張旗 金惟俊 李承東 焦守濤
1. 中國(guó)科學(xué)院地質(zhì)與地球物理研究所 北京 1000292. 中國(guó)地質(zhì)調(diào)查局天津地質(zhì)礦產(chǎn)研究所,天津 3001701.
“巖漿熱場(chǎng)”指的是由巖漿引發(fā)的瞬間熱場(chǎng),這不是一個(gè)新概念。巖漿熱場(chǎng)實(shí)際上指的就是巖漿對(duì)圍巖的熱效應(yīng),這個(gè)問(wèn)題早在20世紀(jì)初就引起了國(guó)外學(xué)者的廣泛重視。尤其是20世紀(jì)60年代Jaeger的成果發(fā)表以來(lái)(Jaeger, 1961, 1964),巖漿的熱效應(yīng)問(wèn)題已成為地學(xué)界重要的科學(xué)問(wèn)題。國(guó)外很早就開始嘗試用數(shù)學(xué)計(jì)算對(duì)侵入體周圍的熱傳導(dǎo)和熱液活動(dòng)過(guò)程進(jìn)行模擬計(jì)算(Carslaw and Jaeger, 1959; Feoktistov, 1972; Fedotov, 1976; Delaney, 1987; Duffield and Ruiz, 1992; Rubin, 1995; Webberetal., 1999; Gunsonetal., 2000; Ascencioetal., 2006; Eldursietal., 2009; Kol’tsov, 2010)。常識(shí)告訴我們,熾熱的巖漿侵位必定在周圍形成一個(gè)熱場(chǎng)(切列緬斯基,1977;羅文積和陳家清,1997)?!皫r漿熱場(chǎng)”的術(shù)語(yǔ)也很早就出現(xiàn)在國(guó)內(nèi)文獻(xiàn)中了(魏洲齡,1994;呂新彪等,1997;羅文積和陳家清,1997;高貴榮和張勉斌,1998;饒超,2007;邵飛,2007;金旭東等,2010),許多人還討論了現(xiàn)代和古代巖漿活動(dòng)與地?zé)釄?chǎng)的關(guān)系(周江羽等,1997;萬(wàn)志軍等,2005;楊興科等,2005;郭進(jìn)京和周安朝,2008;周安朝等,2010;朱傳慶等,2010a, b;趙慈平等,2012)。但是,把巖漿熱場(chǎng)作為一個(gè)科學(xué)概念加以闡述卻并不多見(jiàn)。其中,以羅文積和陳家清(1997)的研究令人刮目相看。他們?cè)缭?0世紀(jì)90年代就明確表述了對(duì)“巖漿熱場(chǎng)”的認(rèn)識(shí)。他們指出,花崗巖漿侵入圍巖必然要形成一個(gè)以巖漿熔體為中心的熱場(chǎng)?;◢弾r漿緩慢冷卻的時(shí)間可達(dá)數(shù)百萬(wàn)年,花崗巖漿的溫度大約在700~800℃以上,過(guò)熱的巖漿還可更高些(切列緬斯基,1977;Petfordetal., 2000; 羅文積和陳家清,1997;周安朝等,2010)。當(dāng)這些高溫融漿大規(guī)模侵入圍巖時(shí),它將有足夠的時(shí)間和熱容量使圍巖增溫形成熱場(chǎng),并引起圍巖熱力變質(zhì)。與侵入體直接接觸部分溫度較高,隨遠(yuǎn)離侵入體圍巖溫度逐漸降低,形成一個(gè)以巖漿熔體為中心的熱場(chǎng),并出現(xiàn)一個(gè)明顯的由內(nèi)向外遞降的溫度梯度。侵入體對(duì)圍巖的熱力影響有一個(gè)較大的范圍。巖漿熱場(chǎng)范圍的大小和形狀還與侵入體的溫度、成分、形態(tài)、大小、侵入深度及圍巖性質(zhì)有關(guān)(羅文積和陳家清,1997)。
眾所周知,中國(guó)東部中生代存在大規(guī)模巖漿活動(dòng)和大規(guī)模成礦作用(陳衍景等,2004;毛景文等,2005,2007),但是,為什么大規(guī)模巖漿活動(dòng)與大規(guī)模成礦作用有密切的關(guān)系?按照流行的見(jiàn)解這似乎不成為問(wèn)題,因?yàn)榱餍械睦碚撜J(rèn)為,巖漿與成礦在時(shí)間、空間和成因上有關(guān),熱液和成礦金屬皆來(lái)源于巖漿。但是,這種解釋存在幾個(gè)困難:(1)這種解釋的前提是花崗巖質(zhì)巖漿必須富水,而且能夠分異和演化,在巖漿固結(jié)以后溫度壓力降低能夠分出大量的流體,花崗巖體越大分出的流體越多。上述理論與花崗巖的實(shí)際不符。實(shí)際情況是:花崗巖絕大多數(shù)是在缺水條件下部分熔融的(Rutter and Wyllie, 1988; Thompsonetal., 1995; Harrisetal., 1995; 劉勇勝和高山,1998;張旗,2012),侵位的花崗巖是干的巖漿,沒(méi)有水分出,尤其越是大的花崗巖越?jīng)]有水被分出的現(xiàn)象(花崗巖邊部出現(xiàn)的是烘烤現(xiàn)象和接觸變質(zhì)作用),水僅出現(xiàn)在少數(shù)小巖體及其邊部。(2)野外存在巖漿活動(dòng)與成礦作用不匹配的現(xiàn)象,如膠東存在3期巖漿活動(dòng),而成礦只與后兩期巖漿活動(dòng)有關(guān),最早的一期無(wú)礦化。廣西存在加里東期、海西期、印支期和燕山期花崗巖,而鎢錫成礦主要與最后一期巖漿活動(dòng)有關(guān),雖然上述各期花崗巖的地球化學(xué)性質(zhì)接近(均為有利于鎢錫成礦的南嶺型花崗巖,張旗和李承東,2012)。(3)研究表明,在下地殼底部,流體的出現(xiàn)早于巖漿(張旗,2012),而大量的礦床實(shí)例卻告訴我們,成礦往往在成巖之后。
