余穎,喻志源,謝敏杰,王偉
·綜述·
周細(xì)胞在神經(jīng)血管單元中的作用
余穎,喻志源,謝敏杰,王偉
周細(xì)胞是神經(jīng)血管單元和血腦屏障的重要細(xì)胞成分,與毛細(xì)血管內(nèi)皮細(xì)胞緊密相連。作為微血管的構(gòu)成成分之一,周細(xì)胞參與腦血流的調(diào)控、神經(jīng)血管生長(zhǎng)的調(diào)節(jié)、神經(jīng)血管單元穩(wěn)態(tài)的調(diào)節(jié)和血腦屏障完整性的調(diào)控,此外周細(xì)胞還具有免疫吞噬、遷移和干細(xì)胞潛能。
周細(xì)胞;神經(jīng)血管單元;血腦屏障
血腦屏障是存在于腦實(shí)質(zhì)和血管之間的一組復(fù)雜而動(dòng)態(tài)變化著的細(xì)胞成分,內(nèi)皮細(xì)胞構(gòu)成微血管,由基底膜提供支持,被周細(xì)胞和星形膠質(zhì)細(xì)胞包繞。除了提供中樞神經(jīng)系統(tǒng)高代謝所必須的氧和營養(yǎng)物質(zhì),腦血管與神經(jīng)元及膠質(zhì)細(xì)胞等周圍成分之間還存在廣泛的交流,以維持中樞神經(jīng)系統(tǒng)的正常形態(tài)和功能。在細(xì)胞和分子水平上,循環(huán)系統(tǒng)與中樞神經(jīng)系統(tǒng)之間所發(fā)生的交流及其結(jié)構(gòu),被賦予了一個(gè)新的名稱,即神經(jīng)血管單元(neurovascular unit,NVU)[1]。隨著神經(jīng)科學(xué)研究的深入,人們發(fā)現(xiàn)單純著重于神經(jīng)元,而忽略神經(jīng)系統(tǒng)整體性和各個(gè)組分之間的相互作用的研究具有局限性,因而NVU越來越受到研究者的重視。但絕大多數(shù)研究都著眼于膠質(zhì)細(xì)胞與NVU的相互作用,對(duì)周細(xì)胞的研究成果鮮有提及,本文擬就周細(xì)胞在NVU中的作用予以綜述。
周細(xì)胞在眾多器官中均有分布,但腦和視網(wǎng)膜等處的周細(xì)胞與內(nèi)皮細(xì)胞的數(shù)量之比高于其他器官(視網(wǎng)膜>腦>肺>骨骼?。拘募。灸I上腺),且周細(xì)胞的覆蓋率似乎與內(nèi)皮細(xì)胞間連接的緊密程度具有相關(guān)性,共同提示周細(xì)胞在維持血腦屏障及血-視網(wǎng)膜屏障方面有重要作用[2]。周細(xì)胞主要覆蓋于毛細(xì)血管、小動(dòng)脈、小靜脈內(nèi)皮細(xì)胞的管腔外表面[3],且多定位于內(nèi)皮細(xì)胞緊密連接分布的區(qū)域[4]。盡管絕大多數(shù)周細(xì)胞與內(nèi)皮細(xì)胞的接觸面均被基底膜分隔開來,但這兩種細(xì)胞在基底膜上散在分布的孔洞中可形成縫隙連接、粘連斑和peg-socket盒(周細(xì)胞形成釘突,并由內(nèi)皮細(xì)胞形成的釘槽包裹)等結(jié)構(gòu)進(jìn)行交流[5,6]?;啄さ牟贿B續(xù)性和周細(xì)胞的不完全覆蓋還使內(nèi)皮細(xì)胞與膠質(zhì)界膜形成廣泛連接,進(jìn)而與星形膠質(zhì)細(xì)胞相互作用,這些細(xì)胞組分共同形成NVU[7]。以前認(rèn)為相鄰周細(xì)胞之間不存在縫隙連接[8],但體外實(shí)驗(yàn)最近發(fā)現(xiàn)周細(xì)胞可在細(xì)胞邊界上表達(dá) occludin,claudin-12,ZO-1和ZO-2等分子,提示周細(xì)胞間可形成緊密連接[9]?,F(xiàn)已普遍認(rèn)為腦中毛細(xì)血管表面被大量周細(xì)胞覆蓋,但周細(xì)胞的覆蓋面積,研究數(shù)據(jù)間存在巨大差異,從22%~99%不等[10]。
