潘 飛,陳綿才,肖彤斌,吉訓(xùn)聰,謝圣華
(海南省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與植物保護(hù)研究所,海南省植物病蟲害防控重點(diǎn)實(shí)驗(yàn)室,???571100)
在田間自然條件下,氣候因子被認(rèn)為是最重要的昆蟲種群抑制因子之一,而溫度是影響昆蟲生長(zhǎng)發(fā)育、存活、繁殖等生命活動(dòng)最重要的因子。昆蟲是變溫動(dòng)物,保持和調(diào)節(jié)體內(nèi)溫度的能力不強(qiáng),體內(nèi)的各種代謝過(guò)程隨著環(huán)境溫度的變化而改變。為了便于說(shuō)明溫度對(duì)昆蟲生命活動(dòng)的作用,通常將溫度劃分為致死高溫區(qū)、亞致死高溫區(qū)、適宜溫區(qū)、亞致死低溫區(qū)和致死低溫區(qū)。適宜溫區(qū)是昆蟲種群繁衍最為有利的溫度范圍,在昆蟲生態(tài)學(xué)和生物學(xué)研究中應(yīng)用最多。在溫度對(duì)昆蟲生長(zhǎng)發(fā)育、存活、繁殖和種群增長(zhǎng)等生物學(xué)特性影響的研究中通常是人為設(shè)定恒定的幾個(gè)溫度梯度,研究的結(jié)果并不能真實(shí)的反應(yīng)田間實(shí)際情況。開(kāi)展變溫條件下的研究,有助于進(jìn)一步體現(xiàn)田間波動(dòng)性溫度對(duì)昆蟲種群數(shù)量變化的影響。關(guān)于變溫對(duì)昆蟲生長(zhǎng)發(fā)育、存活、繁殖和種群增長(zhǎng)的研究報(bào)道較多,已取得以下主要進(jìn)展。
昆蟲生長(zhǎng)發(fā)育有一定的溫度范圍,低于某一溫度,生長(zhǎng)發(fā)育便停止,高于此溫度,生長(zhǎng)發(fā)育才開(kāi)始。諸多研究表明,與恒溫相比,變溫條件下昆蟲的發(fā)育起點(diǎn)溫度更低、能夠發(fā)育的溫度范圍更廣。Lin 等 (1954)提出乳草蝽Oncopeltus fasciatus (Dallas)和擬谷盜Tribolium castaneum(Herbst)的卵均能在高于或低于恒溫發(fā)育適溫范圍以外的溫度下發(fā)育。Messenger (1964)認(rèn)為與恒溫條件相比,日變溫條件能刺激苜蓿斑蚜Therioaphis maculate (Buckton)忍受更低的發(fā)育起點(diǎn)溫度。Dallwitz (1984)報(bào)道銅綠蠅 Lucilia cuprina (Wiedemann)蛹在30℃恒溫時(shí)發(fā)育速率趨于穩(wěn)定,而變溫時(shí)發(fā)育速率在34℃還能繼續(xù)上升,直到42℃時(shí)急速將為零。劉樹(shù)生等(1989)報(bào)道桃蚜 Myzus persicae (Sulzer)、蘿卜蚜 Lipaphis erysimi (Kaltenbach)在一系列變溫下的發(fā)育速率,在高溫區(qū)內(nèi)發(fā)育速率仍基本按經(jīng)典的邏輯斯蒂曲線隨溫度的升高而上升,但在一溫度下的發(fā)育速率又隨停留時(shí)間延長(zhǎng)而逐漸下降;在恒溫下只能完成部分蟲期發(fā)育的低溫區(qū),變溫下發(fā)育速率亦接近經(jīng)典的邏輯斯蒂曲線。Torres 等(1998)報(bào)道與27℃恒溫相比,變溫條件時(shí)刺益蝽Podisus nigrispinus (Dallas)卵、若蟲和卵-成蟲的發(fā)育起點(diǎn)溫度更低。陳非洲等 (2003)研究了小菜蛾P(guān)lutella xylostella (Linnaeus)的發(fā)育速率在恒溫和自然變溫下的變化規(guī)律,恒溫下小菜蛾在8-32℃內(nèi)能完成整個(gè)幼期的發(fā)育,變溫下小菜蛾能夠發(fā)育的溫度范圍比恒溫下廣。Mironidis 等 (2008)試驗(yàn)表明棉鈴蟲Helicoverpa armigera (Hübner)在恒溫時(shí)卵-成蟲羽化的溫度為17.5-32.5℃,而變溫時(shí)溫度范圍拓寬為10-35℃;恒溫時(shí)蛹和卵的發(fā)育起點(diǎn)溫度為10.17 和11.95℃,而變溫時(shí)分別為1.1 和5.5℃。
昆蟲的發(fā)育速率隨著溫度而變化說(shuō)明昆蟲在某一時(shí)刻的瞬時(shí)發(fā)育速率取決于其經(jīng)歷的溫度。恒溫和變溫對(duì)昆蟲發(fā)育速率的影響,一直受到昆蟲學(xué)家們的關(guān)注。國(guó)內(nèi)外學(xué)者已逐漸形成兩種觀點(diǎn):一種認(rèn)為變溫對(duì)昆蟲生長(zhǎng)發(fā)育有刺激作用,與恒溫條件相比,相同的平均溫度下變溫時(shí)昆蟲的發(fā)育歷期更短,發(fā)育速率更快;另一種認(rèn)為在適溫范圍內(nèi)的變溫對(duì)昆蟲生長(zhǎng)發(fā)育沒(méi)有影響,但低溫條件下的變溫能加速昆蟲發(fā)育,高溫條件下的變溫延緩昆蟲發(fā)育。
