顧菊等
摘要 [目的]以擬南芥為材料克隆bZIP23基因,構(gòu)建bZIP23基因的過量表達(dá)載體和篩選過表達(dá)植株,為驗(yàn)證其功能奠定基礎(chǔ)。[方法]提取擬南芥總RNA和RTPCR克隆bZIP23基因,用限制性內(nèi)切酶切割和T4 DNA連接酶連接,使bZIP23基因連接到35S強(qiáng)啟動(dòng)子的pART27載體上;將連接產(chǎn)物轉(zhuǎn)化到Trans1T1感受態(tài)細(xì)胞中,篩選陽性單克隆進(jìn)行菌落PCR鑒定并測(cè)序驗(yàn)證,獲得重組質(zhì)粒。將該重組質(zhì)粒電激轉(zhuǎn)化至根瘤農(nóng)桿菌GV3101菌株,浸花法轉(zhuǎn)化擬南芥野生型植株。[結(jié)果]通過單菌落PCR鑒定和DNA測(cè)序結(jié)果顯示,bZIP23基因與35S過量表達(dá)載體已連接,獲得了重組載體;抗性篩選與遺傳鑒定獲得相應(yīng)的轉(zhuǎn)基因過量表達(dá)陽性植株。[結(jié)論]構(gòu)建的過量表達(dá)載體及篩選得到的過量表達(dá)植株為驗(yàn)證bZIP23基因功能奠定了基礎(chǔ)。
關(guān)鍵詞擬南芥(Arabidopsis athaliana);bZIP23;互補(bǔ)和過量表達(dá)載體;轉(zhuǎn)基因植株
中圖分類號(hào)Q754;S188文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)0517-6611(2014)14-04199-03
Construction of Arabidopsis Gene bZIP23 Overexpression Vector and Screening of Expression Plant
GU Ju,CAO Shuqing et al(School of Biotechnology and Food Engineering,Hefei University of Technology,Hefei,Anhui 230009)
Abstract[Objective] Arabidopsis were used as material to clone bZIP23 gene,we construct gene bZIP23 overexpression vector and screen expression plant.[Method] Total RNA was extracted from Arabidopsis seedlings,and cDNA fragments of bZIP23 gene were amplified by RTPCR.Using the restriction enzymes and T4 DNA ligase,cDNA fragments were subsequently cloned into PART27 vectors,and then were transformed into TransT1 phage resistant chemically competent cells.Analysis of bacterial colony PCR and cDNA sequencing were performed to confirm that cDNA of the Arabidopsis thaliana bZIP23 gene was successfully cloned.The recombinant plasmids were obtained and transformed into Agrobacterium GV3101 cells.Wildtype Arabidopsis thaliana was transformed by using floraldip method.[Result] Analysis of bacterial colony PCR and DNA sequencing were performed to confirm recombinant plasmids,complementary and overexpression positive plants were obtained through genetic screening and identification of genetically modified methods.[Conclusion] Construction of Arabidopsis gene bZIP23 overexpression vector and screening of expression plant laid the foundation for the function of gene bZIP23.
Key wordsArabidopsis thaliana;bZIP23; Complementary and overexpression vector; Genetically modified plant
轉(zhuǎn)錄因子是一類識(shí)別DNA特異序列且結(jié)合在目的基因啟動(dòng)子的特定位點(diǎn)并調(diào)節(jié)其轉(zhuǎn)錄活性的蛋白,在擬南芥中鑒定了1 600多個(gè)轉(zhuǎn)錄因子[1]。有文獻(xiàn)報(bào)道,轉(zhuǎn)錄因子bZIP23對(duì)重金屬鋅缺乏的響應(yīng)[2]。轉(zhuǎn)錄因子對(duì)生物脅迫和非生物的響應(yīng),調(diào)節(jié)擬南芥對(duì)重金屬的耐受[3]分子機(jī)理有重要作用[4]。bZIP家族有很多成員[5]。bZIP23是水稻堿性亮氨酸拉鏈[6](basic leucine zipper,bZIP)轉(zhuǎn)錄因子家族的成員之一,是ABA依賴的抗旱耐鹽反應(yīng)中主要調(diào)節(jié)因子,在通過遺傳改良提高作物抗逆性中具有潛在的應(yīng)用價(jià)值。cDNA全長(zhǎng)1 828 bp,包含4個(gè)外顯子,編碼一個(gè)由357氨基酸組成的蛋白產(chǎn)物,產(chǎn)物含有堿性亮氨酸拉鏈(bZIP)結(jié)構(gòu)域。bZIP23突變體:TDNA插入第2個(gè)內(nèi)含子。過量表達(dá)[7]bZIP23的轉(zhuǎn)基因水稻植株的抗旱性和耐鹽性顯著提高,同時(shí)增加ABA的敏感性[8];bZIP23突變體對(duì)ABA 的敏感性降低,抗旱性和耐鹽性也顯著降低。筆者構(gòu)建基因35S:bZIP23過量表達(dá)載體,以期為進(jìn)一步研究轉(zhuǎn)錄因子[9]調(diào)節(jié)擬南芥對(duì)重金屬[10]耐受的分子機(jī)理提供依據(jù)。