在不同組織器官、相同組織器官的不同區(qū)域,甚至同一毛細(xì)血管床的不同部位,周細(xì)胞的形態(tài)均各有差異。這種與組織特異性相一致的差異說明,周細(xì)胞可有多重功能[11]。腦周細(xì)胞呈多態(tài)性,通常為星形,其胞體呈球形或卵圓形,內(nèi)含一個(gè)大而圓的細(xì)胞核[12]。周細(xì)胞沿血管長(zhǎng)軸方向發(fā)出長(zhǎng)突起,并分支形成二、三級(jí)突起包繞血管[4]。在透射電鏡下周細(xì)胞幾乎不可見,成熟的毛細(xì)血管周細(xì)胞有一個(gè)圓盤狀的核,被包繞在少量細(xì)胞質(zhì)之中。周細(xì)胞的細(xì)胞質(zhì)中含有大量可合成蛋白質(zhì)的細(xì)胞器及線粒體,在周細(xì)胞發(fā)出的突起中充滿著大量微管蛋白,而在接觸內(nèi)皮細(xì)胞的細(xì)胞膜表面則常存在富含微絲的致密帶,周細(xì)胞外表面常呈顆粒狀,或因其細(xì)胞漿中含大量溶酶體[13]。人腦周細(xì)胞中還含有大量酸性磷酸酶,提示周細(xì)胞具有吞噬功能[12]。
周細(xì)胞缺乏特異性的免疫化學(xué)標(biāo)記。周細(xì)胞的異質(zhì)性決定了即使在同一組織的不同區(qū)域,周細(xì)胞的表面標(biāo)記也可能不同,甚至同一周細(xì)胞在分化的不同時(shí)期或不同的病理生理狀態(tài)下,其表達(dá)的細(xì)胞標(biāo)記也會(huì)出現(xiàn)變化。故周細(xì)胞的鑒定需要一系列免疫反應(yīng)陽性和陰性標(biāo)記的聯(lián)合應(yīng)用。周細(xì)胞可表達(dá)α-平滑肌肌動(dòng)蛋白、γ-谷氨酰轉(zhuǎn)肽酶、堿性磷酸酶、巢蛋白、波形蛋白、硫酸軟骨素蛋白多糖NG-2、氨肽酶A及N、丁酰膽堿酯酶、細(xì)胞間黏附分子-1、血管細(xì)胞黏附分子-1、血小板衍生生長(zhǎng)因子-α及β(PDGF-α、β) 受 體 、RGS-5、Sca-1、CD34、3G5、CD146(MCAM)、FcR、CD4、CD11b、MHC-Ⅰ及Ⅱ等[14],而不表達(dá)von Willebrand因子、PECAM和膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)(分別為內(nèi)皮細(xì)胞和星形膠質(zhì)細(xì)胞的標(biāo)記)。Bondjers等[15]發(fā)現(xiàn)腦周細(xì)胞或特異性表達(dá)ATP敏感的鉀通道Kir6.1,若能進(jìn)一步證實(shí),則或可作為腦周細(xì)胞新的鑒定標(biāo)記。
4.1 周細(xì)胞對(duì)腦血流的調(diào)控
周細(xì)胞緊鄰血管內(nèi)皮細(xì)胞,僅由一層共同的基底膜分隔,且通過突觸包繞血管壁[16]。周細(xì)胞表達(dá)大量的α-平滑肌肌動(dòng)蛋白,且在毛細(xì)血管前小動(dòng)脈表達(dá)多于毛細(xì)血管及其后小靜脈。收縮蛋白的表達(dá)及內(nèi)皮細(xì)胞上受體的分布提示周細(xì)胞可以通過自身收縮來發(fā)揮調(diào)節(jié)血流的功能[17]。Peppiat等[18]發(fā)現(xiàn),刺激視網(wǎng)膜周細(xì)胞,可引發(fā)局部毛細(xì)血管收縮,且可以2 μm/s的速度傳導(dǎo),引起遠(yuǎn)端周細(xì)胞收縮。在視網(wǎng)膜中灌流ATP,小腦中灌流去甲腎上腺素,可引發(fā)周細(xì)胞收縮,毛細(xì)血管管徑減小,而谷氨酸可以逆轉(zhuǎn)去甲腎上腺素的作用。由此可推測(cè)周細(xì)胞在神經(jīng)活動(dòng)介導(dǎo)的血流改變中起到關(guān)鍵調(diào)節(jié)作用。有學(xué)者發(fā)現(xiàn),在缺血再灌注的組織存活中,周細(xì)胞可能發(fā)揮重要調(diào)節(jié)作用。在大腦中動(dòng)脈堵塞模型中,血管再通2 h后,仍有約半數(shù)的微血管網(wǎng)處于灌注不足狀態(tài),這或許是由于周細(xì)胞因缺血而收縮,且在血管再通后仍持續(xù)收縮造成的[19]。微分干涉顯微鏡觀察發(fā)現(xiàn),同正常毛細(xì)血管相比,缺血毛細(xì)血管中紅細(xì)胞排列斷續(xù),且中斷的地方與α-平滑肌肌動(dòng)蛋白存在共定位,表明周細(xì)胞收縮雖不足以使毛細(xì)血管管腔消失,但因?yàn)槊?xì)血管管腔在正常情況下就極其細(xì)小,故周細(xì)胞的收縮所致的管徑輕微縮小,已足以阻擋單個(gè)紅細(xì)胞通過,從而影響血流的灌注和分布。