Hagstrum 等(1973)報(bào)道與25℃恒溫相比,甲蟲Tribolium castancum (Herbst)和Trogoderma iuclusum (LeConte)的發(fā)育歷期在相同平均溫度10℃變溫幅度時(shí)減少了9%-12%。Hofsvang(1976)研究了在8℃、18℃、28℃恒溫和8-28℃變溫條件下西伯利亞原花蝽Anthocoris sibiricus(Reuter)的發(fā)育歷期,發(fā)現(xiàn)變溫條件下發(fā)育速率明顯比18℃恒溫時(shí)快。Foley (1981)研究認(rèn)為在相同溫度時(shí),與恒溫相比,溫度變化幅度較大的變溫條件能加速未滯育和滯育前的棉鈴蟲蛹的羽化速率。Radmacher (2011)研究了三組恒溫和變溫條件下Osmia bicornis 發(fā)育歷期,結(jié)果表明變溫條件能加速大多數(shù)蟲態(tài)的發(fā)育。溫度的變化幅度對(duì)昆蟲發(fā)育速率亦有影響。在變溫條件下,最高溫度、最低溫度和平均溫度是衡量溫度變化幅度對(duì)昆蟲影響的重要因子。Sweeney (1978)認(rèn)為Isonychia bicolor 卵和若蟲發(fā)育速率與日變溫幅度有顯著的正相關(guān)性。Taylor 等(1990)研究了行軍蟲Pseudaletia unipuncta (Haworth)在不同變溫幅度下卵、幼蟲和蛹的平均發(fā)育歷期的差異,結(jié)果表明變溫幅度越大各蟲態(tài)發(fā)育越快。賀答漢等(1990)分析了五組變溫條件下白茨粗角螢葉甲Diorhabda rybakowl (Weise)的種群增長(zhǎng),得知變溫對(duì)幼期存活率的影響受其變幅大小的影響。Aysheshim 等(1996)認(rèn)為小菜蛾種群數(shù)量變化與日平均溫度和日最高溫度呈正相關(guān)關(guān)系。何成興等(2003)研究表明小菜蛾成蟲田間種群數(shù)量的非生物因子在季節(jié)間,主要是月平均溫度,其次是最高溫度和最低溫度;而在年度間,主要是年均最低溫度,其次是年度平均溫度和年均最高溫度。唐超等(2007)試驗(yàn)表明不同幅度的變溫對(duì)椰甲截脈姬小蜂Asecodes hispinarum (Boucek)有極顯著的影響,各處理間發(fā)育歷期隨溫度的升高而縮短,在18℃下發(fā)育歷期最長(zhǎng),28℃下發(fā)育歷期最短,分別為37.7 d 和18.3 d。
一些研究認(rèn)為溫度波動(dòng)在正常生存的溫度范圍內(nèi)對(duì)昆蟲發(fā)育速率無(wú)明顯影響或影響不大;在較低的溫度時(shí),變溫能加快昆蟲的發(fā)育速率;高溫條件下的變溫降低昆蟲發(fā)育速率。Messenger 等(1959)報(bào)道在適溫區(qū)時(shí),果蠅卵發(fā)育速率在變溫與恒溫間差異不顯著,且變溫幅度對(duì)其影響也不大;當(dāng)溫度在較低(高)溫度水平波動(dòng)時(shí),卵發(fā)育速率比恒溫下的相應(yīng)速率要快(慢),而且溫度波動(dòng)幅度越大這種效應(yīng)就越明顯。Matteson 等(1965)認(rèn)為在適宜的溫度范圍變溫對(duì)歐洲玉米螟Ostrinia nubilalis (Hübner)非成蟲期的發(fā)育無(wú)顯著影響,在更低的平均溫度下的變溫能加快其發(fā)育速率。Madubunyi 等 (1974)研究了15-35℃5 組恒溫和4.4-37.8℃3 組變溫下埃及苜蓿象甲Hypera brunneipennis (Boheman)的發(fā)育歷期,發(fā)現(xiàn)在20-30℃適溫范圍內(nèi)兩種溫度環(huán)境下發(fā)育歷期的差異不顯著。Humpesch (1982)認(rèn)為在2.8-18.1℃周期變溫模式下 Ecdyonurus picteti、E.venosus 和Rhithrogena cf.hybrida 卵發(fā)育速率與恒溫時(shí)相同。Dallwitz (1984)報(bào)道銅綠蠅蛹在30℃恒溫和自然變溫條件下瞬時(shí)發(fā)育速率相同。Rock(1985)試驗(yàn)表明在20 和33℃12h 交替變溫條件下卷葉蛾P(guān)latynota idaeusalis (Walker)發(fā)育速率與24 和27℃恒溫條件時(shí)相同;與13 和18℃恒溫相比,低溫下的變溫能增加其發(fā)育速率。Kieckhefer等(1989)發(fā)現(xiàn)低溫和中等變溫條件下麥長(zhǎng)管蚜Macrosiphum avenae (Fabricius)的發(fā)育速率與恒溫時(shí)通過(guò)引入最低和最高發(fā)育溫度而建立的日度模型的期望值相一致,而在高溫變溫時(shí)其發(fā)育速率降低。