柳雅朋, 陳滋利, 王雅娟
(西南交通大學數學學院, 四川成都 610031)
Banach格上序弱緊算子的序Dunford-Pettis性質
柳雅朋, 陳滋利, 王雅娟
(西南交通大學數學學院, 四川成都 610031)
根據序Dunford–Pettis算子和序弱緊算子的有關性質, 主要研究Banach格中任意的序弱緊算子是序Dunford–Pettis算子的空間必要條件. 得到了一些相關的結果.
序Dunford-Pettis算子; 序弱緊算子; Dunford-Pettis算子; Banach格
設E和F是Banach格,T:E→F 是有界線性算子, 若T將E中弱緊集映為F中的范數相對緊集, 則T是Dunford-Pettis算子; 若T映E中序區(qū)間中不交序列為F中范收斂于0的序列, 那么T就是序弱緊算子. 文獻[5]、[6]、[7]、[11]已經深入研究了上述兩個算子基本性質和等價刻畫, 以及與別的算子之間的關系. 同時, 有關它們的延伸和推廣是現在該領域研究的熱點. J. A. Sanchz在文獻[12]首次提出了幾乎Dunford-Pettis算子, 而弱幾乎Dunford- Pettis算子在文獻[13]中被K. Bouras 和M. Moussa引入.
在文獻[16] 中作者引入了“Banach格上序Dunford-Pettis算子”, 并建立了其基本性質和一些刻畫. 在文獻[17]中主要研究了序Dunford-Pettis算子與Dunford-Pettis算子、弱緊算子以及與AM-緊算子的關系. 本文將研究序弱緊和序Dunford-Pettis這兩類算子等價時, 空間具有的性質.
那些沒有被注釋的有關正算子和Banach格中的定義、符號和術語詳見文獻 [1]、[2]、[4].
推論 2.6設E,F為Banach格, 任序弱緊算子T:E→F為序Dunford-Pettis算子, 則至少以下結論之一成立
1)E的格運算為序有界弱序列連續(xù);
2)F為KB空間.
定理 2.7設E、F為Banach格,T:E→F, 則有以下結論:
1)若E有序連續(xù)范數且離散, 則算子T :E→F是序Dunford-Pettis算子
2)若F離散并且有序連續(xù)范數, 則任序有界的算子T:E→F都是序Dunford-Pettis算子
3)若F=E則下列等價:
i)任算子T:E→E都為序Dunford-Pettis算子;
iii)E有序連續(xù)范數且離散.
證明1)設W ?E 序有界弱緊集, 根據文[3]中定理1知W是緊的, 則T(W)是緊的. 故T是序Dunford-Pettis算子.
(1. 取{xn}?E 序有界弱零序列, 則{T(xn)}為序有界弱緊集, 根據文[3]中定理1知{T(xn)}是緊集, 則‖T(xn)‖→0. 即T是序Dunford-Pettis算子.
(2. i)?ii)顯然.
iii)?i)由1)可得.
定理 2.8設E為有序連續(xù)范數Banach格,則以下敘述等價:
1)T:E→c0AM緊算子;
2)T:E→c0序Dunford-Pettis算子;
3)E有弱序列格運算;
4)E是離散的.
證明1)?2)取W為E中序有界弱緊集,T是AM緊算子 則T(W)為F中的全有界集, 故T是序Dunford-Pettis算子
2)?3)由推論2.5可知
3)?4)易知
4)?1)T:E→c0,E是離散的且有序連續(xù)范數, 根據文[3]中定理1知[-x,x]為全有界集. 則T[-x,x]為相對緊集, 故T為AM緊算子.
[1] C D ALIPRANTIS, O BURKINSHAW. Positive Operators[M]. New York: Academic Press, 1985.
[2] P MEYER-NIEBERG. Banach Lattices[M]. Berlin: Universitext, Springer-Verlag, 1991.
[3] A W WICKSTEAD, Converses for the Dodds-Fremlin and Kalton-Saab theorems[J] Math Proc Camb Phil Soc, 1996, 120: 175- 179.
[4] A C ZAANEN. Riesz spaces II[M]. North Holland Publishing Company, 1983.
[5] B AQZZOUZ, J HMICHANE. The Duality Problem for the Class of order Weakly Compact Operators[J]. Glasgow Math, 2009, 51: 101-108.
[6] B AQZZOUZ, J HMICHANE. Some New Results on Order Weakly Operators[J]. Bohemica Math, 2009, 134: 395-367.
[7] B AQZZOUZ, R NOUIRA, L ZRAOILA. On the Duality Problem of Positive Dunford-Pettis Operators on Banach lattices[J]. Rendiconti del Circolo Matematico di Palemo, 2008, 57: 287-294.
[8] B AQZZOUZ, J HMICHANE. Complement on order weakly compact operators[J]. Mathods of Functional Analysis and Topology, 2011, 17: 112-117
[9] B AQZZOUZ, A ELBOUR, ANTHONY W WICKSTEAD. Positive almost Dunford-Pettis operators and their duality[J]. Positivity,(15): 185-197.
[10] B AQZZOU, R NOUIRA, L ZRAOILA. Semi-compactness of positive Dunford-Pettis operators on Banach Lattices[J]. Amer Math Soc, 2008, 136: 1997-2006.
[11] B AQZZOU, L ZRAOILA. AM-compactness of positive Dunford-Pettis operators on Banach lattice[J]. Rendiconti del circolo Matematico di palermo, 2007, 41:305-316
[12] J A SANCHZ. Operators on Banach lattices (Spanish)[D]. Madrid: Completeness University, 1985.
[13] K BOURAS, M MOUSSA. Banach lattices with weak Dunford-Pettis property[J]. International Journal of Information and Mathematical Sciences, 2010(6): 203-207.
[14] J A DIESTEL. Survey of results related to the Dunford-Pettis property[J]. Contemporary Math, 1980(2): 15-60.
[15] B AQZZOUZ, SALAELJADIDA A. Elbour,Some Charaterizations of Order Weakly Operators[J]. Bohemica, Math, 2011, 136(1): 105-112.
[16] 孫文濤. Banach格上序Dunford-Pettis算子[D]. 成都: 西南交通大學, 2011.
[17] 黃懷香, 孫文濤, 陳滋利. Banach格上序Dunford-Pettis算子的相關性質[J]. 西南民族大學學報: 自然科學版, 2013, 39: 47-50.
The order Dunford–Pettis property of order weak compact operators on Banach lattices
LIU Ya-peng, CHEN Zi-li, WANG Ya-juan
(School of Mathematics, Southwest Jiaotong University, Chengdu 610031, P.R.C.)
Based on the related properties of order weak compact operators and order Dunford–Pettis operators, a research is conducted on some necessary properties of the space on which each order weak compact operator is order Dunford-Pettis operators. Some related results are also obtained.
order Dunford-Pettis operator; order weak compact operator; Dunford-Pettis operator; Banach lattice
O177.2
A
1003-4271(2014)02-0244-05
10.3969/j.issn.1003-4271.2014.02.15
2013-11-13
柳雅朋(1988-), 女, 河南許昌人, 碩士研究生, 研究方向:泛函分析; 陳滋利(1961-), 男, 教授, 博士生導師.