有趣的是,周細(xì)胞的持續(xù)異常收縮可以被一氧化氮合酶抑制劑和氧自由基清除劑阻擋,提示在缺血再灌注過程中血管內(nèi)皮產(chǎn)生的大量活性氧自由基是導(dǎo)致周細(xì)胞功能異常的重要原因[19],而Kutcher等[20]的實(shí)驗(yàn)則表明Rho GTP相關(guān)的信號(hào)通路也可能是周細(xì)胞實(shí)現(xiàn)收縮功能的途徑之一。Fernandez等[21]利用雙光子顯微鏡在麻醉小鼠的大腦皮質(zhì)實(shí)時(shí)動(dòng)態(tài)觀察周細(xì)胞、毛細(xì)血管直徑及血流量的變化,結(jié)果顯示,生理狀態(tài)下神經(jīng)元活動(dòng)通過調(diào)節(jié)毛細(xì)血管前小動(dòng)脈及穿通小動(dòng)脈的直徑來調(diào)控血流,病理狀態(tài)下主要是通過局部炎性介質(zhì)誘導(dǎo)的周細(xì)胞的反應(yīng)性收縮來調(diào)節(jié)毛細(xì)血管直徑。盡管已有大量研究支持周細(xì)胞對(duì)于腦血流的調(diào)控作用,但疑問仍然存在:首先,目前仍缺乏令人信服的足夠數(shù)量的在體內(nèi)毛細(xì)血管水平上觀察到的血流調(diào)控;其次,由于周細(xì)胞的分子標(biāo)記特異性不夠強(qiáng),故部分研究得出的結(jié)論需慎重對(duì)待;再次,周細(xì)胞的突觸長(zhǎng)而纖細(xì),是否能產(chǎn)生足夠的強(qiáng)度以使內(nèi)皮細(xì)胞收縮,有待研究;最后,在同一組織器官的體內(nèi)和體外實(shí)驗(yàn)所得出的結(jié)論不盡相同,尚需更多更合理的實(shí)驗(yàn)來進(jìn)行驗(yàn)證[13]。
4.2 周細(xì)胞對(duì)血管生長(zhǎng)的調(diào)控
周細(xì)胞在血管形成過程中發(fā)揮著重要的調(diào)控作用。Ramsauer等[22]發(fā)現(xiàn),將周細(xì)胞加入內(nèi)皮細(xì)胞與星形膠質(zhì)細(xì)胞的共培養(yǎng)中,可以穩(wěn)定毛細(xì)血管樣結(jié)構(gòu)的形成。Persidsky等[1]提出周細(xì)胞可調(diào)節(jié)內(nèi)皮細(xì)胞的增殖、遷移和分化。周細(xì)胞和內(nèi)皮細(xì)胞之間主要通過旁分泌和近分泌的方式相互作用[23]。參與作用的信號(hào)分子主要有PDGF-B/PDGFRβ(血小板衍生生長(zhǎng)因子及其相應(yīng)受體),轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor,TGF-β),血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF),Angiopoietin-1/Tie-2(血管生長(zhǎng)素1及其相應(yīng)受體)及S1P(鞘氨醇-1-磷酸)信號(hào)等。通過這些信號(hào)分子,周細(xì)胞可以參與調(diào)節(jié)血管形成的啟動(dòng)、出芽連接和生成終止等過程[24]。其中,周細(xì)胞分泌的VEGF和IL-6促進(jìn)內(nèi)皮細(xì)胞成熟、新生血管出芽,在血管生成的起始階段起到重要作用[25];內(nèi)皮細(xì)胞分泌TGF-β,作用于自身及周細(xì)胞上受體,調(diào)節(jié)TGF-β的合成及分泌量,TGF-β則誘導(dǎo)血管周圍的間質(zhì)細(xì)胞分化為周細(xì)胞和平滑肌細(xì)胞[26];PDGF-β由內(nèi)皮細(xì)胞分泌,作用于周細(xì)胞表面的受體PDGFRβ,對(duì)血管周圍周細(xì)胞起趨化募集作用,促進(jìn)周細(xì)胞的增殖與遷移[27,28],且PDGF-β產(chǎn)生后,需與內(nèi)皮源性的硫酸乙酰肝素蛋白多糖結(jié)合,才能發(fā)揮募集周細(xì)胞到血管壁的功能[29];周細(xì)胞來源的Ang-1與內(nèi)皮細(xì)胞膜表面Tie2結(jié)合后,上調(diào)內(nèi)皮細(xì)胞的肝素結(jié)合內(nèi)皮樣生長(zhǎng)因子的表達(dá),增加其與周細(xì)胞膜表面受體EGFR的結(jié)合力,促進(jìn)周細(xì)胞包裹新生血管,增加血管穩(wěn)定性[23];S1P主要由內(nèi)皮細(xì)胞表達(dá),其受體廣泛分布于各種細(xì)胞,包括內(nèi)皮細(xì)胞、周細(xì)胞和間質(zhì)細(xì)胞,S1P通路激活后可引起細(xì)胞骨架、細(xì)胞黏附及胞間連接的變化,通過促進(jìn)N-cadherin和VE-cadherin介導(dǎo)的嵌合連接,維持必要的細(xì)胞間貼附[30]。
