唐超智++楊鈞棠++王文晟
摘要:RECQL4屬于人類RECQ解旋酶家族,其變異已引起至少3種基因組不穩(wěn)定性疾病。除了同家族其他成員一樣參與DNA損傷修復(fù)外,RECQL4獨(dú)特的結(jié)構(gòu)還使其參與了復(fù)制的起始。最新研究結(jié)果表明,RECQL4可維持端粒和線粒體DNA的穩(wěn)定,提示RECQL4的作用可能更為廣泛。對(duì)RECQL4維持基因組穩(wěn)定的不同途徑及其機(jī)制進(jìn)行了歸納,以期為人們探索RECQL4相關(guān)性疾病的發(fā)病機(jī)理和治療方案提供思路。
關(guān)鍵詞:RECQL4;復(fù)制;修復(fù);端粒;線粒體
中圖分類號(hào):Q71 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)04-0745-05
Role of RECQL4 in Maintaining the Stability of Genome
TANG Chao-zhi,YANG Jun-tang,WANG Wen-sheng
(College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan,China)
Abstract: RECQL4 belonging to RECQ helicase family is responsible for more then three human diseases of genomic disorder. Being involved in DNA damage repair like other family members, the special structure of RECQL4 makes it involve in initiating of DNA replication. It was found that RECQL4 helps maintain the stability of telomere and mitochondrial DNA, revealing that RECQL4 may have broad functions. Different ways that RECQL4 maintains the stability of the genome were summarized to provide advices on exploring the mechanisms and therapies of RECQL4 related diseases.
Key words: RECQL4; replication; repair; telomere; mitochondrion
大量的研究表明,人類疾病往往與基因組的穩(wěn)定性密切相關(guān)[1-3],而基因組的穩(wěn)定涉及到DNA復(fù)制、修復(fù)、端粒維持及線粒體DNA穩(wěn)定等多個(gè)環(huán)節(jié)[4-7],因此,在這些環(huán)節(jié)中起關(guān)鍵性作用的分子成為當(dāng)今醫(yī)學(xué)分子生物學(xué)研究的熱點(diǎn)。在這些分子中,RECQ解旋酶家族成員因以多種方式參與了維持基因組的穩(wěn)定而備受關(guān)注[8-12]。
人類RECQ解旋酶家族由5個(gè)成員組成,即RECQL1、RECQL2(BLM)、RECQL3(WRN)、RECQL4和RECQL5。其中BLM、WRN和RECQL4的變異被證明與一系列基因組異常的疾病有關(guān),而RECQL1和RECQL5目前并沒有相應(yīng)的發(fā)現(xiàn)。另外,在導(dǎo)致疾病的3個(gè)解旋酶中,BLM和WRN的變異均分別導(dǎo)致一種疾病,而RECQL4被發(fā)現(xiàn)與至少3種基因組紊亂疾病如RTS(Rothmund-Thomson syndrome)、RAPA(Rapadilino syndrome)和BGS(Baller-Gerold syndrome)等均有關(guān)的蛋白,且這些疾病的癥狀不盡相同[13-16],因此,揭示RECQL4參與維持基因組穩(wěn)定的機(jī)制可能更具有代表意義。
結(jié)合之前對(duì)RECQ解旋酶家族成員功能的了解[17,18]及最新的研究動(dòng)態(tài),本文對(duì)RECQL4在維持基因組穩(wěn)定中發(fā)揮的作用進(jìn)行了綜述,并探討了進(jìn)一步研究的方向。
1 RECQL4在DNA復(fù)制中的作用