我們知道,流體是極其活潑的,流體從下地殼底部上升到地殼淺部的速度可能比巖漿快得多,但是,需要能夠保持一個(gè)高溫狀態(tài)。如果溫度很快下降了,流體可能迅速冷卻就無(wú)力繼續(xù)上升了。含礦熱液相當(dāng)于水,但不是水;水在0℃結(jié)冰,不同成分的含礦熱液大約在500~150℃范圍內(nèi)沉淀。因此,為了流體的上升,前提是需要在地殼內(nèi)存在一個(gè)高溫?zé)釄?chǎng),而且需要保持一個(gè)相當(dāng)長(zhǎng)的時(shí)間(如幾年、幾萬(wàn)年或幾個(gè)百萬(wàn)年),以使熱液有足夠的時(shí)間上升、對(duì)流、循環(huán)、萃取賦存于圍巖中成礦元素并最終在地殼淺部沉淀成礦。構(gòu)造、巖漿都有可能造就一個(gè)高溫?zé)釄?chǎng)。但是,相對(duì)而言,巖漿的侵入是形成高溫?zé)釄?chǎng)的最佳可能。因?yàn)閹r漿(尤其是酸性巖漿)上升的速度慢、降溫慢、向圍巖散熱范圍廣、持續(xù)時(shí)間長(zhǎng)。熱場(chǎng)持續(xù)的時(shí)間取決于巖漿冷卻的速度。一般來(lái)說(shuō),熱場(chǎng)存續(xù)的時(shí)間很短暫,或許只有幾年,幾萬(wàn)年或幾百萬(wàn)年,上述時(shí)間對(duì)于地質(zhì)演化來(lái)說(shuō)僅僅是一瞬間。因此,巖漿熱場(chǎng)屬于突發(fā)性熱事件產(chǎn)生的瞬間熱場(chǎng),是一個(gè)由巖漿引發(fā)的規(guī)模很小,時(shí)間很短的熱場(chǎng)。為了區(qū)別于“地?zé)釄?chǎng)(Geothermal field)”,本文稱其為“巖漿熱場(chǎng)(Magma-thermal field)”。
“巖漿熱場(chǎng)”的確立很主要的一個(gè)方面是依賴于對(duì)巖漿物理性質(zhì)和巖漿動(dòng)力學(xué)的了解。例如,巖漿是怎么形成的?怎么侵位的?上升和冷卻的速度是多少?向圍巖散發(fā)熱量有多少?最遠(yuǎn)距離多少?保持的時(shí)間多少?新疊加的熱場(chǎng)對(duì)圍巖有什么作用?如何使圍巖中的水進(jìn)一步被釋放出來(lái)?釋放出來(lái)的水是個(gè)什么狀態(tài)?在熱場(chǎng)中水是怎么循環(huán)對(duì)流的?對(duì)于成礦有什么作用?等等。由于我們對(duì)巖漿物理性質(zhì)和巖漿動(dòng)力學(xué)研究的長(zhǎng)期忽視,只有少數(shù)學(xué)者在這方面作了一些探索(馬昌前,1986; 馬昌前等, 1994;吳傳榮,1992;周珣若等,1993;周濤發(fā)等,1995;馮喬和湯錫元,1997;楊坤光和楊巍然,1997;張健和石耀霖,1997;王濤等,1999a, b;萬(wàn)天豐等,2000;馮佐海,2003;羅照華等,2007;章邦桐等,2007;李德東等,2011;Zhaoetal., 2003);而國(guó)外對(duì)這方面的研究比我們?cè)?0~100年,而且取得了重要的研究成果(Barner, 1979; Turcott and Schubert, 1982; McBirney and Murase, 1984; Sparksetal., 1984; Marsh, 1982; Castro, 1987; Paterson and Tobisch, 1992; Pitcher, 1987, 1993; Evansetal., 1994; Speeretal., 1994; Petfordetal., 1993, 2000; Kay and Kay, 1993; Weinberg and Podladchikov, 1994; Romanetal., 1997, Roman-Berdieletal., 1995; Ferréetal., 1995; Huttonetal., 1990)。例如,許多人對(duì)火成巖侵入自身的熱性質(zhì)和熱效應(yīng)進(jìn)行了大量的研究(Jaeger, 1961, 1964; Hall, 1971; Hildreth, 1981; Brandeis and Jaupart, 1986; Webberetal., 1999; Gerya and Burg, 2007);對(duì)不同形狀侵入體(包括巖墻、巖床、巖株、巖筒、巖蓋以及一些不規(guī)則的侵入體)的熱效應(yīng)進(jìn)行了二維、三維模擬(Jaeger, 1964; Simmons, 1967; Guerrero-Martínezetal., 2013);計(jì)算了瞬時(shí)侵入導(dǎo)致的熱影響的規(guī)模(Carslaw and Jaeger, 1959; Feoktistov, 1972; Fedotov, 1976; Delaney, 1987; Duffield and Ruiz, 1992);解釋了巖墻和巖床邊部缺少變質(zhì)暈的現(xiàn)象(Kontorovichetal., 1981; Delaney and Pollard, 1982; Raymond and Murchison, 1988; Thrasher, 1992);對(duì)圍繞侵入體的熱液過(guò)程、熱傳導(dǎo)、流體循環(huán)以及成礦作用進(jìn)行了研究(Rubin, 1995; Webberetal., 1999; Gunsonetal., 2000; Ascencioetal., 2006; Eldursietal., 2009; Kol’tsov, 2010);準(zhǔn)確評(píng)估了熱場(chǎng)對(duì)圍巖有機(jī)質(zhì)熱成熟度的影響(Galushkin, 1997)等。國(guó)內(nèi)對(duì)于這方面的研究起步很晚,至今也很少受到關(guān)注(馬昌前,1986; 馬昌前等,1994;吳傳榮,1992;周珣若等,1993;周濤發(fā)等,1995;馮喬和湯錫元,1997;楊坤光等,1997;張健和石耀霖,1997;王濤等,1999a, b;萬(wàn)天豐等,2000;馮佐海,2003;羅照華等,2007,2009,2011;章邦桐等,2007;李德東等,2011;Zhaoetal., 2003)。