4.3 周細(xì)胞對(duì)NVU穩(wěn)態(tài)的調(diào)控
人腦周細(xì)胞可產(chǎn)生并調(diào)節(jié)促凝酶復(fù)合物,且周細(xì)胞表面存在有功能的活化組織因子,該組織因子通過與凝血因子Ⅶa結(jié)合形成有功能的復(fù)合物,從而活化凝血因子Ⅸ和Ⅹ。周細(xì)胞還為凝血酶原復(fù)合物提供必要的膜表面,在凝血因子Ⅴa和Ⅹa的幫助下,促進(jìn)凝血酶的形成,其催化速率為其他細(xì)胞的50~100倍[31]。體外實(shí)驗(yàn)發(fā)現(xiàn),腦周細(xì)胞能夠減少腦血管內(nèi)皮細(xì)胞中組織型纖溶酶原激活物(tissue-type plasminogen activator,t-PA)的產(chǎn)生,從而影響內(nèi)皮細(xì)胞的纖維蛋白溶解。當(dāng)受到內(nèi)毒素刺激時(shí),周細(xì)胞可通過大量釋放組織型纖溶酶原激活物抑制物-1(plasminogen activator inhibitor-1,PAI-1)來擴(kuò)大抗纖溶效應(yīng)。周細(xì)胞還大量合成和分泌絲氨酸蛋白酶抑制劑和抗凝血酶(如連接蛋白酶-1)[32]。由此可見,腦周細(xì)胞同時(shí)具有促進(jìn)和拮抗凝血的活性,這在維持NVU的穩(wěn)態(tài)中是至關(guān)重要的。
在缺氧時(shí),周細(xì)胞能通過增加神經(jīng)營養(yǎng)因子的表達(dá),促進(jìn)神經(jīng)元存活。周細(xì)胞和星形膠質(zhì)細(xì)胞都能表達(dá)3種神經(jīng)營養(yǎng)因子,即神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)、腦源性神經(jīng)營養(yǎng)因子(brain derived neurophic factor,BDNF)和神經(jīng)營養(yǎng)因子-3(neurotrophin-3,NT-3),但TrkB、TrkC這2種BDNF和NT-3的特異性受體僅表達(dá)于星形膠質(zhì)細(xì)胞表面。近期有學(xué)者發(fā)現(xiàn),TrkA和TrkC可作為獨(dú)立受體發(fā)揮功能:即當(dāng)應(yīng)激情況下這些受體發(fā)生上調(diào)時(shí),如果相應(yīng)的神經(jīng)營養(yǎng)因子的表達(dá)沒有增加,則上調(diào)的Trk受體可誘導(dǎo)神經(jīng)細(xì)胞的死亡[33]。Koji等[34]發(fā)現(xiàn),缺氧時(shí),周細(xì)胞能增加NT-3的表達(dá),通過TrkC-Erk1/2途徑上調(diào)星形膠質(zhì)細(xì)胞分泌的NGF,促進(jìn)神經(jīng)元存活。
另外,周細(xì)胞還參與缺血后血管微生態(tài)的構(gòu)建。缺血可刺激內(nèi)源性神經(jīng)干細(xì)胞以促進(jìn)神經(jīng)再生[35],血管的行成及管狀結(jié)構(gòu)的構(gòu)建則可為神經(jīng)元的再生和募集創(chuàng)造條件,也為神經(jīng)干細(xì)胞發(fā)育和分化成熟提供穩(wěn)定的微生態(tài)[36]。在鼠腦梗死模型中,許多血管源性因子既可誘導(dǎo)血管生成,又可促進(jìn)神經(jīng)再生。如血管再生過程中產(chǎn)生的血管生成素-l和基質(zhì)細(xì)胞衍生因子-1同樣可促進(jìn)神經(jīng)再生[36]。
4.4 周細(xì)胞對(duì)血腦屏障的調(diào)控