吳曉晶等(1994)研究表明交替變溫對(duì)松毛蟲赤眼蜂Trichogramma dendrolimi (Matsumura)和瓜螟Diaphania indica (Saunders)在任一溫度下的瞬時(shí)發(fā)育速率無(wú)明顯影響,恒溫下和變溫下完成發(fā)育所需的熱量無(wú)顯著差異或基本相似。Doerr等(2002)比較了Lacanobia subjuncta 在恒溫和田間變溫條件時(shí)非成蟲階段有效積溫的差異,并認(rèn)為可以用室內(nèi)測(cè)得的數(shù)據(jù)預(yù)測(cè)其在田間的發(fā)生情況。吳坤君等(2009)在恒溫(15-37℃)和交替變溫(12/18-4/40℃)下測(cè)定了棉鈴蟲蛹的發(fā)育歷期,結(jié)果表明,在低溫區(qū),蛹在變溫條件下的發(fā)育比在恒溫下快,在高溫區(qū)則相反,只有在個(gè)別中間溫度下,蛹在恒溫和變溫下的發(fā)育率才比較接近。
變溫對(duì)昆蟲發(fā)育的其它方面亦有影響。Beck(1983)發(fā)現(xiàn)與恒溫相比,在溫度的周期變化條件下歐洲玉米螟4 齡和5 齡幼蟲體重更重,頭部更寬。Elliott 等(1995)發(fā)現(xiàn)在12 和18℃日變溫條件下飼養(yǎng)的3 種麥蚜寄生蜂成蟲體重均顯著大于24℃變溫時(shí)。Menaker 等(1965)發(fā)現(xiàn)與相同溫度的恒溫相比,24 h 周期變溫更能引起棉紅鈴蟲Pectinophora gossypiella (Saunders)幼蟲的滯育,并認(rèn)為變溫處理更能誘導(dǎo)昆蟲滯育。Goehring 等(2002)研究證明與恒溫、長(zhǎng)日或短日比,變溫條件或減少日長(zhǎng)時(shí)間更易誘導(dǎo)君主斑蝶Danaus plexippus (Linnaeus)的滯育。
溫度變化對(duì)昆蟲卵孵化率、各齡幼蟲存活率、蛹羽化率和成蟲存活率等都有影響。與恒溫條件相比,變溫能提高昆蟲的存活率,延長(zhǎng)其存活時(shí)間。Pfadt 等(1975)發(fā)現(xiàn)在20℃自然變溫條件時(shí),有 72%的紋皮 蠅 Hypoderma lineatum(Devillers)蛹能順利羽化,在15/25℃ (12 h 變溫一次)變溫時(shí),蛹羽化率提高到86%;紋皮蠅北方品系在20℃自然變溫條件時(shí)蛹羽化率為55%,而在14-26℃和16-24℃變溫條件時(shí)蛹羽化率提高到了77%。Behrens 等(1983)報(bào)道在20℃恒溫條件下,地中海蟋蟀Gryllus bimaculatus (De Geer)卵僅有18%能成功孵化,而在20℃日變溫模式下,卵的孵化率增加到49%-65%。朱滌芳等(1987)用變溫和不同光周期培育赤眼蜂的耐冷性,擬澳洲赤眼蜂 Trichogramma confusum(Viggiani)、歐洲玉米螟赤眼蜂 Trichogramma nubilale (Ertle and Davis) 和稻螟赤眼蜂Trichogramma japonicum (Ashmead)經(jīng)變溫處理冷藏后羽化率均比適溫培育未處理的羽化率高。Torres 等(1998)報(bào)道在10-20℃變溫時(shí)僅有7%刺益蝽若蟲能發(fā)育為成蟲,而27、15-25 和17-27℃時(shí)成蟲羽化率分別為93%、87.3%和91.1%。Renault 等(2004)認(rèn)為5℃/10℃或5℃/15℃變溫條件均能增加馴化的和未經(jīng)馴化的黑菌蟲Alphitobius diaperinus (Panzer)存活中時(shí);當(dāng)日平均溫度增加到20℃時(shí),黑菌蟲存活中時(shí)顯著增加。Colinet 等 (2006)通過(guò)將棉蚜寄生蜂Aphidius colemani (Viereck)蛹置于4℃恒溫并定時(shí)轉(zhuǎn)移到20℃2 h 后發(fā)現(xiàn)蛹存活率顯著提高,且高溫時(shí)間越久蛹存活率越大。Kostal 等(2007)報(bào)道與恒定低溫相比,無(wú)翅紅蝽Pyrrhocoris apterus (Linnaeus)和黑菌蟲成蟲在晝夜交替變溫條件下存活時(shí)間更長(zhǎng)。唐文穎等(2011)研究表明變溫處理后煙蚜繭蜂Aphidius gifuensis (Ashmead)羽化率高于恒定低溫,其認(rèn)為變溫貯藏技術(shù)更適于煙蚜繭蜂的繁殖與釋放。
