楊 波,田 露,王蘭蘭
(沈陽師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,遼寧沈陽110034)
脫落酸(Abscisic acid,ABA)是一種重要的植物激素。當(dāng)受到生物和非生物脅迫時(shí),植物體內(nèi)會(huì)產(chǎn)生一系列復(fù)雜的防御機(jī)制[1]。ABA在植物的生長過程中起重要的作用,例如抑制種子發(fā)芽和側(cè)根生長,提高植物對(duì)病菌入侵和環(huán)境脅迫的耐受程度[2-4]。ABA在植物的整個(gè)生長發(fā)育過程中是一個(gè)“抗逆誘導(dǎo)因子”,對(duì)氣孔運(yùn)動(dòng)、水分調(diào)節(jié)、光合作用、衰老及對(duì)逆境適應(yīng)等生理過程都有明顯的調(diào)控作用。內(nèi)源ABA水平的提高和外源ABA的處理都能明顯增加植物對(duì)環(huán)境脅迫的抗性[5]。
氣孔本質(zhì)上是氣孔復(fù)合體的簡稱,通常是由一對(duì)啞鈴形或腎形的保衛(wèi)細(xì)胞以及它們之間的孔隙構(gòu)成[6]。大部分植物的氣孔位于葉片表面。氣孔通過控制植物與外界的水分和氣體交換來適應(yīng)復(fù)雜多變的環(huán)境。氣孔雖然很小,但是它對(duì)于植物水分利用、物質(zhì)代謝、營養(yǎng)吸收等以及整個(gè)生態(tài)系統(tǒng)的調(diào)節(jié)作用不可小覷[7]。氣孔是依據(jù)光合作用同化的CO2量和蒸騰失水量來調(diào)控氣孔的開閉。氣孔運(yùn)動(dòng)的方式看似簡單,但蘊(yùn)涵著十分復(fù)雜的生理過程,涉及保衛(wèi)細(xì)胞對(duì)內(nèi)外環(huán)境的感應(yīng)、信號(hào)的轉(zhuǎn)導(dǎo)、離子的跨膜運(yùn)輸?shù)纫幌盗羞^程??梢哉f,植物各種重要的生理生化活動(dòng)都與氣孔運(yùn)動(dòng)有著密切的關(guān)系[8]。
ABA在調(diào)節(jié)氣孔開閉、減少水分散失方面起重要作用[9-14]。干旱脅迫、鹽堿脅迫、溫度脅迫等非生物脅迫增加了植物體內(nèi)的ABA生物合成,也擴(kuò)大了ABA在植物體內(nèi)的分布范圍[15]。保衛(wèi)細(xì)胞膨壓增加吸水膨脹和膨壓降低失水收縮是導(dǎo)致氣孔運(yùn)動(dòng)的直接原因。如果植物通過氣孔失去的水量大于從根部攝取的水量,那么植物組織就會(huì)遭到破壞,導(dǎo)致細(xì)胞死亡[1]。通過對(duì)保衛(wèi)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑的研究表明,ABA能直接導(dǎo)致保衛(wèi)細(xì)胞發(fā)生形態(tài)學(xué)彎曲,致使氣孔關(guān)閉[16],阻止水分散失。提高植物抗旱能力是氣孔關(guān)閉的首要作用。在逆境脅迫下,ABA在植物體內(nèi)的含量迅速增加,并且與受體結(jié)合,通過跨膜運(yùn)輸,經(jīng)下游信號(hào)第二信使Ca2+、H2O2、NO等進(jìn)行傳遞并且放大,控制氣孔運(yùn)動(dòng)。
植物氣孔運(yùn)動(dòng)受自身遺傳和外界環(huán)境因素的影響。水分、溫度、光照、CO2濃度等環(huán)境因素對(duì)氣孔運(yùn)動(dòng)有重要影響。植物將感知的外界環(huán)境信號(hào)轉(zhuǎn)變?yōu)閮?nèi)部信號(hào),從而控制氣孔的張開與關(guān)閉。