在內(nèi)皮細(xì)胞、周細(xì)胞和星形膠質(zhì)細(xì)胞的體外混合培養(yǎng)模型中發(fā)現(xiàn),缺氧可導(dǎo)致單層內(nèi)皮細(xì)胞滲透性增加,而與周細(xì)胞共培養(yǎng),則可降低內(nèi)皮細(xì)胞對(duì)缺氧的敏感性及滲透性[37]。在研究周細(xì)胞和星形膠質(zhì)細(xì)胞對(duì)缺氧時(shí)內(nèi)皮細(xì)胞滲透性及細(xì)胞存活的影響時(shí)還發(fā)現(xiàn):正常氧濃度時(shí),周細(xì)胞和星形膠質(zhì)細(xì)胞均可增加屏障功能;1%氧濃度時(shí),星形膠質(zhì)細(xì)胞可維持部分屏障完整性,周細(xì)胞則在短期內(nèi)加速屏障破壞,而在持續(xù)缺氧時(shí)發(fā)揮保護(hù)作用;出乎意料的是,在0.1%氧濃度時(shí),周細(xì)胞比星形膠質(zhì)細(xì)胞對(duì)屏障的保護(hù)作用更強(qiáng)。以上數(shù)據(jù)顯示,在嚴(yán)重持續(xù)缺氧狀態(tài)時(shí),周細(xì)胞比星形膠質(zhì)細(xì)胞對(duì)于血腦屏障的保護(hù)更有效。這種保護(hù)或與阻斷Caspase-3旁路及VEGF信號(hào)旁路有關(guān)[38]。通過基因敲除得到周細(xì)胞缺陷的小鼠模型中發(fā)現(xiàn),其血腦屏障的滲透性大大增加,內(nèi)皮細(xì)胞的表面分子標(biāo)記沒有明顯改變,但其胞吞轉(zhuǎn)運(yùn) 卻 增 強(qiáng) 了 。 Ang-1、Ang-2、vegfa、adrenomedullin表達(dá)的改變提示周細(xì)胞可能通過這些信號(hào)通路來調(diào)節(jié)內(nèi)皮細(xì)胞的胞吞轉(zhuǎn)運(yùn)[39]。由于周細(xì)胞與腦毛細(xì)血管內(nèi)皮細(xì)胞通過縫隙連接、緊密連接、粘著斑及一些可溶因子進(jìn)行交流[40],推測(cè)周細(xì)胞在血腦屏障的形成和維持方面發(fā)揮重要作用,如對(duì)內(nèi)皮細(xì)胞緊密連接形成的調(diào)節(jié)以及細(xì)胞旁通透性的調(diào)節(jié)。研究證明0000周細(xì)胞的這種調(diào)節(jié)功能部分是由其分泌的TGF-β1和Angiopoietin-1介導(dǎo)的[3,4 1]。有研究認(rèn)為周細(xì)胞是通過TGF-β1穩(wěn)定內(nèi)皮細(xì)胞中肌動(dòng)蛋白絲的結(jié)構(gòu)來防止血腦屏障被破壞的[3],而Angiopoietin-1是通過激活Tie2受體來誘導(dǎo)內(nèi)皮細(xì)胞表達(dá)occludin[41]。周細(xì)胞還可以合成Ⅳ型膠原、粘多糖和層黏連蛋白等物質(zhì)促進(jìn)基底膜的形成,以促進(jìn)血腦屏障的形成及穩(wěn)定[17]。還有研究發(fā)現(xiàn)相鄰周細(xì)胞的細(xì)胞膜邊界上存在occludin,claudin-12,,ZO-1和ZO-2等分子,提示周細(xì)胞間可形成緊密連接,進(jìn)一步降低血腦屏障的通透性[9]。
4.5 周細(xì)胞具有干細(xì)胞潛能
從不同組織中分離出來的周細(xì)胞都被證實(shí)具有分化為其他間充質(zhì)細(xì)胞類型的能力,如平滑肌細(xì)胞、成纖維細(xì)胞、脂肪細(xì)胞、軟骨細(xì)胞以及骨細(xì)胞等00[42]。體外實(shí)驗(yàn)證明,在堿性成纖維生長(zhǎng)因子的誘導(dǎo)下,腦周細(xì)胞可表達(dá)神經(jīng)元和膠質(zhì)細(xì)胞的標(biāo)記物[43]。事實(shí)上,腦周細(xì)胞的許多特征與間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)相似:如腦周細(xì)胞和MSCs都表達(dá)部分共同的免疫學(xué)標(biāo)志,2種細(xì)胞都具有間充質(zhì)分化潛能,均可以調(diào)節(jié)周圍細(xì)胞穩(wěn)態(tài),且均部分來源于中胚層[44,45]。此外,腦周細(xì)胞還被證實(shí)具有一些神經(jīng)前體細(xì)胞(neural progenitor cells,NPCs)的特性:如腦周細(xì)胞表達(dá)中間絲蛋白中的波形蛋白和巢蛋白,而這2種蛋白也在NPCs中表達(dá)[14];腦周細(xì)胞具有自我再生功能,且可分化成為神經(jīng)元、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞[43]??傊?,腦周細(xì)胞具有間質(zhì)細(xì)胞和干細(xì)胞的特性,它可能參與神經(jīng)系統(tǒng)功能紊亂所致的各種疾病,并有可能成為未來藥物的治療靶點(diǎn)[46]。