本文不屬于綜述性或評(píng)論性文章,而是筆者研究花崗巖與成礦關(guān)系的一點(diǎn)體會(huì)、感想或猜想。因?yàn)?,巖漿熱場(chǎng)理論是建立在巖漿物理學(xué)、巖漿動(dòng)力學(xué)和流體動(dòng)力學(xué)基礎(chǔ)上的,它需要專門的知識(shí),而筆者于這些方面是門外漢。由于它可能對(duì)成礦有特殊的意義,筆者才關(guān)注它。本文只是拋磚引玉,希望能夠引起有關(guān)專家和有興趣同行的關(guān)注和批評(píng)。
據(jù)我們的初步認(rèn)識(shí),巖漿熱場(chǎng)可能具備如下幾個(gè)特征:
(1)它是由巖漿引起的,是巖漿侵位時(shí)帶來(lái)的熱導(dǎo)致的。羅文積和陳家清(1997)指出,花崗巖漿侵入圍巖必然要形成一個(gè)以巖漿熔體為中心的熱場(chǎng)?;◢弾r漿的溫度大約在700~800℃以上,過(guò)熱的巖漿還可更高些。當(dāng)這些高溫融漿大規(guī)模侵入圍巖時(shí),它將有足夠的時(shí)間和熱容量使圍巖增溫形成熱場(chǎng),并引起圍巖熱力變質(zhì)。與侵入體直接接觸部分溫度較高,隨遠(yuǎn)離侵入體圍巖溫度逐漸降低,形成一個(gè)以巖漿熔體為中心的熱場(chǎng),并出現(xiàn)一個(gè)明顯的由內(nèi)向外遞降的溫度梯度。侵入體對(duì)圍巖的熱力影響有一個(gè)較大的范圍。巖漿熱場(chǎng)范圍的大小和形狀還與侵入體的溫度、成分、形態(tài)、大小、侵入深度及圍巖性質(zhì)有關(guān)。一般認(rèn)為,地球內(nèi)熱有以下3種傳送方式:熱傳導(dǎo)、熱輻射和熱對(duì)流。熱傳導(dǎo)不是地球內(nèi)熱傳導(dǎo)的主要方式,因?yàn)閹r石是極不良的熱導(dǎo)體,熱導(dǎo)率很小。由于在近紅外和可見(jiàn)光區(qū)域內(nèi)硅酸鹽礦物不易發(fā)生輻射,故熱輻射也不可能是地球內(nèi)熱傳送的主要方式。于是,熱對(duì)流即成為地球內(nèi)熱傳導(dǎo)的主要方式(Royetal., 1972; Villas and Norton, 1977; Torcotte and Schubert, 1982; Chapman and Rybach, 1985; Best and Christiansen, 2001; 切列緬斯基,1977;馬東升,1998;萬(wàn)志軍等,2005;章邦桐等,2007;王滿等,2012;張旗等,2013)。
(2)它是瞬間發(fā)生的,只代表巖漿侵入及其冷卻過(guò)程中發(fā)生的事件,不包括巖漿冷卻固結(jié)后由于放射性元素蛻變產(chǎn)生的熱。由于巖漿本身攜帶的熱量不同,巖漿性質(zhì)的不同,巖漿冷卻時(shí)間的不同,這個(gè)瞬間可以短到幾千年,也可能短到幾個(gè)百萬(wàn)年。唐曉音等(2013)最近對(duì)瓊東南盆地長(zhǎng)昌凹陷烴源巖成熟度的研究表明,一個(gè)面積為300km2厚約10km的侵入體,對(duì)圍巖溫度場(chǎng)有顯著影響的時(shí)限不超過(guò)1Myr,對(duì)烴源巖有機(jī)質(zhì)成熟度影響的最大距離不超過(guò)2km。Petfordetal. (2000)認(rèn)為,巖漿上升侵位的時(shí)間可能不到0.1Myr。筆者認(rèn)為這個(gè)時(shí)間可能不夠,因?yàn)椋嵝詭r漿的黏性很高,而且?guī)r漿并不是統(tǒng)統(tǒng)沿?cái)嗔亚秩氲模S多巖體呈渾圓狀產(chǎn)出,如房山巖體、姑婆山巖體等,表明它們是底辟侵位的。因此,巖漿侵位及其冷卻時(shí)間在幾個(gè)百萬(wàn)年以內(nèi)是可以接受的。
(3)熱異常和等溫面大體是垂直分布的,就如一個(gè)鹽丘底辟造成的等溫面的分布一樣(圖1,引自切列緬斯基, 1977)。由于許多巖體的侵入,使熱場(chǎng)的形狀更加復(fù)雜一些而已。這一點(diǎn)明顯不同于大致呈水平分布的地?zé)釄?chǎng),這是由于巖漿的垂直上升決定的,如圖2所示。
圖1 鹽丘的地?zé)崞拭婊疑钧}丘,實(shí)線示等溫線Fig.1 Geothermal profile of salt domes
圖2 巖漿熱場(chǎng)示意圖圖中呈水平分布的為地?zé)釄?chǎng),巖漿熱場(chǎng)等溫線大體為垂直分布,切割地?zé)釄?chǎng).花崗巖來(lái)自下地殼底部部分熔融區(qū)Fig.2 Schematic diagram of magma-thermal field