1.1 Ca2+對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié) 研究證明,Ca2+在保衛(wèi)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過程中發(fā)揮著不容小視的作用。ABA能夠迅速提高胞液中游離鈣離子的濃度[17],從而抑制氣孔張開。ABA誘導(dǎo)氣孔關(guān)閉可能存在2種不同的信號(hào)途徑:鈣離子依賴型誘導(dǎo)和非鈣離子依賴型誘導(dǎo)[18],其中依賴于Ca2+的信號(hào)轉(zhuǎn)導(dǎo)過程是主要類型。依賴于Ca2+信號(hào)途徑是指ABA與保衛(wèi)細(xì)胞受體結(jié)合后,細(xì)胞質(zhì)膜上的Ca2+通道被H2O2激活,由H2O2激活的Ca2+通道引起Ca2+內(nèi)流及完整的保衛(wèi)細(xì)胞中胞質(zhì)自由鈣離子濃度升高[19],因而引發(fā)一系列反應(yīng),最終導(dǎo)致氣孔關(guān)閉。在ABA誘導(dǎo)的玉米保衛(wèi)細(xì)胞氣孔關(guān)閉的信號(hào)轉(zhuǎn)導(dǎo)過程中,鈣離子扮演著重要的角色[20]。絕大部分的鈣以結(jié)合態(tài)的形式存在于細(xì)胞內(nèi),貯存在葉粒體、線粒體、內(nèi)質(zhì)網(wǎng)、液泡等部位。它們都是細(xì)胞內(nèi)的“鈣庫”。當(dāng)細(xì)胞受到外界環(huán)境刺激時(shí),從質(zhì)外體經(jīng)質(zhì)膜或胞內(nèi)“鈣庫”向胞液運(yùn)輸?shù)腃a2+量增加,胞質(zhì)中Ca2+濃度提高后,通過激活Ca2+調(diào)節(jié)的靶酶,Ca2+依賴的蛋白激酶(pKCa2+或CDPK)或蛋白磷酸酶,或與Ca2+受體蛋白結(jié)合,再通過激酶將Ca2+濃度變化中所蘊(yùn)含的外部信息表達(dá)為生理生化過程,完成信息傳遞之后,Ca2+通過細(xì)胞中濃度調(diào)節(jié)又回落到靜息態(tài)水平,此時(shí)Ca2+與受體蛋白分離[21]。這樣通過胞質(zhì)內(nèi)Ca2+的濃度變化,可以把細(xì)胞外的信息傳遞到細(xì)胞內(nèi),調(diào)節(jié)相應(yīng)的生理活動(dòng)[22]。隨著膜片鉗技術(shù)的廣泛應(yīng)用與改進(jìn),一些學(xué)者已檢測(cè)到植物細(xì)胞質(zhì)膜內(nèi)Ca2+通道活性的改變。Hamilton等[23]在大豆保衛(wèi)細(xì)胞質(zhì)膜上檢測(cè)到通透Ca2+的單通道電流,得出ABA可增加Ca2+電流,而胞質(zhì)自由鈣離子濃度則抑制Ca2+電流。此外,胞內(nèi)Ca2+濃度增加對(duì)電壓的變化敏感,說明保衛(wèi)細(xì)胞質(zhì)膜上可能存在一個(gè)受細(xì)胞膜超級(jí)化和ABA調(diào)控的內(nèi)流Ca2+通道。ABI1和ABI2是一類Ca2+調(diào)節(jié)的磷酸酶,通過磷酸化反應(yīng)把ABA連接到Ca2+之間的信號(hào)傳遞。ABI1和ABI2抑制ABA對(duì)Ca2+產(chǎn)生影響,且具有反饋負(fù)調(diào)控作用[24]。環(huán)腺苷二磷酸核糖(Cyclic adenosine diphosphate ribose,cADPR)也參與 ABA 調(diào)控的 Ca2+運(yùn)輸[25]。在不依賴Ca2+的途徑中,ABA可引起保衛(wèi)細(xì)胞內(nèi)H2O2的積累,使胞質(zhì)堿化,有效地抑制質(zhì)膜K+內(nèi)向通道,活化K+外向通道,導(dǎo)致保衛(wèi)細(xì)胞K+濃度降低,細(xì)胞膨壓減小,氣孔關(guān)閉[26-27]。ABA誘導(dǎo)的氣孔關(guān)閉信號(hào)轉(zhuǎn)導(dǎo)途徑無論是否依賴Ca2+,都需要作用于離子通道,調(diào)節(jié)胞內(nèi)離子濃度以控制氣孔開閉[28]。