然而一些學(xué)者認(rèn)為在發(fā)育的適溫范圍內(nèi)恒溫和變溫對(duì)昆蟲存活率的影響不大,低溫下的變溫能提高存活率,高溫下的變溫抑制存活率。Madubunyi 等(1974)研究了15-35℃5 組恒溫和4.4-37.8℃3 組變溫下埃及苜蓿象甲的存活率,發(fā)現(xiàn)在20-30℃適溫范圍內(nèi)兩種溫度環(huán)境下存活率差異不顯著。Humpesch (1982)研究表明在2.8-18.1℃周期變溫模式下Ecdyonurus picteti、E.venosus 和Rhithrogena cf.hybrida 卵孵化率與恒溫時(shí)相同。Dallwitz (1984)發(fā)現(xiàn)銅綠蠅蛹在暴露于高溫不同處理(7 h,每日7 h 和持續(xù)高溫)時(shí)平均的存活溫度為44.7、39.2 和34.4℃;僅一次和每日將蛹置于-5℃低溫時(shí)死亡率較低,而-10℃低溫每日和持續(xù)低溫處理下蛹均不能存活。Rock (1985)試驗(yàn)表明在20℃和33℃12 h 交替變溫條件下卷葉蛾存活率與24℃和27℃恒溫條件時(shí)相同,高溫超過(guò)33℃的變溫時(shí)存活率下降;與13℃和18℃恒溫相比,低溫下的變溫能增加其存活率。馬巨法等(1998)模擬了在27-38℃自然高溫變溫下研究3 種稻飛虱種群的表現(xiàn),并以恒溫為對(duì)照,發(fā)現(xiàn)白背飛虱 Sogatella furcifera(Horvath)卵孵化率在10 d 處理下比對(duì)照下降30%;3 種稻飛虱若蟲在變溫處理5 d 后的生存率明顯低于對(duì)照;變溫處理10 d 后,白背飛虱無(wú)一個(gè)體生存,褐飛虱Nilaparvata lugens (Stal)比對(duì)照低75%,灰飛虱Laodelphax striatellus (Fallen)比對(duì)照低50%。
溫度變化對(duì)昆蟲成蟲壽命、雌蟲產(chǎn)卵量、產(chǎn)卵前期和平均產(chǎn)卵歷期等參數(shù)均有影響。一種觀點(diǎn)認(rèn)為變溫對(duì)昆蟲成蟲的繁殖力有顯著的刺激作用。Messenger (1964)認(rèn)為與恒溫條件相比,日變溫條件能大大增加苜蓿斑蚜成蟲的繁殖力和壽命。Philipp 等(1971)試驗(yàn)?zāi)M了田間不同條件下棉紅鈴蟲種群的增長(zhǎng),發(fā)現(xiàn)雌蟲壽命越長(zhǎng)其產(chǎn)卵歷期越長(zhǎng),32.2℃對(duì)成蟲的產(chǎn)卵有抑制作用,在14.4-32.8°F 雌蟲產(chǎn)卵前期最長(zhǎng)。Hagstrum 等(1973)報(bào)道成蟲羽化后14 d 內(nèi)T.castancum的產(chǎn)卵量在25℃變溫條件下顯著高于25℃恒溫時(shí)。Greenfield 等(1976)認(rèn)為與相同平均溫度的恒溫相比,變溫條件能增加李透翅蛾Synanthedon pictipes (Grote and Robinson)雌蟲的產(chǎn)卵率和卵成熟率。Bradshaw (1980)研究表明與恒溫條件相比,變溫條件下北美瓶草蚊Wyeomyia smithii(Coquilett)繁殖力增加了7 倍。宋凱等(2003)對(duì)甘藍(lán)夜蛾赤眼蜂 Trichogramma brassicae(Bezdenko)采用篩選和變溫鍛煉的4個(gè)組合處理連續(xù)飼養(yǎng),從雌蜂壽命、產(chǎn)卵量看,多數(shù)變溫處理組比恒溫處理組質(zhì)量指標(biāo)有提高的趨勢(shì)。Davis等(2006)認(rèn)為桃蚜在變溫時(shí)繁殖能力更大,在最適恒溫時(shí)每周每雌蟲能產(chǎn)5.9個(gè)后代,而在相同平均溫度的變溫條件時(shí),每頭雌蟲在每周能產(chǎn)12.2個(gè)后代。Mironidis 等(2008)比較了12.5-40℃11 組恒溫和25-10 ﹑30-15 ﹑32.5-17.5﹑35-20 ﹑35-27.5℃5 組變溫條件下棉鈴蟲繁殖力的差異,除了25℃,變溫下雌蟲產(chǎn)卵能產(chǎn)更多的卵。另一種觀點(diǎn)認(rèn)為在適溫范圍內(nèi)恒溫和變溫對(duì)昆蟲繁殖力的影響沒(méi)有差異,高溫變溫處理會(huì)顯著降低成蟲的繁殖力。Hagstrum 等(1973)報(bào)道成蟲羽化后14 d 內(nèi)T.inclusum 和米象S.oryzae的產(chǎn)卵量在25℃變溫條件下和25℃恒溫兩種溫度模式下均沒(méi)有差異。Butler 等(1979)認(rèn)為在恒溫和變溫條件下飼養(yǎng)的棉紅鈴蟲成蟲壽命差異不明顯,恒溫時(shí)成蟲壽命較相近的變溫條件時(shí)長(zhǎng)。馬巨法等(1998)模擬了在27-38℃自然高溫變溫下研究3 種稻飛虱種群的表現(xiàn),并以恒溫為對(duì)照,發(fā)現(xiàn)褐飛虱和白背飛虱雌成蟲壽命明顯比對(duì)照短,產(chǎn)卵量在變溫處理8 d 后,僅為對(duì)照的40%和80%,變溫處理15 d 后,分別為對(duì)照的15%和54%。