最初認(rèn)為RECQL4可能參與DNA復(fù)制的是Sangrithi小組,該小組受非洲爪蟾(Xenopus laevis)xRTS蛋白(RECQL4同源產(chǎn)物)N末端與出芽酵母中參與復(fù)制叉形成的SLD2因子存在同源結(jié)構(gòu)的啟發(fā),發(fā)現(xiàn)xRTS促進(jìn)DNA聚合酶α結(jié)合到染色體上進(jìn)而參與了爪蟾卵母細(xì)胞DNA復(fù)制的起始[19,20]。后來,從事哺乳類研究的Hoki等[21]觀察到RECQL4缺陷小鼠會(huì)出現(xiàn)發(fā)育阻滯和皮膚畸形生長(zhǎng),證實(shí)RECQL4與DNA復(fù)制和細(xì)胞分裂關(guān)系密切。
真核細(xì)胞DNA復(fù)制的G1期,復(fù)制前復(fù)合體(Pre-ORC)的各組分會(huì)被逐步裝載到復(fù)制起始位點(diǎn),之后在G1/S期轉(zhuǎn)換階段, CDC45、MCM2-7、GINS在磷酸激酶CDK和DDK的作用下組裝成CMG復(fù)合體,進(jìn)而啟動(dòng)DNA復(fù)制[22-25]。2009年Im等[25]利用雙分子熒光互補(bǔ)技術(shù)證明了CMG復(fù)合體結(jié)合到染色質(zhì)的能力在RECQL4刪除后減弱。同時(shí),Xu等[26]發(fā)現(xiàn)了MCM10在G1/S和S期通過磷酸化RECQL4的N末端的前200個(gè)氨基酸來調(diào)節(jié)其與MCM2-7間的相互作用。該兩項(xiàng)研究很好地解釋了RECQL4在復(fù)制起始中的具體作用。
此外,Xu等[26]也認(rèn)為RECQL4在完成復(fù)制起始后會(huì)與TIM/TIPIN互作,進(jìn)一步促進(jìn)復(fù)制的延伸。之后,Abe等[27]發(fā)現(xiàn)在RECQL4刪除的DT40細(xì)胞中表達(dá)RECQL4的N末端496個(gè)氨基酸可使細(xì)胞恢復(fù)生長(zhǎng)能力;Ohlenschlager等[28]通過酵母雙雜交和GST沉淀技術(shù)證實(shí)了RECQL4通過其N末端54個(gè)氨基酸與TopBP1互作,而后者被多次證實(shí)參與了DNA復(fù)制的起始[29,30]。以上研究均表明RECQL4參與了DNA復(fù)制,對(duì)基因組的穩(wěn)定遺傳十分重要。
2 RECQL4在DNA損傷修復(fù)中的作用
眾所周知,機(jī)體在受到外部刺激(如紫外線、過氧化物)時(shí),會(huì)造成DNA損傷,而細(xì)胞在進(jìn)化過程中產(chǎn)生了一系列的修復(fù)方式對(duì)DNA損傷進(jìn)行修復(fù)。對(duì)RTS患者(RECQL4變異)細(xì)胞的研究發(fā)現(xiàn),其對(duì)多種 DNA 損傷試劑均表現(xiàn)出脆弱的抵抗能力[31-33],這暗示RECQL4可能在DNA損傷修復(fù)中發(fā)揮著重要作用。
2005年P(guān)etkovic等[34]在使用不同的雙鏈斷裂試劑處理細(xì)胞后,通過免疫熒光染色發(fā)現(xiàn)RECQL4會(huì)與RAD51互作,定位在雙鏈斷裂處,而后者已被證實(shí)在DNA雙鏈斷裂修復(fù)中發(fā)揮重要的作用[35]。次年,Werner等[36]發(fā)現(xiàn)在人成纖維細(xì)胞里,RECQL4主要分布于細(xì)胞質(zhì)中,但用H2O2處理過后,RECQL4會(huì)轉(zhuǎn)運(yùn)到細(xì)胞核內(nèi)以應(yīng)對(duì)氧化劑引發(fā)的DNA損傷。同時(shí),Woo等[37]的試驗(yàn)使用T7噬菌體展示技術(shù)發(fā)現(xiàn)RECQL4通過C末端與DNA修復(fù)酶PARP1(Poly ADP-ribose polymerase-1)互作,參與由γ射線造成的DNA損傷應(yīng)答。之后,F(xiàn)an等[38]發(fā)現(xiàn)細(xì)胞在清除紫外線引發(fā)的變異時(shí),RECQL4能夠直接與XPA(Xeroderma pigmentosum group A)互作,參與核酸切除修復(fù)。接著,Schurman等[39]發(fā)現(xiàn)RECQL4通過與APE1(Apurinic endonuclease 1)的N端相互作用激活其外切酶活性,同時(shí)提高FEN1(Fflap endonuclease 1)的切割能力,進(jìn)而參與到細(xì)胞堿基切除修復(fù)的過程中。2012年Kohzaki等[40]又發(fā)現(xiàn)細(xì)胞在缺少RECQL4整個(gè)C末端的情況下,受γ射線的刺激會(huì)導(dǎo)致DNA復(fù)制的提前終止和復(fù)制叉的停滯, Singh等[41]發(fā)現(xiàn)了RECQL4能夠促進(jìn)BLM在DNA損傷處的解旋酶活性。上述證據(jù)均表明,RECQL4在DNA修復(fù)中起著不可或缺的作用。
3 RECQL4在端粒維持中的作用
