promoter(PCcMYBAS1) in response to abiotic stresses and hormones[J]. Plant Cell Reports,2012,31(4):661-669.