4.6 周細(xì)胞具有免疫吞噬功能
周細(xì)胞溶酶體中高表達(dá)酸性磷酸酶,且其數(shù)量因組織損傷或年齡增加而增加,提示周細(xì)胞具有吞噬功能[17]。周細(xì)胞還可通過胞飲作用、吞噬作用及受體介導(dǎo)的內(nèi)吞作用對(duì)血液和腦實(shí)質(zhì)中的小分子或可溶性物質(zhì)進(jìn)行攝取[47]。當(dāng)血腦屏障破壞,血液外滲時(shí),周細(xì)胞可吞噬整個(gè)紅細(xì)胞[48]。Monteiro等[49]通過電鏡觀察到,在腦損傷狀態(tài)下,周細(xì)胞可脫離基底膜,轉(zhuǎn)化形成血管周小膠質(zhì)細(xì)胞,從而發(fā)揮吞噬功能。腦周細(xì)胞在生理狀態(tài)下持續(xù)表達(dá)低水平的黏附分子,如細(xì)胞間黏附分子-1、血管細(xì)胞黏附分子-1、主要組織相容性復(fù)合物Ⅰ類分子;而在病理狀態(tài)下,炎性細(xì)胞因子如TNF-α、IFN-γ等可上調(diào)這幾種分子的表達(dá),并促進(jìn)周細(xì)胞產(chǎn)生主要組織相容性復(fù)合物Ⅱ分子,將抗原呈遞給T淋巴細(xì)胞[50];此外,周細(xì)胞可產(chǎn)生免疫調(diào)節(jié)細(xì)胞因子如 IL-1β、IL-6、PGF,其分泌的TNF-β也可能具有免疫調(diào)節(jié)作用[43]。
4.7 周細(xì)胞具有遷移功能
在血管形成過程中,周細(xì)胞在內(nèi)皮細(xì)胞分泌的PDGF-β和自身的PDGF-β受體的介導(dǎo)下,可向內(nèi)皮細(xì)胞移動(dòng)[51],且周細(xì)胞向內(nèi)皮細(xì)胞的遷移過程已在體外細(xì)胞培養(yǎng)形成毛細(xì)血管樣結(jié)構(gòu)的實(shí)驗(yàn)中被證實(shí)[52]。創(chuàng)傷性腦損傷發(fā)生后1 h,受損皮質(zhì)附近的周細(xì)胞已經(jīng)歷一系列變化。約40%的腦微血管周細(xì)胞會(huì)遷移到血管周圍部位,使得周細(xì)胞與其覆蓋的內(nèi)皮細(xì)胞的比值由最初的1∶5降至1∶10~12,這個(gè)過程可能由周細(xì)胞表達(dá)的尿激酶型纖溶酶原激活物受體介導(dǎo)。伴隨周細(xì)胞的遷移,基底膜也隨之變薄,而尚未發(fā)生遷移的周細(xì)胞則出現(xiàn)細(xì)胞質(zhì)及細(xì)胞核染色質(zhì)的退行性變化。遷移的結(jié)果使得血腦屏障被破壞,滲透性增加,加速腦水腫的形成,也反映出周細(xì)胞對(duì)于維持血腦屏障的完整性具有重要作用[53]。
NVU是大腦的基本功能單位,它在維持腦穩(wěn)態(tài)和行使正常腦功能中發(fā)揮重要作用。周細(xì)胞作為NVU中的關(guān)鍵細(xì)胞之一,通過各種信號(hào)通路與其他細(xì)胞組分之間相互作用,共同調(diào)節(jié)生理和病理?xiàng)l件下的內(nèi)環(huán)境。周細(xì)胞的多種功能使其可能成為未來神經(jīng)系統(tǒng)疾病治療的新靶點(diǎn),對(duì)于NVU整體生理功能的研究和周細(xì)胞特性的研究仍待深入。
[1]Persidsky Y,Ramirez SH,Haorah J,et al.Blood-brain barrier:structural components and function under physiologic and pathologic conditions[J].J Neuroimmune Pharmacol,2006,1:223-236.