1.2 H2O2對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié) H2O2是活性氧(Reactive oxygen species,ROS)的一種,是植物中重要的第二信使之一,也是保衛(wèi)細(xì)胞響應(yīng)ABA的下游物質(zhì)之一[29]。H2O2的來源有很多,早期的研究主要集中在煙酰胺腺嘌呤二核苷酸磷酸氧化酶(Nicotinamide adenine dinucleotide phosphate oxidase,NOX)上[23]。NOX催化氧氣和煙酰胺腺嘌呤二核苷酸磷酸(Nicotinamide adenine dinucleotide phosphate,NADPH)生成超氧陰離子自由基,超氧陰離子自由基經(jīng)歧化反應(yīng)后形成的H2O2通過某種通道進(jìn)入胞質(zhì)內(nèi)[7]。NADPH是NOX介導(dǎo)產(chǎn)生 H2O2的重要底物[30]。Zhang 等[26,31]在擬南芥和蠶豆表皮外源ABA處理的試驗(yàn)中,首次證明了ABA可以誘導(dǎo)氣孔保衛(wèi)細(xì)胞中合成H2O2。NADPH氧化酶是調(diào)節(jié)H2O2產(chǎn)生的關(guān)鍵酶。ABA通過激活絲氨酸/蘇氨酸蛋白激酶OST1誘導(dǎo)H2O2的合成,擬南芥AtOST1基因突變體經(jīng)ABA的處理后不產(chǎn)生H2O2且氣孔不關(guān)閉,但是外源H2O2能夠誘導(dǎo)突變體的氣孔關(guān)閉[32]。Bright等[33]研究發(fā)現(xiàn),在擬南芥中 ABA 誘導(dǎo)的氣孔關(guān)閉依賴于H2O2的合成。韓燕等[34]研究表明,滲透脅迫及外源ABA處理既能促進(jìn)保衛(wèi)細(xì)胞內(nèi)源H2O2的形成,又能誘導(dǎo)氣孔關(guān)閉。安國勇等[35]證明,不同濃度的H2O2可抑制蠶豆葉片氣孔張開,10 mmol/L H2O2最有效,10 μmol/L仍使氣孔關(guān)閉,其機(jī)制是H2O2抑制保衛(wèi)細(xì)胞質(zhì)膜內(nèi)向K+通道,激活外向K+通道,使K+外流引起保衛(wèi)細(xì)胞滲透壓的降低,導(dǎo)致氣孔關(guān)閉。
1.3 NO對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié) 信號(hào)分子NO在植物發(fā)育、生長、衰老、細(xì)胞程序性死亡、抗病及對(duì)逆境脅迫等不同形式的應(yīng)答中有很大的作用[36]。NO參與ABA誘導(dǎo)植物氣孔關(guān)閉的過程。NO是植物體內(nèi)普遍存在的一種內(nèi)源物質(zhì),在細(xì)胞內(nèi)和細(xì)胞間的信息傳遞方面起重要作用[37]。一些學(xué)者的研究結(jié)果證實(shí),ABA可誘導(dǎo)保衛(wèi)細(xì)胞中NO含量的增加。蠶豆、豌豆、擬南芥的保衛(wèi)細(xì)胞和其他表皮細(xì)胞中的NO在ABA誘導(dǎo)下迅速合成[33-38],且NO的生物合成是ABA誘導(dǎo)氣孔關(guān)閉所必需的。