溫度對(duì)昆蟲種群增長(zhǎng)的影響因昆蟲種類和溫度變化類型的不同而有所不同。Messenger (1964)認(rèn)為與恒溫相比,日變溫條件大大增加了苜蓿斑蚜的繁殖力和壽命,種群內(nèi)稟增長(zhǎng)率在29℃時(shí)達(dá)到最大。Strong 等(1970)通過(guò)生命表分析發(fā)現(xiàn)在32.2℃恒溫和26.2℃-32.2℃變溫條件下豆莢草盲蝽Lygus hesperus (Knight)種群內(nèi)稟增長(zhǎng)率最大。Siddiqui 等(1972)研究認(rèn)為在適溫范圍內(nèi),與相同溫度的恒溫條件相比,變溫時(shí)黑腹果蠅Drosophila melanogatser (Meigen)種群內(nèi)稟增長(zhǎng)率更大。Kieckhefer 等 (1989)比較了麥長(zhǎng)管蚜Macrosiphum avenae (Fabricius)在三組不同的變溫下種群的繁殖能力,繁殖力和凈繁殖力在低溫下最高,并隨著溫度的增加而下降;而內(nèi)稟增長(zhǎng)率在高溫時(shí)最大,平均世代歷期在高溫時(shí)最短。唐超等(2007)研究了在變溫條件下不同平均溫度對(duì)椰甲截脈姬小蜂內(nèi)稟增長(zhǎng)率的影響,在18-28℃溫度范圍內(nèi)隨著平均溫度的升高內(nèi)稟增長(zhǎng)率隨之上升。Ahmad 等(2008)研究表明與20℃和25℃恒溫條件相比,在20/25℃變溫條件下,小菜蛾種群凈繁殖率、內(nèi)稟增長(zhǎng)率、周限增長(zhǎng)率和年增長(zhǎng)率最高,種群加倍時(shí)間最短。而Siddiqui 等(1973)認(rèn)為與變溫條件相比,恒溫時(shí)地中海粉斑螟Anagasta kuehniella (Zeller)的內(nèi)稟增長(zhǎng)率更高,這是由于恒溫條件下其發(fā)育歷期更短,最大產(chǎn)卵量提前產(chǎn)下和非成蟲期存活率更高等原因造成的。Mironidis 等(2008)比較了12.5-40℃11 組恒溫和25-10℃﹑ 30-15℃﹑ 32.5-17.5℃﹑ 35-20℃﹑35-27.5℃5 組變溫條件下棉鈴蟲繁殖力的差異,結(jié)果表明,無(wú)論恒溫或變溫,種群內(nèi)稟增長(zhǎng)率在27.5℃時(shí)達(dá)到最大。
綜上所述,變溫對(duì)昆蟲生長(zhǎng)發(fā)育、存活、繁殖和種群增長(zhǎng)都有影響。在變溫條件下,昆蟲能夠忍耐更低或更高的溫度,發(fā)育的溫度范圍更廣。與恒溫相比,關(guān)于溫度波動(dòng)對(duì)昆蟲的影響已逐漸形成兩種觀點(diǎn)。一種認(rèn)為,變溫對(duì)昆蟲生長(zhǎng)發(fā)育有刺激作用,在該條件下各蟲態(tài)發(fā)育歷期更短,發(fā)育速率更快;提高昆蟲的存活率,延長(zhǎng)存活時(shí)間;增加成蟲繁殖力和壽命,最終顯著的增加種群內(nèi)稟增長(zhǎng)率;另一種觀點(diǎn)認(rèn)為,在適溫范圍內(nèi),恒溫和變溫對(duì)昆蟲生長(zhǎng)發(fā)育、存活、繁殖和種群增長(zhǎng)沒(méi)有影響或差異不顯著,但低溫條件下的變溫能加快各蟲態(tài)發(fā)育速率、提高存活率、增加成蟲繁殖力;高溫條件下的變溫能延緩各蟲態(tài)發(fā)育速率、降低存活率、減少成蟲繁殖力。
總結(jié)前人的研究結(jié)果,我們發(fā)現(xiàn)溫度的研究有恒溫和變溫兩種類型,變溫條件又可分為自然變溫和人工變溫,后者又進(jìn)一步可分為交替變溫和日變溫。自然變溫是將昆蟲置于自然的田間條件,最后以平均溫度計(jì)算,考查其對(duì)昆蟲各生物學(xué)特性的影響。交替變溫指兩個(gè)溫度(高溫和低溫)日夜交替的變溫模式。本文上述的研究報(bào)道大多是在自然變溫和交替變溫的條件下完成的,未能完全體現(xiàn)田間波動(dòng)性溫度對(duì)昆蟲種群數(shù)量變化的影響。日變溫是指借助先進(jìn)的儀器設(shè)備(如多段編程人工氣候箱),以當(dāng)?shù)刂鹑盏臍v史氣候資料為背景,設(shè)計(jì)不同季節(jié)和不同溫度變化幅度的周期性變溫模式,以模擬田間溫度的波動(dòng)性。日變溫模式綜合考慮了日最高溫度、日最低溫度和日平均溫度,不但能研究不同日平均溫度對(duì)昆蟲種群變化的影響,同時(shí)還能研究極端高溫和極端低溫及極端溫度持續(xù)時(shí)間對(duì)昆蟲的致死作用,又能研究不同的變溫幅度對(duì)昆蟲生理活動(dòng)的影響,是一種新型研究昆蟲生物學(xué)特性的方法,也是未來(lái)昆蟲生態(tài)學(xué)研究中的重要技術(shù)手段。