1材料與方法
1.1材料
1.1.1研究對(duì)象。哥倫比亞野生型擬南芥(Arabidopsis athaliana)(Col0),購自美國(guó)擬南芥種質(zhì)資源中心,由實(shí)驗(yàn)室繁衍保存。
1.1.2主要試劑。RevertAid First Strand cDNA Synthesis Kit、RNAiso Plus和PrimeSTAR MAX DNA Polymerase,均購自takara公司;T4 DNA連接酶、Easy Taq、TIANGel MiDi Purification Kit、TIANquick MiDi Purification Kit,TIANprep MiniPlasmid kit、XhoI和EcoRI,均購自NEB公司。
1.1.3宿主菌和載體。平末端載體pEASYblunt Simple Cloning Kit、感受態(tài)細(xì)胞Trans1T1 Chemically Competent Cell和pART27,由實(shí)驗(yàn)室繁衍保存。
1.2方法
圖5獲得過表達(dá)植株P(guān)CR電泳結(jié)果3結(jié)論與討論
基因差異表達(dá)譜數(shù)據(jù)庫中顯示bZIP23基因表達(dá)水平受到鉛脅迫誘導(dǎo),表明該基因可能參與鉛脅迫響應(yīng)。為進(jìn)一步研究該基因功能,試驗(yàn)從美國(guó)種子資源庫獲得了該基因敲除的突變體bZIP231和bZIP232,并利用分子生物學(xué)方法獲得了bZIP23基因的過量表達(dá)植株。過量表達(dá)植株的獲得將有利于研究植物對(duì)重金屬的響應(yīng),在今后的研究中可能利用轉(zhuǎn)基因植株解決重金屬污染問題。隨著一些抗逆基因的鑒定和抗逆機(jī)理不斷深入研究,利用轉(zhuǎn)基因技術(shù)將外源抗逆基因?qū)胫参锘蚪M,該技術(shù)在提高植物抗逆性、改作物遺傳性狀及培育農(nóng)作物優(yōu)良品系等方面具有廣闊的應(yīng)用前景[12-13]。
參考文獻(xiàn)
[1] 劉強(qiáng),張貴友.植物轉(zhuǎn)錄因子的結(jié)構(gòu)與調(diào)控作用[J].科學(xué)通報(bào),2000,45(14):1465-1474.
[2] ASSUNCA~OA A G L,HERREROA E.Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency [J].PNAS,2010,22:10296-10301.
[3] VANNINI C,LOCATELLI F,BRACALE M,et al.Overexpession of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J].Plant Journal,2001,37:115-127.
[4] CHEN Y H,YANG X Y,HE K,et al.The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J].Plant Molecular Biology,2006,60:107-124.
[5] JAKOBY M,WEISSHAAR B,DRGELASER W.bZIP transcription factors in Arabidopsis[J].Trends Plant Sci,2002,7(3):106- 111.
[6] RIECHMANN J L,HEARD J,MARTIN G,et al.Arabidopsis transcription factors:genomewide comparative analysis among eukaryotes [J].Science,2000,290(5499):2105-2110.
[7] NIJHAWAN A,JAIN M,AKHILESH K,et al.Genomic Survey and gene expression analysis of the basic Leucine Zipper transcription factor family in Rice [J].Plant Physiology2008,146(2):333-350.
[8] YONG X,NING T,HAO D,et al.Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice [J].Plant Physiology,2008,148(4):1938-1952.
[9] PABO C O,SAUER R T.Transcription factors:structural families and principles of DNA recognition[J].Annual Review of Biochemistry,1992,61(10):1053-1095.
[10] CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2011,212(4):475-486.
[11] 柏曉婭,顧菊,陳光朗,等.擬南芥抗旱突變體csm11的鑒定及其基因克隆[J].合肥工業(yè)大學(xué)學(xué)報(bào),2013,36(12):1518-1522.
[12] 侯文勝,郭三堆,路明,等.利用轉(zhuǎn)基因技術(shù)進(jìn)行植物遺傳改良[J].生物技術(shù)通報(bào),2002(1):10-15.
[13] 吳福彪.基因工程與植物的遺傳改良[J].生物學(xué)通報(bào),2010,45(5):7-10.