端粒是位于染色體末端的核苷酸序列[42],其功能是保護(hù)染色體在復(fù)制時(shí)不會(huì)縮短,因此端粒也是維持基因組穩(wěn)定性的重要因素之一[43,44]。Ghosh等[6]最近研究發(fā)現(xiàn),RECQL4可能參與了端粒的維持。
Ghosh等[6]觀察到,RTS病人細(xì)胞端粒末端存在易斷位點(diǎn)的水平較高,且RECQL4沉默細(xì)胞的端粒處會(huì)發(fā)生更多的姐妹染色體交換、積累更多的易斷位點(diǎn)、更容易出現(xiàn)雙鏈斷裂。該研究小組也發(fā)現(xiàn),在骨肉瘤細(xì)胞U2OS的RECQL4刪除后,DNA損傷應(yīng)答蛋白53BP1會(huì)定位于端粒處并被激活。體外酶活檢測(cè)試驗(yàn)發(fā)現(xiàn),分別在加入10 nmol/L和20 nmol/L的TRF2(Telomere repeat-binding factors 2)后,RECQL4解旋端粒D-loop結(jié)構(gòu)的能力可分別被提高1.75倍和2.00倍,而TRF2單獨(dú)則不能解旋D-loop結(jié)構(gòu)。同樣的方法,該研究小組又發(fā)現(xiàn)RECQL4可以提高WRN解旋D-loop的活性,而解旋D-loop結(jié)構(gòu)是端粒復(fù)制和修復(fù)的前提。該研究小組還應(yīng)用免疫共沉淀的方法進(jìn)一步證明RECQL4分別與TRF2和WRN存在直接相互作用。
此外,Bodelon等[45]也通過SNP分析發(fā)現(xiàn),地中海人群的黑色素瘤癥狀與RECQL4有關(guān),而端粒的縮短被證明與黑素瘤有關(guān)[46],這也佐證了RECQL4在端粒維持中發(fā)揮著重要作用。
4 RECQL4在線粒體DNA維持中的作用
線粒體DNA作為人類基因組的重要部分,其變異會(huì)導(dǎo)致線粒體的功能紊亂。而線粒體作為細(xì)胞內(nèi)ATP的主要來源, DNA的復(fù)制和修復(fù)等需要ATP參與。因此,與線粒體DNA穩(wěn)定性相關(guān)的分子也成為近年來基因組不穩(wěn)定性疾病研究的熱點(diǎn)[47]。
2009年Jiang等[48]通過蛋白質(zhì)組學(xué)的分析發(fā)現(xiàn)RECQL4在細(xì)胞受到輻射損傷后定位于線粒體中。2012年Chi等[7]發(fā)現(xiàn)在RECQL4的C末端有兩個(gè)細(xì)胞質(zhì)定位序列PNES2和PNES3,并且用免疫熒光定位的方法證明了RECQL4存在于線粒體中。同年Croteau等[49]使用不同的RECQL4抗體,通過免疫熒光發(fā)現(xiàn)RECQL4存在于U2OS細(xì)胞和HeLa細(xì)胞的線粒體中,為了進(jìn)一步印證這一試驗(yàn)結(jié)果,該研究小組又分離出人SH-SY5Y細(xì)胞的線粒體,然后用RECQL4抗體免疫染色,并獲得了陽性結(jié)果,這充分說明了RECQL4會(huì)定位于線粒體中。
為了研究RECQL4在線粒體中的功能,Croteau等[49]使用RECQL4敲除的細(xì)胞作為研究對(duì)象,發(fā)現(xiàn)RECQL4缺陷細(xì)胞從缺氧環(huán)境轉(zhuǎn)入有氧環(huán)境后,對(duì)氧氣的需求量明顯降低,同時(shí)RTS患者的細(xì)胞也表現(xiàn)出線粒體功能的紊亂。Chi等發(fā)現(xiàn)HEK293細(xì)胞內(nèi)過量表達(dá)RECQL4可以提高線粒體DNA的拷貝數(shù),相反,使用shRNA抑制RECQL4在U2OS細(xì)胞內(nèi)(該細(xì)胞RECQL4內(nèi)源性表達(dá)量相對(duì)較高)的表達(dá)則會(huì)導(dǎo)致線粒體DNA拷貝數(shù)下降,此外也發(fā)現(xiàn)U2OS細(xì)胞受到過氧化損傷后,其線粒體中RECQL4的量是對(duì)照組的5.4倍[7],而RECQL4已被證明當(dāng)核DNA損傷時(shí)會(huì)向核內(nèi)大量轉(zhuǎn)運(yùn)參與核DNA的修復(fù)[36]。De等[50]發(fā)現(xiàn),在正常細(xì)胞中,RECQL4與P53互作,協(xié)助后者進(jìn)入線粒體,而后者被證實(shí)參與了維持線粒體DNA準(zhǔn)確復(fù)制和修復(fù)的過程[51-53]。以上試驗(yàn)結(jié)果均表明,RECQL4可能對(duì)線粒體DNA的穩(wěn)定具有重要作用。
5 結(jié)語與展望
綜上所述,RECQL4不僅參與了核DNA的復(fù)制和修復(fù),還可能參與了端粒的維持和線粒體DNA的穩(wěn)定,在整個(gè)基因組穩(wěn)定性方面發(fā)揮著十分重要的作用。恰恰也正因?yàn)镽ECQL4的功能如此復(fù)雜,其成為當(dāng)前基因組穩(wěn)定性維持及與此相關(guān)的人類遺傳病、早衰和癌癥等研究領(lǐng)域的熱門話題[54-56]。