NO可能通過激活質(zhì)膜上的Cl-通道、抑制質(zhì)膜K+內(nèi)流通道和調(diào)節(jié)保衛(wèi)細(xì)胞絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)的活性參與ABA的氣孔運(yùn)動(dòng)調(diào)節(jié)機(jī)制[39-42]。外源NO和ABA誘導(dǎo)楊樹離體葉片氣孔關(guān)閉時(shí)具有劑量效應(yīng)。NO能加強(qiáng)ABA誘導(dǎo)氣孔關(guān)閉的作用。NO清除劑(c-PTIO)能極大程度地減弱NO和ABA 對(duì)氣孔關(guān)閉的誘導(dǎo)作用[43]。Li等[44]試驗(yàn)表明,NO 也可以抑制油菜等植物葉片氣孔張開,使氣孔開度減小。Neill等[39]認(rèn)為,ABA和NO誘導(dǎo)的氣孔關(guān)閉需要cADPR和環(huán)磷酸鳥苷(Cyclic guanosine monophosphate,cGMP)的合成。Desikan等[42]研究表明,NO以依賴cADPR的方式促使胞內(nèi)鈣庫釋放Ca2+,因而實(shí)現(xiàn)氣孔關(guān)閉。
脫落酸作為作物體內(nèi)的一種重要激素,在提高作物抗逆性的同時(shí)還能夠提高作物的產(chǎn)量和品質(zhì)等。利用ABA調(diào)節(jié)作物的抗逆性將是農(nóng)業(yè)抗災(zāi)、減災(zāi)研究的重要方向之一[45]。經(jīng)過多年研究,各國學(xué)者對(duì)ABA這個(gè)重要的植物激素已有較深入的了解。植物在進(jìn)化過程中形成了一種比較完善的適應(yīng)不良環(huán)境的機(jī)制。外界逆境條件能觸發(fā)不同的信號(hào)轉(zhuǎn)導(dǎo)途徑。植物傳遞ABA各信號(hào)途徑之間是怎樣相互協(xié)調(diào),從而使細(xì)胞快速產(chǎn)生生理反應(yīng),仍亟待解決。另外,關(guān)于ABA誘導(dǎo)氣孔運(yùn)動(dòng)的研究大多數(shù)通過外源ABA。這并不能非常確切地模擬內(nèi)源ABA的作用,與內(nèi)源ABA相比存在一定的差異。植物細(xì)胞生命活動(dòng)的重要過程之一是細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo),但是對(duì)ABA信號(hào)轉(zhuǎn)導(dǎo)的具體作用機(jī)制等尚不十分明確。
[1]LIM C W,BAEK W,LIM S,et al.ABA signal transduction from ABA receptors to ion channels[J].Genes & Genomics,2012,34(4):345-353.
[2]TON J,F(xiàn)LORS V,MAUCH-MANI B.The multifaceted role of ABA in disease resistance[J].Trends in Plant Science,2009,14(6):310-317.
[3] ROBERT-SEILANIANTZ A,NAVARRO L,BARI R,et al.Pathological hormone imbalances[J].Current Opinion in Plant Biology,2007,10(4):372-379.
[4]FINKELSTEIN R R,GAMPALA S S,ROCK C D.Abscisic acid signaling in seeds and seedlings[J].Plant Cell,2002,14(Sl):15-45.
[5]王福森,李晶,溫寶陽,等.黑龍江省楊樹栽培歷史、現(xiàn)狀及發(fā)展趨勢(shì)[J].防護(hù)林科技,2003,54(1):54-56.