(4)熱場(chǎng)的規(guī)模很小,通常只離巖體幾米或幾千米。與巖體的規(guī)模、性質(zhì),圍巖的傳熱性以及流體的有無(wú)有關(guān)。如果考慮溫度可以降低至300~100℃,足夠引發(fā)煤質(zhì)的改變以及油氣藏的變化,其影響的范圍可能達(dá)到幾、十幾至幾十千米。瞬間侵入的巖體對(duì)圍巖溫度的影響,在有孔隙水氣化的情況下估計(jì)的巖席-圍巖的接觸溫度Tc最高,達(dá)到852℃,無(wú)孔隙水也能達(dá)到818℃,而緩慢侵入的熱傳導(dǎo)模型計(jì)算的接觸溫度最低,僅為706℃(王大勇等,2011)。對(duì)比模擬結(jié)果和鏡質(zhì)體反射率測(cè)量數(shù)據(jù)表明,瞬間巖漿的熱影響的范圍不超過(guò)75m,大約為侵入體厚度的5倍。看來(lái),小巖墻、巖株、巖脈影響的范圍很小,頂多不超過(guò)巖體接觸帶幾米或十幾米;而巖基的影響范圍就大一些,有些接觸變質(zhì)帶的寬度可達(dá)1km,熱場(chǎng)則可超過(guò)巖體邊界幾千米。因此,巖漿熱場(chǎng)的規(guī)模變化很大。如果是一個(gè)輝綠巖墻,由于它的黏性低,侵位的速度快,所形成的熱場(chǎng)的寬度就大大不如花崗巖巖墻,大約只有幾米或幾十米,繼續(xù)的時(shí)間也非常短暫(圖2a)。50m寬的侵入巖體的有效影響范圍約200m,對(duì)于100m寬的侵入巖體的有效影響范圍約500m(王滿等,2012)。規(guī)模較大的熱場(chǎng)可能由一個(gè)大巖體或巖基引起,熱場(chǎng)的寬度比巖墻大多了,持續(xù)的時(shí)間也長(zhǎng)多了(圖2b)。圖2c為規(guī)模巨大的巖漿熱場(chǎng),由大規(guī)模的巖漿活動(dòng)引起,大規(guī)模巖漿活動(dòng)必定有多期巖漿的侵入,圖中分為4期,分別以紅色、藍(lán)色、綠色和黃色表示,持續(xù)的時(shí)間約幾個(gè)或十幾個(gè)百萬(wàn)年。
(5)熱場(chǎng)可大致可分為高溫?zé)釄?chǎng)和低溫?zé)釄?chǎng),筆者估計(jì)高溫?zé)釄?chǎng)的溫度至少>600~500℃(圖2b和c表示了溫度為600℃和400℃的熱場(chǎng)范圍),在這個(gè)溫度以上,可能有利于流體的運(yùn)動(dòng),有利于流體從圍巖中萃取出金屬組分;<400℃為低溫?zé)釄?chǎng)。低溫?zé)釄?chǎng)的溫度雖然低,但是,能夠明顯改變煤和石油的品質(zhì),對(duì)于沉積熱液礦床的富集可能也是有意義的。
總之,“巖漿熱場(chǎng)”指的是:在一個(gè)很短的時(shí)間內(nèi),在一個(gè)地區(qū)出現(xiàn)的巖漿活動(dòng),可能會(huì)造成該區(qū)域地?zé)崽荻认鄬?duì)周邊地區(qū)明顯的上升,使之形成一個(gè)局部的熱場(chǎng)。熱場(chǎng)的熱主要來(lái)自未固結(jié)的巖漿,巖漿加熱了圍巖,使下地殼、中地殼和上地殼的下部在一個(gè)短暫的時(shí)間內(nèi)保持一種高熱狀態(tài)。
巖漿熱場(chǎng)最重要的意義是,它是熱液賴以上升的場(chǎng)所。這樣的熱場(chǎng)有利于來(lái)自下地殼底部和殼幔過(guò)渡帶的流體(熱液)的活動(dòng)(張旗,2012),使含礦熱液得以順利上升,并在熱場(chǎng)范圍內(nèi)進(jìn)行充分的活動(dòng)、對(duì)流循環(huán)、萃取圍巖中的成礦金屬元素,并在地殼淺部巖漿熱場(chǎng)之上合適的部位沉淀富集成礦。
巖漿熱場(chǎng)不同于地?zé)釄?chǎng),它們的區(qū)別是:
(1)熱的來(lái)源不同。地?zé)釄?chǎng)以溫度、地?zé)崽荻?、地?zé)崃髅芏纫约盁嵩捶艧?吸熱)的強(qiáng)度及其分布來(lái)表示。地殼及其地表的熱力場(chǎng)取決于宇宙和地球內(nèi)部的熱源以及地球內(nèi)部的動(dòng)力作用,受多種因素制約。地殼的熱力場(chǎng)是由放熱和吸熱熱源的強(qiáng)度和分布、地層的熱力學(xué)性質(zhì)以及地表溫度決定的(切列緬斯基,1977)。多數(shù)人認(rèn)為地殼和地幔所含放射性元素的衰變是地球內(nèi)部熱源最主要的來(lái)源(Royetal., 1972; 切列緬斯基,1977;從柏林,1978)。而巖漿熱場(chǎng)的熱主要來(lái)自巖漿的侵入,包括基性和酸性的巖漿,但主要是中酸性的巖漿。
(2)熱的分布不同。地?zé)釄?chǎng)的溫度是隨地殼深度遞增的,上部溫度低,深部溫度高,因而是近水平分布的。地?zé)釄?chǎng)的分布是大體均勻的,在一個(gè)地方測(cè)定的地?zé)嵩鰷芈士梢源硪粋€(gè)較大區(qū)域的熱狀況。而巖漿熱場(chǎng)的熱的分布是極不均勻的,主要取決于巖漿的性質(zhì)、巖漿的規(guī)模、巖體的形狀,并且可能受構(gòu)造活動(dòng)的影響。巖漿熱場(chǎng)的熱是圍繞巖體分布的,靠近巖體溫度高,遠(yuǎn)離巖體溫度低,而不是受地殼深度控制的,故巖漿熱場(chǎng)的等溫線大體是垂直分布的,不同于地?zé)釄?chǎng)的水平分布。巖漿熱場(chǎng)的頂部形態(tài)因巖體侵入的位置不同而變。此外,巖漿熱場(chǎng)的分布還與構(gòu)造有關(guān),如果有開放性的構(gòu)造,可以把熱傳遞到遠(yuǎn)離巖體的部位。但對(duì)于巖漿熱場(chǎng)來(lái)說(shuō),這種現(xiàn)象是局部的。
圖3 示意的地?zé)釄?chǎng)與巖漿熱場(chǎng)地溫梯度對(duì)比(a)-正常地?zé)釄?chǎng)地溫梯度分布;(b)-地?zé)釄?chǎng)中有低速帶存在的分布;(c)-巖漿熱場(chǎng)地溫梯度分布.詳細(xì)說(shuō)明見(jiàn)正文Fig.3 Schematic comparing to geothermal gradient between geothermal field and magma thermal field