[2]Frank RN,Dutta S,Mancini MA. Mancini,Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat[J].Invest Ophthalmol Vis Sci,1987,28: 1086-1091.
[3]Lai CH,Kuo KH.The critical component to establish in vitro BBB model:Pericyte[J].Brain Res Brain Res Rev,2005,50: 258-265.
[4]Guillemin GJ,Brew BJ.Microglia, macrophages,perivascularmacrophages,and pericytes:a review of function and identification[J].J Leukoc Biol,2004,75: 388-397.
[5]Gerhardt H,Betsholtz C.Endothelial-pericyte interactions in angiogenesis[J]. Cell Tissue Res,2003,314:15-23.
[6]Caruso RA,Fedele F,Finocchiaro G,et al.Ultrastructuraldescriptionsofpericyte/endothelium peg-socket interdigitations in the microvasculature of human gastric carcinomas[J].Anticancer Res,2009, 29:449-453.
[7]McCarty JH.Cell biology of the neurovascular unit:implications for drug delivery across the blood-brain barrier[J].Assay Drug Dev Technol,2005,3:89-95.
[8]Chakravarthy U,Gardiner TA.Endothelium-derived agents in pericyte function/dysfunction[J].Prog Retin Eye Res, 1999,18:511-527.
[9]Shimizu F,Sano Y,Maeda T,et al.Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells[J].J Cell Physiol,2008, 217:388-399.
[10]Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers:function and dysfunction[J]. Semin Immunopathol,2009,31:497-511.
[11]Sims DE.Recent advances in pericyte biology--implications for health and disease [J].Can J Cardiol,1991,7:431-443.
[12]Fisher M.Pericyte signaling in the neurovascular unit[J].Stroke,2009,40: S13-15.
[13]Armulik A,Genové G,Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives,problems, and promises [J].Dev Cell,2011,21: 193-215.
[14]Kamouchi M,Ago T,Kitazono T. Brain pericytes:emerging concepts and functional roles in brain homeostasis[J]. Cell Mol Neurobiol,2011,31:175-193.
[15]Bondjers C,He L,Takemoto M,et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes[J].FASEB J,2006,20:1703-1705.
[16]Mathiisen TM,Lehre KP,Danbolt NC,et al.The perivascular astroglial sheath provides a complete covering of the brain microvessels:an electron microscopic 3D reconstruction [J]. Glia, 2010, 58: 1094-1103.
[17]Allt G,Lawrenson JG.Pericytes:cell biology and pathology [J].Cells Tissues Organs,2001,169:1-11.
[18]Peppiatt CM,Howarth C,Mobbs P,et al.Bidirectional control of CNS capillary diameter by pericytes[J].Nature,2006,443: 700-704.
[19]Yemisci M,Gursoy-Ozdemir Y,Vural A,et al.Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery[J].Nat Med,2009, 15:1031-1037.
[20]Kutcher ME,Kolyada AY,Surks HK, et al.Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state[J].Am J Pathol, 2007,171:693-701.
[21]Fernández-Klett F,Offenhauser N, Dirnagl U,et al.Pericytes in capillaries are contractile in vivo,but arterioles mediate functional hyperemia in the mouse brain[J]. Proc Natl Acad Sci U S A,2010,107: 22290-22295.
[22]Ramsauer M,Krause D,Dermietzel R.Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes[J].FASEB J,2002,16:1274-1276.
[23]Gaengel K,Genové G,Armulik A,et al.Endothelial-mural cell signaling in vascular development and angiogenesis[J].Arterioscler Thromb Vasc Biol,2009,29: 630-638.
[24]Dore-Duffy P,LaManna JC.Physiologic angiodynamics in the brain[J].Antioxid Redox Signal,2007,9:1363-1371.
[25]Hagedorn M,Balke M,Schmidt A,et al.VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis[J]. Dev Dyn,2004,230:23-33.
[26]Sinha S,Hoofnagle MH,Kingston PA,et al.Transforming growth factor-beta 1 signaling contributes to development of smooth muscle cells from embryonic stem cells[J].Am J Physiol Cell Physiol,2004, 287:1560-1568.