[6]成雪峰.植物氣孔及其運(yùn)動(dòng)機(jī)理概述[J].生物學(xué)教學(xué),2013,38(12):7-8.
[7]高春娟,夏曉劍,師愷,等.植物氣孔對(duì)全球環(huán)境變化的響應(yīng)及其調(diào)控防御機(jī)制[J].植物生理學(xué)報(bào),2012,48(1):19-28.
[8]楊金華,杜克久.植物葉片氣孔運(yùn)動(dòng)機(jī)制研究進(jìn)展[J].河北林果研究,2011,26(1):47-52.
[9]WILKINSON S,DAVIES W J.Drought,ozone,ABA and ethylene:new insights from cell to plant to community[J].Plant Cell and Environment,2010,33(4):510-525.
[10]ASSMANN S M.Open stomatal opens the door to ABA signaling in Arabidopsis guard cells[J].Trends in Plant Science,2003,8(4):151-153.
[11]HUBBARD K E,NISHIMURA N,HITOMI K,et al.Earlyabscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions[J].Genes & Development,2010,24:1695-1708.
[12]POPKO J,HANSCH R,MENDEL R R,et al.The role of abscisic acid and auxin in the response of poplar to abiotic stress[J].Plant Biology,2010,12(2):242-258.
[13]CUTLER S R,RODRIGUEZ P L,F(xiàn)INKELSTEIN R R,et al.Abscisic acid:emergence of a coresignaling network [J].Annual Review of Plant Biological,2010,61:651-679.
[14]WASILEWSKA A,VLAD F,SIRICHANDRA C,et al.An update on abscisic acid signaling in plants and more [J].Molecular Plant,2008,1(2):198-217.
[15]WILKINSON S,DAVIES W J.ABA-based chemical signalling:the co-ordination of responses tostress in plants[J].Plant Cell and Environment,2002,25(2):195-210.
[16]LIANG J S,ZHANG J H,WONG M H.How do roots control xylem sap ABA concentration in response to soil drying?[J].Plant and Cell Physiology,1997,38(1):10-16.
[17]MCAINSH M R,BROWNLEE C,HETHERINGTON A M.Abscisic acidinduced elevation of guard cell cytosolic Ca2+precedes stomatal closure[J].Nature,1990,343:186-188.
[18]GILROY S,READ N D,TREWAVAS A J.Elevation of cytoplasmic Ca2+by caged calcium or caged inositol triphosphate initiates stomatal closure[J].Nature,1990,346:769-771.
[19]PEI Z M,MURATA Y,BENNING G,et al.Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J].Nature,2000,406:731-734.
[20]劉子會(huì),張紅梅,郭秀林.ABA誘導(dǎo)的玉米保衛(wèi)細(xì)胞胞質(zhì)鈣離子濃度的變化[J].中國農(nóng)業(yè)科學(xué),2008,41(10):3357-3362.
[21]呂東.ATHK1參與ABA誘導(dǎo)氣孔關(guān)閉的信號(hào)轉(zhuǎn)導(dǎo)過程[D].開封:河南大學(xué),2012:1-8.
[22]SCHROEDER J I,KWAK J M,ALLEN G J.Guard cell abscisic acid signaling and engineering drought hardiness in plants[J].Nature,2001,410:327-330.
[23]HAMILTON D W A,HILLS A,KOHLER B.Ca2+channels at the plasma membrane of stomatal guard are activated by hyperpolarization and abscisic acid[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97:4967-4972.
[24]MERLOT S,GOSTI F,GUERRIER D,et al.The ABI1 and ABI2 protein phosphatases 2C act in a negative feed-back regulatory loop of the abscisic acid signaling pathway[J].Plant Cell,2001,25:295-303.
[25]LECKIA C P,MCAINSH M R,ALLEN G J,et al.Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95:15837-15842.
[26]ZHANG X,MIAO Y C,AN G Y,et al.K+channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells[J].Cell Research,2001,11(3):195-202.