(3)地溫梯度不同。地?zé)釄?chǎng)的溫度隨深度增加,地溫梯度總體上卻有一個(gè)隨深度增加減小的趨勢(shì)(圖3a)。也就是說(shuō),在地殼淺部,地溫梯度可能比較大,隨著深度增加,地溫梯度變小了(萬(wàn)志軍等,2005)。由巖石本身放射性元素獲得的地溫曲線直達(dá)下地殼底部,溫度可能也不會(huì)超過(guò)800℃,依靠地溫梯度的增加可能不會(huì)導(dǎo)致花崗巖的部分熔融。在某些地區(qū),地球物理探測(cè)如果深部某個(gè)部位存在一個(gè)或幾個(gè)低速帶(由未固結(jié)的巖漿引起),地溫梯度將在低速帶處明顯升高,過(guò)了低速帶,溫度下降,地溫梯度曲線為瘤狀(圖3b)。巖漿熱場(chǎng)不同,地溫曲線很復(fù)雜:在地表附近,地溫梯度即異常的高(圖3C,假定為50℃/km),進(jìn)入巖漿熱場(chǎng)范圍地溫梯度進(jìn)一步升高(達(dá)到約90℃/km),到達(dá)侵入體頂面溫度有一個(gè)跳躍式的升高,即深度不增加,溫度可增加100~200℃或更高。這是因?yàn)榍秩塍w接觸部分與圍巖之間存在一個(gè)明顯的溫度差所致。進(jìn)入未固結(jié)的巖漿后,地溫梯度即急劇下降(<10℃/km),一直到下地殼底部,溫度僅升高100~200℃(圖3c)。
(4)熱場(chǎng)的規(guī)模不同。地?zé)釄?chǎng)是全球性的,在全球任何地方都存在,只是溫度梯度不同而已。巖漿熱場(chǎng)是局部性的,只在有巖漿活動(dòng)的地方才出現(xiàn),且規(guī)模很小,無(wú)法與地?zé)釄?chǎng)相匹敵。巖漿熱場(chǎng)的規(guī)模小到幾米或幾十米,由巖墻的侵入所引起;大的與大規(guī)模巖漿活動(dòng)有關(guān),長(zhǎng)寬均可達(dá)幾百至上千千米,如中國(guó)東部中生代大規(guī)模巖漿活動(dòng)期間(示意見(jiàn)圖2)。
圖4 四川盆地代表性鉆井的古熱流(據(jù)朱傳慶等,2010a)Fig.4 The drilling representation paleo-heat flow of Sichuan basin (after Zhu et al., 2010a)
(5)熱持續(xù)的時(shí)間不同。地?zé)釄?chǎng)可以持續(xù)很長(zhǎng)的時(shí)間,如果沒(méi)有構(gòu)造變動(dòng),可以持續(xù)幾十、幾百或幾千個(gè)百萬(wàn)年。朱傳慶等(2010a, b)利用石油鉆井的Ro(鏡質(zhì)體反射率)資料采取古熱流恢復(fù)方法得出的四川盆地的熱流史表明,在加里東期之前,該區(qū)熱狀態(tài)是穩(wěn)定的,熱流值較低;至海西期熱流開始增大,在259Ma左右熱流值達(dá)到最高,多數(shù)鉆井的最高古熱流值在60~80MW/m2之間,少數(shù)鉆井經(jīng)歷的最高古熱流超過(guò)了100MW/m2,此后熱流持續(xù)降低直到現(xiàn)今(圖4)。圖4中從加里東期至今,地?zé)釄?chǎng)大體不變或變化不大,原因是維持地?zé)釄?chǎng)的放射性熱的來(lái)源沒(méi)有變。在259Ma出現(xiàn)的高熱流屬于巖漿熱場(chǎng),其余時(shí)間段屬于地?zé)釄?chǎng)。巖漿熱場(chǎng)是由于峨眉山玄武巖的噴發(fā)造成的,反映了東吳運(yùn)動(dòng)期間玄武巖噴發(fā)時(shí)巖漿活動(dòng)導(dǎo)致的(瞬時(shí))熱效應(yīng)朱傳慶等(2010a, b)。
(6)熱與水的關(guān)系不同。地?zé)釄?chǎng)提供的熱是使地層中的水釋放出來(lái),隨著深度的增加和熱的增加,賦存在地層中的水逐漸減少。地?zé)崾菍⑺蛏向?qū)趕,溫度越高水含量越低。巖漿熱場(chǎng)不同,通常伴有明顯的熱液活動(dòng)。熱液一部分來(lái)自深部(下地殼底部、殼幔過(guò)渡帶),一部分來(lái)自溫度升高對(duì)地層中原有水的萃取。如果構(gòu)造條件合適,巖層流通性好,熱液可以在熱場(chǎng)中進(jìn)行充分的對(duì)流循環(huán),汲取圍巖中的金屬元素,成為金屬礦床的來(lái)源之一(Norton and Taylor, 1975; Ferry, 1984; 羅文積和陳家清,1997;馬東升,1998;張映紅和顧家裕,2003)。在火山巖發(fā)育地區(qū)和熱泉活動(dòng)的地區(qū)的熱雖然歸入地?zé)釄?chǎng)的范疇,實(shí)際上是來(lái)自巖漿熱場(chǎng)的(與侵入和噴出的巖漿巖有關(guān))。
(7)研究方法不同。地?zé)釄?chǎng)是地球物理學(xué)研究的內(nèi)容之一,現(xiàn)代地?zé)釄?chǎng)可以通過(guò)地表和鉆孔測(cè)量以及地球物理方法得到。而巖漿活動(dòng)時(shí)期的巖漿熱場(chǎng)則根據(jù)巖漿活動(dòng)帶給圍巖的一系列變化來(lái)估計(jì)。包括巖漿巖的規(guī)模、巖漿侵入的深度、熱液蝕變的寬度、構(gòu)造活動(dòng)的強(qiáng)度、圍巖孔隙開放的程度等。
由于巖漿熱場(chǎng)的存在,可造成地殼局部地區(qū)溫度的急劇升高,高溫(>700~800℃)可從地殼淺部開始,維持達(dá)幾十千米的深度,這種現(xiàn)象是極具吸引力的。但是,關(guān)于巖漿熱場(chǎng)我們的認(rèn)識(shí)還很膚淺。例如,巖漿熱場(chǎng)的邊界在哪里?以多高的溫度為標(biāo)志比較合適?巖漿熱場(chǎng)的范圍多大?受什么因素制約?在諸多因素中哪些是主要的,哪些是次要的,哪些因素在哪些情況下是變化的?