然而,在DNA復(fù)制中SLD2結(jié)構(gòu)域和解旋酶結(jié)構(gòu)域是怎樣協(xié)調(diào)起來的還需要進(jìn)一步闡釋[57,58]。而最新的研究發(fā)現(xiàn),RECQL4是RECQ解旋酶家族中惟一一個(gè)被發(fā)現(xiàn)可定位于線粒體的成員,并極有可能參與了線粒體DNA的復(fù)制與損傷修復(fù),那么其在核DNA復(fù)制與線粒體DNA復(fù)制中發(fā)揮作用的機(jī)理又是否相同,另外,之前的研究發(fā)現(xiàn)RECQL5-/-BLM-/-細(xì)胞比BLM-/-細(xì)胞有著更高的SCE(Sister chromatid exchange)[17,18],表明解旋酶家族蛋白之間在某些功能上可能有協(xié)同性,而RECQL4與家族其他蛋白之間關(guān)系的研究鮮有報(bào)道。這一系列問題都將是未來有關(guān)RECQL4研究的重要內(nèi)容,相信這些問題的闡明不僅有助于解釋基因組不穩(wěn)定性疾病的發(fā)病原因,也可能使人們對(duì)RTS并發(fā)的早衰和癌癥等難以攻克的醫(yī)學(xué)課題有了新的認(rèn)識(shí),并會(huì)找到較好的治療手段。
參考文獻(xiàn):
[1] GIACHINO C, ORLANDO L, TURINETTO V, et al. Maintenance of genomic stability in mouse embryonic stem cells: relevance in aging and disease[J]. International Journal of Molecular Sciences,2013,14(2):2617-2636.
[2] LARIZZA L, ROVERSI G, VOLPI L. Rothmund-Thomson syndrome[J]. Orphanet Journal of Rare Diseases,2010,5(2):1-16.
[3] CARLSON A M, THOMAS K B, KIRMANI S, et al. Chronic tibial nonunion in a Rothmund-Thomson syndrome patient[J]. American Journal of Medical Genetics,2012,158A(9):2250-2253.
[4] MASAI H. RECQL4: a helicase linking formation and maintenance of a replication fork[J]. Journal of Biochemistry, 2011, 149(6):629-631.
[5] LIU Y L. Rothmund-Thomson syndrome helicase, RECQ4: on the crossroad between DNA replication and repair[J]. DNA Repair, 2010, 9(3):325-330.
[6] GHOSH A K, ROSSI M L, SINGH D K. RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance[J]. Journal of Biological Chemistry, 2012, 287(1):196-209.
[7] CHI Z F, NIE L H, PENG Z, et al. RECQL4 cytoplasmic localization: implications in mitochondrial DNA oxidative damage repair[J]. The International Journal of Biochemistry & Cell Biology,2012,44(11):1942-1951.
[8] HARRIGAN J A, BOHR V A. Human diseases deficient in RECQ helicases[J]. Biochimie,2003,85(11):1185-1193.
[9] BOHR V A. Rising from the RECQ-age: the role of human RECQ helicases in genome maintenance[J]. Trends in Biochemical Sciences,2008,33(12):609-620.
[10] CROTEAU D L, SINGH D K, FERRARELLI L H, et al. RECQL4 in genomic instability and aging[J]. Trends in Genetics,2012,28(12):624-631.