我國(guó)地域廣闊,南北緯度跨度大,氣候類型多,橫跨熱帶、亞熱帶、暖溫帶、中溫帶和寒溫帶,同一種昆蟲在各地的發(fā)生差異與我國(guó)的氣候特點(diǎn)可能存在一定的關(guān)系(鄭景云等,2010)。開(kāi)展變溫對(duì)昆蟲生物學(xué)特性的研究,有助于摸清某一種昆蟲在我國(guó)各地田間自然環(huán)境中種群消長(zhǎng)規(guī)律的生態(tài)學(xué)機(jī)理,明確發(fā)生世代數(shù)、發(fā)生高峰期、始發(fā)期和終止期等,為利用當(dāng)?shù)貧庀筚Y料推測(cè)該蟲在某一時(shí)間段內(nèi)的發(fā)生動(dòng)態(tài),確定防治適期,科學(xué)有效地指導(dǎo)防治提供理論依據(jù),同時(shí)彌補(bǔ)昆蟲生態(tài)學(xué)和生物學(xué)研究中日變溫對(duì)其生長(zhǎng)發(fā)育、存活、繁殖和種群增長(zhǎng)影響這一研究的空白。
References)
Ahmad SK,Ali A,Rizvi PQ.Influence of varying temperatures on the development and fertility of Plutella xylostella (L.)(Lepidoptera:Yponomeutidae)on cabbage [J].Asian Journal of Agricultural Research,2008,2 (1):25-31.
Aysheshim S,Mengistu F,Dawd M.Seasonal incidence and interspecific competition of two pests:diamondback moth and cabbage aphid at Ambo,Ethiopia[J].TVIS Newsletter,1996,1:2,27.
Beck SD.Thermal and thermoperiodic effects on larval development and diapause in the European corn borer,Ostrinia nubilalis [J].Journal of Insect Physiology,1983,29 (1):107-112.
Behrens W,Hoffmann KH,Kempa S,et al.Effects of diurnal thermoperiods and quickly oscillating temperatures on the development and reproduction of crickets,Gryllus bimaculatus[J].Biomedical and Life Sciences,1983,59 (2-3):279-287.
Bradshaw WE.Thermoperiodism and the thermal environment of the pitcher-plant mosquito,Wyeomyia smithii[J].Oecologia,1980,46 (1):13-17.
Butler GD,F(xiàn)oster RN.Longevity of adult pink bollworms at constant and fluctuating temperatures[J].Annals of the Entomological Society of America,1979,72 (2):267-268.
Chen FZ,Liu SS.Development rate of Plutella xylostella L.(Lepidoptera:Plutellidae) under constant and variable temperatures[J].Acta Ecologica Sinica,2003,23 (4):688-694.[陳非洲,劉樹(shù)生.恒溫和變溫對(duì)小菜蛾發(fā)育速率的影響[J].生態(tài)學(xué)報(bào),2003,23 (4):688-694]
Colinet H,Renault D,Hance T,et al.The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic,Aphidius colemani[J].Physiological Entomology,2006,31 (3):234-240.
Dallwitz R.The influence of constant and fluctuating temperatures on development rate and survival of pupae of the Australian sheep blowfly,Lucilia cuprina [J].Entomologia Experimentalis et Applicata,1984,36 (1):89-95.
Davis JA,Radcliffe EB,Ragsdale DW.Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera:Aphididae)[J].Environmental Entomology,2006,35 (6):1461-1468.