瞬間熱場(chǎng)的出現(xiàn)把局部地區(qū)的地溫梯度急劇提高,它對(duì)地?zé)釄?chǎng)會(huì)產(chǎn)生什么影響?流體和熱液在巖漿熱場(chǎng)中是怎樣運(yùn)動(dòng)和循環(huán)的?對(duì)溫度的限制是多少?哪些因素有利于流體的對(duì)流循環(huán)?哪些情況下它可以從圍巖中萃取出金屬元素來(lái)?次生金屬的加入會(huì)使熱液發(fā)生什么變化?包裹體測(cè)溫測(cè)到的700~800℃的高溫是發(fā)生在什么地方?熱場(chǎng)與成礦是什么關(guān)系?成礦在熱場(chǎng)之內(nèi)還是之外?在什么情況下沉淀成礦?這些,已經(jīng)有過(guò)一些研究,但是,許多問(wèn)題仍然是需要繼續(xù)探索的。
令人驚嘆的是,巖漿熱場(chǎng)說(shuō)對(duì)于熱液成礦可能具有非常重要的意義,這也是筆者為什么努力去探索巖漿熱場(chǎng)說(shuō)的原因之一。例如,與花崗巖有關(guān)的金銅與鎢錫成礦有些是相悖的,有些是相伴的,熱場(chǎng)說(shuō)可能會(huì)給出一個(gè)新的解釋。熱場(chǎng)說(shuō)還解釋了為什么大多數(shù)礦床是多金屬成礦的問(wèn)題。關(guān)于多金屬成礦學(xué)術(shù)界已經(jīng)有很多很好的討論,筆者相信,很多礦床中的低品位的伴生金屬元素可能來(lái)自于熱場(chǎng)范圍內(nèi)的圍巖,是被在熱場(chǎng)中活動(dòng)的流體萃取出來(lái)的。熱場(chǎng)說(shuō)還解決了成礦為什么總是晚于成巖的問(wèn)題,為什么大規(guī)模巖漿活動(dòng)與大規(guī)模成礦作用密切相關(guān)的問(wèn)題,它也從一個(gè)新的角度解釋了“就礦找礦”的理論為什么仍然適用的問(wèn)題。此外,熱場(chǎng)說(shuō)還可以解釋一些沉積熱液礦床的成礦問(wèn)題、如某些卡林型金礦問(wèn)題、某些層控SEDEX鉛鋅礦床再富集問(wèn)題、某些遠(yuǎn)離侵入巖的夕卡巖成因問(wèn)題。不僅如此,熱場(chǎng)說(shuō)對(duì)煤層熱演化和煤層氣生成也有顯著的控制作用,對(duì)油氣的生成、運(yùn)移、聚集和油氣藏的形成與保存也有明顯影響,還可能解釋某些地區(qū)的地?zé)岙惓?wèn)題。
總之,巖漿熱場(chǎng)是一個(gè)極具創(chuàng)新性的課題,其意義究竟怎樣,還有許多是我們不知道的。本文只是揭開了巖漿熱場(chǎng)面貌的一角,更加精彩的部分正等待人們進(jìn)一步地去挖掘。
后記巖漿熱場(chǎng)問(wèn)題是筆者從思考花崗巖與成礦關(guān)系中悟出來(lái)的,這只是一個(gè)猜想,它是否可信,是允許懷疑和討論的。筆者覺(jué)得,在自然界可能存在一個(gè)瞬間的巖漿熱場(chǎng),它與巖漿活動(dòng)有關(guān),與成礦的關(guān)系可能也很密切。巖漿熱場(chǎng)說(shuō)建立在地?zé)釋W(xué)、巖漿物理學(xué)、巖漿動(dòng)力學(xué)和流體動(dòng)力學(xué)理論的基礎(chǔ)上,筆者于上述幾方面均是外行,雖然臨時(shí)抱佛腳學(xué)了一點(diǎn)點(diǎn),只是皮毛而已,歡迎大家評(píng)頭論足??茖W(xué)研究的本質(zhì)是探索,是向未知領(lǐng)域探求真理。巖漿熱場(chǎng)說(shuō)是否有價(jià)值,希望今后的實(shí)踐予以檢驗(yàn)。論文撰寫過(guò)程中向趙平研究員討教過(guò)意見(jiàn),兩位審稿人提出了很好的意見(jiàn),羅照華教授與筆者交流、提供了許多重要的參考文獻(xiàn),使筆者受益匪淺,在此一并表示衷心的感謝。
Ascencio F, Samaniego F and Rivera J. 2006. Application of a spherical-radial heat transfer model to calculate geothermal gradients from measurements in deep boreholes. Geothermics, 35(1): 70-78
Barner HL. 1979. Geochemistry of Hydrothermal Ore Deposits. 2ndEdition. A Wiley-Interscience Publication, John Wiley and Sons
Best MG and Christiansen EH. 2001. Igneous Petrology. Blackwell Science Ltd., 1-458
Brandeis G and Jaupart C. 1986. On the interaction between convection and crystallization in cooling magma chambers. Earth and Planetary Science Letters, 77(3-4): 345-361
Carslaw HS and Jaeger JC. 1959. Conduction of Heat in Solids. New York: Oxford University Press, 1-386
Castro A. 1987. On granitoid emplacement and related structures: A review. Geol. Rundsch., 76(1): 101-124
Chapman DS and Rybach L. 1985. Heat flow anomalies and their interpretations. J. Geodynamics, (4): 3-37
Chen YJ, Pirajno F, Lai Yetal. 2004. Metallogenetic time and tectonic setting of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 20(4): 907-922 (in Chinese with English abstract)
Cong BL. 1978. Magmatism and Igneous Associations. Beijing: Geological Publishing House (in Chinese)
Delaney PT and Pollard DD. 1982. Solidification of basaltic magma during flow in a dike. Amer. J. Sci., 282(6): 856-885
Delaney PT. 1987. Heat transfer theory applied to mafic dike intrusions. In: Halls HC and Fahrig WF (eds.). Mafic Dike Swarms. Geol. Assoc. Canada, Spec. Paper., 34: 31-46
Duffield WA and Ruiz J. 1992. Evidence for the reversal of gradients in the uppermost parts of silicic magma reservoirs. Geology, 20(12): 1115-1118
Eldursi K, Branquet Y, Guillou-Frottier L and Marcoux E. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth and Planetary Science Letters, 288(1-2): 70-83
Evans DJ, Rowley WJ, Chadwick RAetal. 1994. Seismic reflection data and the internal structure of the Lake District batholith, Cumbria, northern England. Proc. Yorkshire Geol. Soc., 50: 11-24
Fedotov SA. 1976. Uplift of mafic magma in Earth crust and mechanism of fracture basalt eruption. lzvestiya AN SSSR, Ser. Geol., 10: 5-23 (in Russian)
Feng Q and Tang XY. 1997. The magma activity’s influence on conditions forming oil and gas accumulation. Northwest Geoscience, 18(1): 56-62(in Chinese with English abstract)
Feng ZH. 2003. Emplacement process and structural analysis of Guposhan-Huashan granitic pluton, Guangxi. Ph. D. Dissertation. Changsha: Central South University (in Chinese with English summary)
Feoktistov GD. 1972. Metamorphism of Clay-sandy Rocks near Contact Zone with Intrusion. Moscow: Nauka, 1-100 (in Russian)
Ferré E, Gleize G, Bouchez Jetal. 1995. Intenal fabric and strike-slip emplacement of the Pan-African granite of Solli Hills, northern Nigeria. Tectonics, 14(5): 1205-1219
Ferry M. 1984. Reaction progress: A monitor of fluid-rock interaction during metamorphic and hydrothermal events. In: Walther JV and Wood BJ (eds.). Fluid-Rock Interactions during Metamorphism. New York: Springer-Verlag, 60-89
Galushkin Y. 1997. Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion. Org. Geochem., 26(11-12): 645-658
Gao GR and Zhang MB. 1998. Mineralization characters ore-controlling and ore-searching prospect in Yinkeng multimetal orefield, Jiangxi Province. Volcanology & Mineral Resources, 19(4): 347-356(in Chinese with English abstract)
Gerya TV and Burg JP. 2007. Intrusion of ultramac magmatic bodies into the continental crust: Numerical simulation. Physics of the Earth and Planetary Interiors, 160(2): 124-142
Guerrero-Martínez FJ and Verma SP. 2013. Three dimensional temperature simulation from cooling of two magma chambers in the Las Tres Vírgenes geothermaleld, Baja California Sur, Mexico. Energy, 52: 110-118
Gunson M, Hall G and Johnston M. 2000. Foraminiferal coloration index as a guide to hydrothermal gradients around the Porgera intrusive complex, Papua New Guinea. Economic Geology, 95(2): 271-282
Guo JJ and Zhou AC. 2008. Discussion on the determination methods and strategy for hot dry rocks. Energy Engineering, (6): 1-4(in Chinese with English abstract)
Hall A. 1971. The Relationship between geothermal gradient and the composition of granitic magmas in orogenic belts. Contr. Mineral. Petrol., 32: 186-192
Harris N, Ayres M and Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implications for the extraction of Himalayan leucogranite magmas. J. Geophys. Res., 100(B8): 15766-15777
Hildreth W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. J. Geophys. Res., 86(BII): 10153-10192
Hutton DHW, Dempster TJ, Brown PEetal. 1990. A new mechanism of granite emplacement: Intrusion in active extensional shear zones. Nature, 343: 452-455
Jaeger JC. 1961. The effect of the drilling fluid on temperature measured in bore holes. J. Geophys. Res., 66(2): 563-569