[11] KELLERMAYER R. The versatile RECQL4[J]. Genetics in Medicine,2006,8(4):213-216.
[12] BACHRATI C Z, HICKSON I D. RECQ helicases: guardian angels of the DNA replication fork[J]. Chromosoma,2008, 117(3):219-233.
[13] KITAO S, SHIMAMOTO A, GOTO M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome[J]. Nature Genetics,1999,22(1):82-84.
[14] SIITONEN H A, KOPRA O, KAARIAINEN H, et al. Molecular defect of Rapadilino syndrome expands the phenotype spectrum of RECQL diseases[J]. Human Molecular Genetics,2003,12(21):2837-2844.
[15] VAN MALDERGREM L, SIITONEN H A, JALKH N, et al. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene[J]. Journal of Medical Genetics,2006,43(2):148-152.
[16] SIITONEN H A, SOTKASIIRA J, BIERVLIET M, et al. The mutation spectrum in RECQL4 diseases[J]. European Journal of Human Genetics,2009,17(2):151-158.
[17] WANG W S, SEKI M, NARITA Y, et al. Possible association of BLM in decreasing DNA double strand breaks during DNA replication[J]. The EMBO Journal,2000,19(13):3428-3435.
[18] WANG W S, SEKI M, NARITA Y,et al. Functional relation among RECQ family helicases RECQL1, RECQL5, and BLM in cell growth and sister chromatid exchange formation[J]. Molecular and Cellular Biology,2003,23(10):3527-3535.
[19] MASUMOTO H, MURAMATSU S, KAMIMURA Y, et al. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast[J]. Nature,2002, 415(6872):651-655.
[20] SANGRITHI M N, BERNAL J A, MADINE M, et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome[J]. Cell,2005,121(6):887-898.
[21] HOKI Y, ARAKI R, FUJIMORI A. Growth retardation and skin abnormalities of the RECQL4-deficient mouse[J]. Human Molecular Genetics,2003,12(18):2293-2299.
[22] SCLAFANI R A, HOLZEN T M. Cell cycle regulation of DNA replication[J]. Annual Review of Genetics,2007,41:237-280.
[23] TAKEDA D Y, DUTTA A. DNA replication and progression through S phase[J]. Oncogene,2005,24(17):2827-2843.
[24] TANAKA S, ARAKI H. Regulation of the initiation step of DNA replication by cyclin-dependent kinases[J]. Chromosoma,2010,119(6):565-574.
[25] IM J S, KI S H, FARINA A, et al. Assembly of the CDC45-MCM2-7-GINS complex in human cells requires the Ctf4/And-1, RECQL4 and MCM10 proteins[J]. Proceedings of the National Academy of Sciences USA,2009,106(37):15628-15632.
[26] XU X H, ROCHETTE P J, FEYISSA E A, et al. MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication[J]. The EMBO Journal,2009,28(19):3005-3014.
[27] ABE T, YOSHIMURA A, HOSONO Y, et al. The N-terminal region of RECQL4 lacking the helicase domain is both essential and suf?cient for the viability of vertebrate cells: role of the N-terminal region of RECQL4 in cells[J]. Biochimica at Biophysica Acta(BBA)-Molecular Cell Research,2011,1813(3):473-479.
[28] OHLENSCHLAGER O, KUHNERT A, SCHNEIDER A, et al. The N-terminus of the human RECQL4 helicase is a homeodomain-like DNA interaction motif[J]. Nucleic Acids Research,2012,40(17):8309-8324.
[29] MAKINIEMI M, HILLUKKALA T, TUUSA J, et al. BRCT domain-containing protein TopBP1 functions in DNA replication and damage response[J]. The Journal of Biological Chemistry,2001,276(32):573-582.
[30] TANAKA S, KOMEDA Y, UMEMORI T, et al. Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction[J]. Molecular and Cellular Biology, 2013, 33(13):2614-2622.
[31] CABRAL C R E, QUEILLE S, BODEMER C, et al. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis,2008,643(1-2):41-47.
[32] JIN W D, LIU H, ZHANG Y Q, et al. Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents[J]. Human Genetics,2008,123(6):643-653.
[33] SINGH D K, KARMAKAR P, AAMANN M, et al. The involvement of human RECQL4 in DNA double-strand break repair[J]. Aging Cell,2010,9(3):358-371.
[34] PETKOVIC M, DIETSCHY T, FREIRE R, et al. The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability[J]. Journal of Cell Science,2005,118(18):4261-4269.