[27]Greenberg JI,Shields DJ,Barillas SG,et al.A role for VEGF as a negative regulator of pericyte function and vessel maturation[J].Nature,2008,456:809-813.
[28]Carmeliet P.Angiogenesis in life, disease and medicine[J].Nature,2005,438: 932-936.
[29]Stenzel D,Nye E,Nisancioglu M,et al.Peripheral mural cell recruitment requires cell-autonomous heparan sulfate[J]. Blood,2009,114:915-924.
[30]Paik JH,Skoura A,Chae SS,et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization [J]. Genes Dev, 2004, 18: 2392-2403.
[31]Bouchard BA,Shatos MA,Tracy PB. Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation[J].Arterioscler Thromb Vasc Biol,1997,17:1-9.
[32]Kim JA,Tran ND,Li Z,et al.Brain endothelial hemostasis regulation by pericytes[J].J Cereb Blood Flow Metab,2006, 26:209-217.
[33]Nikoletopoulou V,Lickert H,Frade JM,et al.Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not[J].Nature,2010,467:59-63.
[34]Ishitsuka K,Ago T,Arimura K,et al. Neurotrophin production in brain pericytes during hypoxia:a role of pericytes for neuroprotection[J].Microvasc Res,2012,83: 352-359.
[35]Burns TC,Verfaillie CM,Low WC. Stem cells for ischemic brain injury:a critical review[J].J Comp Neurol,2009,515:125-144.
[36]Thored P,Wood J,Arvidsson A,et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke[J].Stroke,2007,38:3032-3039.
[37]Hayashi K,Nakao S,Nakaoke R,et al.Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier[J].Regul Pept,2004,123:77-83.
[38]Al Ahmad A,Gassmann M,Ogunshola OO.Maintaining blood-brain barrier integrity:pericytes perform better than astrocytes during prolonged oxygen deprivation[J].J Cell Physiol,2009,218:612-622.
[39]Daneman R,Zhou L,Kebede AA,et al.Pericytes are required for blood-brain barrier integrity during embryogenesis[J]. Nature,2010,468:562-566.
[40]Bagley RG,Weber W,Rouleau C,et al.Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy [J].Cancer Res,2005,65: 9741-9750.
[41]Hori S,Ohtsuki S,Hosoya K,et al.A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro[J].J Neurochem, 2004,89:503-513.
[42]Crisan M,Yap S,Casteilla L,et al.A perivascular origin for mesenchymal stem cells in multiple human organs[J].Cell Stem Cell,2008,3:301-313.
[43]Dore-Duffy P,Katychev A,Wang X, et al.CNS microvascular pericytes exhibit multipotential stem cell activity[J].J Cereb Blood Flow Metab,2006,26:613-624.
[44]Lamagna C,Bergers G.The bone marrow constitutes a reservoir of pericyte progenitors[J].J Leukoc Biol,2006,80: 677-681.
[45]Caplan AI.All MSCs are pericytes[J]. Cell Stem Cell,2008,3:229-230.
[46]Lange S,Trost A,Tempfer H,et al. Brain pericyte plasticity as a potential drug target in CNS repair[J].Drug Discov Today,2012,18:456-463.
[47]Balabanov R,Dore-Duffy P.Role of the CNS microvascular pericyte in the blood-brain barrier[J].J Neurosci Res, 1998,53:637-644.
[48]Castejón OJ.Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema [J]. Folia Neuropathol,2011,49:162-173.
[49]Monteiro RA,Rocha E,Marini-Abreu MM.Do microglia arise from pericytes.An ultrastructural and distribution study in the rat cerebellar cortex[J].J Submicrosc Cytol Pathol,1996,28:457-469.
[50]Thomas WE.Brain macrophages:on the role of pericytes and perivascular cells [J].Brain Res Brain Res Rev,1999,31: 42-57.
[51]Abramsson A,Kurup S,Busse M,et al.Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development[J].Genes Dev,2007,21:316-331.
[52]Minakawa T,Bready J,Berliner J,et al.In vitro interaction of astrocytes and pericytes with capillary-like structures of brain microvessel endothelium [J].Lab Invest, 1991,65:32-40.
[53]Dore-Duffy P,Owen C,Balabanov R, et al.Pericyte migration from the vascular wall in response to traumatic brain injury[J]. Microvasc Res,2000,60:55-69.
R741;R741.02
A
DOI10.3870/sjsscj.2014.01.014
華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬同濟(jì)醫(yī)院神經(jīng)內(nèi)科武漢430030
2013-10-27
王偉wwang@tjh.tjmu.edu. cn