Doerr MD,Brunner JF,Jones VP.Temperature-dependent development ofLacanobia subjuncta (Lepidoptera:Noctuidae)[J].Environmental Entomology,2002,31 (6):995-999.
Elliott NC,Burd JD,Kindler SD,et al.Temperature effects on development of the three cereal aphid parasitoids (Hymenoptera:Aphidiidae)[J].Great Lakes Entomologist,1995,28 (3-4):199-204.
Foley DH.Pupal development rate ofHeliothis armiger (Hubner)(Lepidoptera:Noctuidae) under constant and alternating temperatures[J].Australian Journal of Entomology,1981,20(1):13-20.
Goehring L,Oberhauser KS.Effects of photoperiod,temperature,and host plant age on induction of reproductive diapause and development time in Danaus plexippus[J].Ecological Entomology,2002,27 (6):674-685.
Greenfield MD,Karandinos MG.Fecundity and longevity of Synanthedon pictipes under constant and fluctuating temperatures [J].Environmental Entomology,1976,5 (5):883-887.
Hagstrum DW,Leach CE.Role of constant and fluctuating temperatures in determining development time and fecundity of three species of stored-products Coleoptera[J].Annals of the Entomology Society of America,1973,66 (2):407-410.
He CX,Wu WW,Luo YJ,et al.Gray system analysis of abiotic factor influencing Plutella xylostella population [J].Journal of Yunnan Agricultural University,2003,18 (2):129-133.[何成興,吳文偉,羅雁婕,等.影響小菜蛾種群數(shù)量的非生物因子的灰色系統(tǒng)分析[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2003,18 (2):129-133]
He DH,Tian C.Life tables of Diorhabda rybakowl Weise at different temperature and thermoperiod [J].Acta Entomologica Sinica,1990,33 (4):437-443.[賀答漢,田疇.不同溫度和溫周期下白茨粗角螢葉甲的實(shí)驗(yàn)生命表[J].昆蟲學(xué)報(bào),1990,33 (4):437-443]
Hofsvang L.Development of Anthocoris sibiricus Reuter (Het.,Anthocoridae)at constant and fluctuating temperatures with the green peach aphid Myzus persicae (Sulzer)as prey[J].Norwegian Journal of Entomology,1976,23:29-34.
Humpesch UH.Effect of fluctuating temperature on the duration of the embryonic development in twoEcdyonurus spp.and Rhithrogena cf.hybrida (Ephemeroptera)from Austrian streams[J].Oecologia,1982,55 (3):285-288.
Kieckhefer RW,Elliott NC.Effect of fluctuating temperatures on development of immature Russian wheat aphid (Homoptera:Aphididae)and demographic statistics[J].Journal of Economic Entomology,1989,82 (1):119-122.
Kieckhefer RW,Elliott NC,Walgenbach DD.Effects of constant and fluctuating temperatures on developmental rates and demographic statistics of the English grain aphid (Homoptera:Aphididae)[J].Annals of the Entomological Society of America,1989,82 (6):701-706.
Kostal V,Renault D,Mehrabianova A,et al.Insect cold tolerance and rapair of chill-injury at fluctuating thermal regimes:role of ion homeostasis[J].Comparative Biochemistry and Physiology,2007,147 (1):231-238.
Lin S,Hodson AC,Richards AG.An analysis of the threshold temperatures for the development of Oncopeltus and Tribolium eggs[J].Physiological Zoology,1954,27 (4):287-311.
Liu SS,Meng XD.The change pattern of development rates under constant and variable temperature inMyzus Persicae and Lipaphis Erysimi[J].Acta Ecologica Sinica,1989,9 (2):182-190.[劉樹(shù)生,孟學(xué)多.桃蚜、蘿卜蚜發(fā)育速率在恒溫和變溫下的變化規(guī)律研究[J].生態(tài)學(xué)報(bào),1989,9 (2):182-190]
Madubunyi LC,Koehler CS.Effects of photoperiod and temperature on development in Hypera brunneipennis [J].Environmental Entomology,1974,3 (6):1017-1021.
Ma JF,Hu GW,Cheng JA.Ecological performances of three planthopper species at simulated fluctuating temperature [J].Entomological Journal of East China,1998,7 (2):85-90.[馬巨法,胡國(guó)文,程家安.三種稻飛虱在高溫變溫下的生態(tài)表現(xiàn)[J].華東昆蟲學(xué)報(bào),1998,7 (2):85-90]
Matteson JW,Decker GC.Development of the European corn borer at controlled constant and variable temperatures [J].Journal of Economic Entomology,1965,58 (2):344-349.
Menaker M,Gross G.Effects of fluctuating temperature on diapause induction in the pink bollworm[J].Journal of Insect Physiology,1965,11 (7):911-914.
Messenger PS.Effect of variable temperature environments on egg development of three species of fruit flies [J].Annals of the Entomological Society of America,1959,52 (2):191-204.
Messenger PS.The influence of rhythmically fluctuating temperature on the development and reproduction of the spotted alfalfa aphid,Therioaphis maculate[J].Journal of Economic Entomology,1964,57 (1):71-76.
Mironidis GK,Savopoulou-Soultani M.Development,survivorship and reproduction ofHelicoverpa armigera (Lepidoptera:Noctuidae)under constant and alternating temperatures [J].Environmental Entomology,2008,37 (1):16-28.