Jaeger JC. 1964. Thermal effects of intrusions. Reviews in Geophysics, 2(3): 433-466
Jin XD, Zhang DH and Wan TF. 2010. Upper part and deeper area ore-prospecting for hidden rock mass. Geological Bulletin of China, 29(2-3): 392-400(in Chinese with English abstract)
Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177-189
Kol’tsov AB. 2010. Hydrothermal mineralization in the fields of temperature and pressure gradients. Geochemistry International, 48(11): 1097-1111
Kontorovich AE, Surkov VC, Troftmuk AAetal. 1981. Oil and Gas Geology of West Siberian Platform. Moscow: Nedra, 1-550 (in Russian)
Li DD, Luo ZH, Zhou JL, Yang ZF and Liu C. 2011. Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit. Earth Science Frontiers, 18(1): 166-178 (in Chinese with English abstract)
Liu YS and Gao S. 1998. Anatexis of the continental crust and granites as tracers of lower crustal composions. Geological Science and Technology Information, 17(3): 31-38 (in Chinese with English abstract)
Luo WJ and Chen JQ. 1997. Two-way convergence and hydrothermal mineralization. Acta Geologica Gansu, 6(Suppl.): 44-49 (in Chinese with English abstract)
Luo ZH, Huang ZM and Ke S. 2007. An overview of granitoid. Geological Review, 53(Suppl.): 180-226 (in Chinese with English abstract)
Luo ZH, Lu XX and Chen BH. 2009. Introduction to the Metallogenic Theory on the Transmagmatic Fluids. Beijing: Geological Publishing House, 1-168 (in Chinese with English abstract)
Luo ZH, Liu JQ, Zhao CP, Guo ZF, Cheng LL, Li XH and Li DP. 2011. Deep fluids and magmatism: The deep processes beneath the Tengchong volcano group. Acta Petrologica Sinica, 27(10): 2855-2862(in Chinese with English abstract)
Lv XB, Yao SZ and Zhou ZG. 1997. Magmatic rock system and metallogenesis in Jiurui region, Jiangxi Province. Geology and Mineral Resources of South China, (1): 27-36(in Chinese with English abstract)
Ma CQ, Yang KG, Tang ZHetal. 1994. Magma Dynamics of Granitoids: Theory, Method and Case Study of the Eastern Hubei Granitoids. Wuhan: Press of China University of Geosciences, 1-260 (in Chinese with English abstract)
Ma CQ. 1986. Some kinetic parameters estimation methods in magmatic activity: The application of the principles of fluid dynamics. Geological Science and Technology Information, 5(3): 47-54 (in Chinese with English abstract)
Ma DS. 1998. Large-scale fluid flow systems in the crust and their implications for metallogenesis of hydrothermal ore deposits. Geological Journal of China Universities, 4(3): 250-261 (in Chinese with English abstract)
Mao JW, Xie GQ, Zhang ZHetal. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CLetal. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallgenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
Marsh BD. 1982. On the mechanics of igneous diapirism, stoping and zone melting. Am. J. Sci., 282(6): 808-855
McBirney AR and Murase T. 1984. Rheological properties of magmas. Ann. Rev. Earth Planet. Sci., 12: 337-357
Norton D and Taylor HP. 1975. Quantitatives simulation of the hydrothermal systems of crystallizing magmas on the basic of transport theory and oxygen isotope data: An analysis of the Skaergaard intrusion. Journal of Petrology, 20: 421-486
Paterson SR and Tobisch OT. 1992. Rates of processes in magmatic arcs: Implications for the timing and nature of pluton emplacement and wall rock deformation. Journal of Structural Geology, 14(3): 291-300
Petford N, Kerr RC and Lister JR. 1993. Dyke transport of granitoid magma. Geology, 21(9): 845-848
Petford N, Cruden AR, McCaffrey KJWetal. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408: 669-673
Pitcher WS. 1987. Granites and yet more granites forty years on. Geol. Rund., 76(1): 51-59
Pitcher WS. 1993. The Nature and Origin of Granite. Glasgow and London: Blackie Academic, 182-190
Qieliemianski KA. 1977. Applied Geothermal Science. In: Zhao Y and Chen M (Trans.). 1982. Beijing: Geological Publishing House (in Chinese)
Rao C. 2007. Numerical simulation of heat and liquid transfer in the hydrothermal ore-forming progresses. Master Degree Thesis. Chengdu: Chengdu University of Tecnology (in Chinese with English summary)
Raymond AC and Murchison DG. 1988. Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction. Fuel, 67(12): 1599-1608
Roman-Berdiel T, Pueyo-Morer EL and Casas-Sainz AM. 1995. Granite emplacement during contemporary shortening and normal faulting: Structure and magnetic study of the Veiga Massif (NW Spain). J. Struct. Geol., 17(12): 1689-1706
Roman-Berdiel T, Gapais D and Brun JP. 1997. Granite intrusion along strike-slip zones in experiment and nature. Am. J. Sci., 297(6): 651-678
Roy RF, Klackwell DD and Decker ER. 1972. Continental heat flow. In: Robertson EC (ed.). The Nature of the Solid Earth. New York: McGraw-Hill, 506-543
Rubin AM. 1995. Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences, 23: 287-336
Rutter MJ and Wyllie PJ. 1988. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature, 331(6152): 159-160
Shao F. 2007. Study on water-rock interaction and its relation with uranium metallogenesis. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English summary)
Simmons G. 1967. Interpretation of heat flow anomalies 2. flux due to initial temperature of intrusives. Reviews of Geophysics, 5(2): 109-120
Sparks RSJ, Huppert HE, Turner JSetal. 1984. The fluid dynamics of evolving magma chambers. Phil. Trans. R. Soe. Lond., A310(1514): 511-534
Speer JA, McSween HY Jr and Gates AE. 1994. Generation, segregation, ascent, and emplacement of Alleghanian pluton in the southern Applachians. The Journal of Geology, 102(3): 249-267
Tang XY, Zhang GC, Liang JS, Yang SC, Rao S and Hu SB. 2013. Influence of igneous intrusions on the temperature field and organic maturaty of the Changchang sag, Qiongdongnan basin, South China Sea. Chinese J. Geophys., 56(1): 159-169 (in Chinese with English abstract)
Thompson AB, James A and Connolly D. 1995. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones andother tectonic settings. J. Geophys. Res., 100(B8): 15565-15579
Thrasher J. 1992. Thermal effect of the Tertiary Cuillins intrusive complex in the Jurassic of the Hebrides: An organic geochemical study. In: Parnell J (ed.). Basins on the Atlantic Seaboard: Petroleum Geology, Sedimentology, and Basin Evolution. Geol. Soc. Spec. Publ., 62: 35-49
Turcotte DL and Schubert G. 1982. Geodynamics: Application of Continuum Physics to Geological Problems. New York: John Wiley and Sons. Inc.