[27]BLATT M R.Reassessing roles for Ca2+in guard cell singalling[J].Journal of Experimental Botany,1999,50:989-999.
[28]熊俊蘭,譚瑞,孔海燕,等.植物ABA-H2O2介導(dǎo)的氣孔關(guān)閉[J].植物生理學(xué)報(bào),2012,48(8):739-746.
[29]PITZSCHKE A,HIRT H.Mitogen-activated protein kinases and reactive oxygen species signaling in plants[J].Plant Physiological,2006,141(2):351-356.
[30]MURATA Y,PEI Z M,MORI I C,et al.Abscisic acid activation of plasma membrane Ca2+channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C Mutants[J].Plant Cell,2001,13(11):2513-2523.
[31]MIAO Y C,SONG C P,DONG F C,et al.ABA-induced hydrogen peroxide generation in guard cells ofVicia faba[J].Acta Phytophysiologica Sinica,2000,26(1):53-58.
[32]MUSTILLI A C,MERLOT S,VAVASSEUR A,et al.ArabidopsisOST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts up stream of reactive oxygen species production [J].Plant Cell,2002,14(12):3089-3099.
[33]BRIGHT J,DESIKAN R,HANCOCK J T,et al.ABA-induced NO generation and stomatal closure inArabidopsisare dependent on H2O2synthesis[J].The Plant Journal,2006,45(1):113-122.
[34]韓燕,佘小平.NO,H2O2介導(dǎo)根系滲透脅迫和脫落酸誘導(dǎo)的氣孔關(guān)閉[J].陜西師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(4):83-87.
[35]安國勇,宋純鵬,張驍,等.過氧化氫對(duì)蠶豆氣孔運(yùn)動(dòng)和質(zhì)膜K+通道的影響[J].植物生理學(xué)報(bào),2000,26(5):458-463.
[36]LAMATTINA L,GARCIA-MATTA C,GRAZIANO M,et al.Nitric oxide:the versatility of an extensive signal molecule[J].Annual Review of Plant Biological,2003,54:109-136.
[37]錢寶云,李霞.植物氣孔運(yùn)動(dòng)調(diào)節(jié)的新進(jìn)展[J].植物研究,2013,33(1):120-128.
[38]呂東,張驍,江靜.NO可能作為H2O2的下游信號(hào)介導(dǎo)ABA誘導(dǎo)的蠶豆氣孔關(guān)閉[J].植物生理與分子生物學(xué)學(xué)報(bào),2005,31(1):62-70.
[39]NEILL S J,DESIKAN R,CLARKE A.Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells[J].Plant Physiology,2002,128:13-16.
[40]NEILL S J,DESIKAN R,CLARKE A,et al.Hydrogen peroxide and nitric oxide as signalling molecules in plants[J].Journal of Experimental Botany,2002,53(327):1237-1247.
[41]GARCIA-MATA C,GAY R,SOKOLVSKI S,et al.Nitric oxide regulate K+and Cl-channels in guard cells through a subset of abscisic scid-evoked signaling pathways[J].Proceedings of the National Academy of Sciences,2003,100:1116-1121.
[42]DESIKAN R,CHEUNG M K,BRIGHT J,et al.ABA,hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J].Journal of Experimental Botany,2004,55(395):205-212.
[43]王淼,李秋榮,付士磊,等.一氧化氮是脫落酸誘導(dǎo)楊樹葉片氣孔關(guān)閉的信號(hào)分子[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(10):1776-1780.
[44]LI Y,YIN H,WANG Q,et al.Oligochitosan inducedBrassica napusL.production of NO and H2O2and their physiological function [J].Carbohydrate Polymers,2009,75(4):612-617.
[45]郝格格,孫忠富,張錄強(qiáng),等.脫落酸在植物逆境脅迫研究中的進(jìn)展[J].中國農(nóng)學(xué)通報(bào),2009,25(18):212-215.