Pfadt RE,Lloyd JE,Sharafi G.Pupal development of cattle grubs at constant and alternating temperatures [J].Journal of Economic Entomology,1975,68 (3):325-328.
Philipp JS,Watson TF.Influence of temperature on population growth of the pink bollworm,Pectinophora gossypiella (Lepidoptera:Gelechiidae)[J].Annals of the Entomological Society of America,1971,64 (2):334-340.
Radmacher S,Strohm E.Effect of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis(Hymenoptera:Megachilidae)[J].Apidologie,2011,42:711-720.
Renault D,Nedved O,Hervant F,et al.The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera:Tenebrionidae)during exposure to low temperature[J].Physiological Entomology,2004,29 (2):139-145.
Rock GC.Thermal and thermoperiodic effects on larval and pupal development and survival in tufted apple bud moth (Lepidoptera:Tortricidae)[J].Environmental Entomology,1985,14 (5):637-640.
Siddiqui WH,Barlow CA.Population growth of Drosophila melanogatser(Diptera:Drosophilidae)at constant and alternating temperatures[J].Annals of the Entomology Society of America,1972,65 (5):993-1001.
Siddiqui WH,Barlow CA.Population growth of Anagasta kuehniella(Lepidoptera:Pyralidae)at constant and alternating temperatures[J].Annals of the Entomology Society of America,1973,66:579-585.
Song K,Zheng SH,Zhang L.Effect ofselection and fluctuate temperature exercise on the quality of Trichogramma [J].Acta Agriculturae Boreali Sinica,2003,18:112-115.[宋凱,鄭書宏,鄭禮.篩選與變溫鍛煉對(duì)赤眼蜂蜂種質(zhì)量的影響[J].華北農(nóng)學(xué)報(bào),2003,18:112-115]
Strong FE,Sheldahl JA.The influence of temperature on longevity and fecundity in the bug Lygus hesperus (Hemiptera:Miridae)[J].Annals of the Entomology Society of America,1970,63 (6):1509-1515.
Sweeney BW.Bioenergetic and developmental response of a mayfly to thermal variation [J].Limnology and Oceanography,1978,23(3):461-477.
Tang C,Peng ZQ,Jin QA,et al.Effects of variable temperature on development of Asecodes hispinarum (Hymenoptera:Eulophidae)[J].Acta Phytophylacica Sinica,2007,34 (1):1-4.[唐超,彭正強(qiáng),金啟安,等.變溫對(duì)椰甲截脈姬小蜂生長(zhǎng)發(fā)育的影響[J].植物保護(hù)學(xué)報(bào),2007,34 (1):1-4]
Tang WY,Zhang Y,Zheng FQ,et al.Effects of fluctuating thermal regimes on the survival of cold-exposed parasitoid wasps Aphidius gifuensis Ashmead [J].Scientia Agricultura Sinica,2011,44(3):493-499.[唐文穎,張燕,鄭方強(qiáng),等.變溫對(duì)煙蚜繭蜂低溫貯藏存活特性的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2011,44 (3):493-499]
Taylor PS,Shields EJ.Development of the armyworm (Lepidoptera:Noctuidae)under fluctuating daily temperature regimes [J].Environmental Entomology,1990,19 (5):1422-1431.
Torres JB,Zanuncio JC,De Oliveira HN.Nymphal development and adult reproduction of the stinkbug predator Podisus nigrispinus(Het.,Pentatomidae)under fluctuating temperatures[J].Journal of Applied Entomolgy,1998,122 (1-5):509-514.
Wu KJ,Gong PY,Ruan YM.Estimating developmental rates of Helicoverpa armigera (Leipidoptera:Noctuidae)pupae at constant and alternating temperatures by nonlibear models [J].Acta Entanologica Sinica,2009,52 (6):640-650.[吳坤君,龔佩瑜,阮永明,.用非線性模型估測(cè)恒溫和變溫下棉鈴蟲蛹的發(fā)育率[J].昆蟲學(xué)報(bào),2009,52 (6):640-650]
Wu XJ,Liu SS,Zheng Z.The influence of variable temperature upon rate of development in two insects [J].Entomological Knowledge,1994,31 (4):237-240.[吳曉晶,劉樹(shù)生,鄭中良.變溫對(duì)兩者昆蟲發(fā)育速率的影響[J].昆蟲知識(shí),1994,31 (4):237-240]
Zheng JY,Yin YH,Li BY.A new scheme for climate regionalization in China[J].Acta Geographica Sinica,2010,65 (1):3-12.[鄭景云,尹云鶴,李炳元.中國(guó)氣候區(qū)劃新方案[J].地理學(xué)報(bào),2010,65 (1):3-12]
Zhu DF,Zhang YH.Longer-term storage of Trichogramma spp.developed under fluctuating temperatures & photoperiod [J].Natural Enemies of Insects,1987,9 (2):111-114.[朱滌芳,張?jiān)氯A.變溫培育能使赤眼蜂耐冷藏[J].昆蟲天敵,1987,9 (2):111-114]