[35] RICHARDSON C, STARK J M, OMMUNDSEN M, et al. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability[J]. Oncogene,2004, 23(2):546-553.
[36] WERNER S R, PRAHALAD A K, YANG J P, et al. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome[J]. Biochemical and Biophysical Research Communications,2006,345(1):403-409.
[37] WOO L L, FUTAMI K, SHIMAMOTO A, et al. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress[J]. Experimental Cell Research,2006,312(17):3443-3457.
[38] FAN W, LUO J Y. RECQL4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A(XPA)[J]. Journal of Biological Chemistry,2008,283(43):29037-29044.
[39] SCHURMAN S H,HEDAYATI M, WANG Z M, et al. Direct and indirect roles of RECQL4 in modulating base excision repair capacity[J]. Human Molecular Genetics,2009,18(18):3470-3483.
[40] KOHZAKI M, CHIOUREA M, VERSINI G, et al. The helicase domain and C-terminus of human RECQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation[J]. Carcinogenesis,2012,33(6):1203-1210.
[41] SINGH D K, POPURI V, KULIKOWICZ T,et al. The human RECQ helicases BLM and RECQL4 cooperate to preserve genome stability[J]. Nucleic Acids Research,2012,40(14):6632-6648.
[42] FYHRQUIST F, SAIJONMAA O, STRANDBERG T. The roles of senescence and telomere shortening in cardiovascular disease[J]. Nature Reviews Cardiology,2013,10(5):274-283.
[43] KAWANISHI S, OIKAWA S. Mechanism of telomere shortening by oxidative stress[J]. Annals of the New York Academy of Sciences, 2004,1019(1):278-284.
[44] KURZ D J, DECARY S, HONG Y. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells[J]. Journal of Cell Science,2004,117(11):2417-2426.
[45] BODELON C, PFEIFFER R M, BOLLATI V,et al. On the interplay of telomeres, nevi and the risk of melanoma[J]. Plos One,2012,7(12):1-8.
[46] VERONIQUE B, BERNET K S, MARIO F, et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo[J]. Cancer Epidemiology Biomarkers & Prevention, 2007,16(7):1499-1502.
[47] COSKUN P, WYREMBAK J, SCHRINER S E, et al. A mitochondrial etiology of Alzheimer and Parkinson disease[J]. Biochimica at Biophysica Acta(BBA)-General Subjects,2012, 1820(5):553-564.
[48] JIANG Y J, LIU X, FANG X S. Proteomic analysis of mitochondria in Raji cells following exposure to radiation: implications for radiotherapy response[J]. Protein and Peptide Letters,2009,16(11):1350-1359.
[49] CROTEAU D L, ROSSI M L, CANUGOVI C, et al. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity[J]. Aging Cell,2012,11(3):456-466.
[50] DE S, KUMARI J, MUDGAL R, et al. RECQL4 is essential for the transport of P53 to mitochondria in normal human cells in the absence of exogenous stress[J]. Journal of Cell Science, 2012,125(10):2509-2522.
[51] BAKHANASHVILI M, GRINBERG S, BONDA E, et al. P53 in mitochondria enhances the accuracy of DNA synthesis[J]. Cell Death Differentiation,2008,15(12):1865-1874.
[52] DE S-P N C, HARRIS C C, BOHR V A. P53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria[J]. Oncogene,2004,23(39):6559-6568.
[53] WONG T S, RAJAGOPALAN S, TOWNSLEY F M, et al. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumor suppressor P53[J]. Nucleic Acids Research,2009,37(2):568-581.
[54] SIMON T, KOHLHASE J, WILHELM C, et al. Multiple malignant diseases in a patient with Rothmund-Thomson syndrome with RECQL4 mutations: case report and literature review[J]. American Journal of Medical Genetics,2010,152A(6):1575-1579.
[55] JENSEN M B, DUNN C A, KEIJZERS G, et al. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients[J]. Aging,2012,4(11):790-802.
[56] SUHASINI A N, BROSH R M. Disease-causing missense mutations in human DNA helicase disorders[J]. Mutation Research,2012,752(2):138-152.
[57] ROSSI M L, GHOSH A K, KULIKOWICZ T, et al. Conserved helicase domain of human RECQ4 is required for strand annealing-independent DNA unwinding[J]. DNA Repair,2010,9(7):796-804.
[58] XU X H, LIU Y L. Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQL4[J]. The EMBO Journal,2009,28(5):568-577.