Villas RN and Norton DL. 1977. Irreversible mass transfer between circulating hydrothermal fluids and the Mayflower Stock. Econ. Geol., 72(8): 1471-1540
Wan TF, Teyssier C, Zhen HLetal. 2001. Emplacement mechanism of Linglong granitoid complex, Shandong Peninsula, China. Science in China (Series D), 44(6): 535-544
Wan ZJ, Zhao YS and Kang JR. 2005. Simulation and forecast method of geothermal resources in hot dry rock. Chinese Journal of Rock Mechanics and Engineering, 24(6): 945-949 (in Chinese with English abstract)
Wang DY, Lu XC, Xu SJetal. 2011. Heat-transfer-model analysis of thermal effect of intrusive sills on organic-rich host rocks in sedimentary basins. Journal of Nanjing University (Natural Sciences), 47(1): 45-50 (in Chinese with English abstract)
Wang M, Wang YW and Xue FL. 2012. Finite element simulation of effect of magmatic intrusion on maturity of organic matter in surrounding rock. Fault-Block Oil and Gas Field, 19(2): 172-176(in Chinese with English abstract)
Wang T, Wang XX and Li WP. 1999a. Multiple emplacement mechanism and space of granitoid plutons. Geological Review, 45(2): 142-150 (in Chinese with English abstract)
Wang T, Zhang GW, Wang XXetal. 1999. Growth partterns of granitoid plutons and their implications for tectonics, kinematics and dynamics: Examples from granitoid plutons in the core of the Qinling orogenic belt, China. Chinese Journal of Geology, 34(3): 326-335 (in Chinese with English abstract)
Webber KL, Simmons WB, Falster AU and Foord EE. 1999. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. American Mineralogist, 84(5-6): 708-717
Wei ZL. 1994. Oil-gas pools in transition spans and analysis of their formation conditions. Geotectonica et Metallogenia, 18(1): 26-32(in Chinese with English abstract)
Weinberg RF and Podladchikov YY. 1994. Diapiric ascent of magmas through power law crust and mantle. J. Geophys. Res., 99(B5): 9543-9559
Wu CR. 1992. Magmatic thermo-metamorphism of coal. Coal Geology and Exploration, 20(4): 24-29(in Chinese with English abstract)
Yang KG and Yang WR. 1997. Post-collision orogeny process and origin of huge quantity granites in orogenic belt. Geological Science and Technology Information, 16(4): 16-22(in Chinese with English abstract)
Yang XK, Liu CY, Yang YHetal. 2005. The concept, classification and research progress on thermal structure. Earth Science Frontiers, 12(4): 385-396(in Chinese with English abstract)
Zhang BT, Wu JQ, Ling HFetal. 2007. The calculation of U-Th-K radiogenic heat and effects on granitic cooling-crystallization process, and its geological significance. Science in China (Series D), 37(2): 155-159 (in Chinese)
Zhang J and Shi YL. 1997. The thermal modeling of magma intrusion in sedimentary basins. Progress in Geophysics, 12(3): 55-64(in Chinese with English abstract)
Zhang Q. 2012. Granite and metallogenic relationship discussion (1): Comment on the popular magmatic hydrothermal mineralization theory. Gansu Geology, 21(4): 1-14(in Chinese with English abstract)
Zhang Q and Li CD. 2012. Granites: Implications for Continental Geodynamics. Beijing: Ocean Press, 1-276 (in Chinese with English abstract)
Zhang Q, Jin WJ, Li CD and Jiao ST. 2013. Identification and implication of magma thermal field in the geothermal field. Progress in Geophys., 28(5): 2495-2507 (in Chinese with English abstract)
Zhang YH and Gu JY. 2003. Hydrothermal circular flow: Significant influence on reservoirs in intrusion rock-exomorphic zone. Special Oil and Gas Reservoirs, 10(1): 86-89(in Chinese with English abstract)
Zhao CB, Lin G, Hobbs BE, Ord A, Wang YJ and Mühlhaus HB. 2003. Effects of hot intrusions on pore-uidow and heat transfer inuid-saturated rocks. Comput. Methods Appl. Mech. Engrg., 192(16-18): 2007-2030
Zhao CP, Ran H and Wang Y. 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism. Acta Petrologica Sinica, 28(4): 1189-1204(in Chinese with English abstract)
Zhou AC, Zhao YS, Guo JJetal. 2010. Study of geothermal extraction scheme of hot dry rock in Tibetan Yangbajing region. Chinese Journal of Rock Mechanics and Engineering, 29(Suppl. 2): 89-95(in Chinese with English abstract)
Zhou JY, Wu ZL and Zhuang XG. 1997. Geothermal field study and its significance in eastern Zhejiang, Fujian and Guangdong provinces. Geological Science and Technology Information, 16(2): 7-12(in Chinese with English abstract)
Zhou TF, Yue SC and Lan TY. 1995. Magmatic dynamics and its relations to metallization of diorites in Yueshan, Anhui Province. Mineral Deposits, 14(4): 303-313(in Chinese with English abstract)
Zhou XR, Wu CL, Huang XCetal. 1993. Characteristics of cognate inclusions in intermediate-acid intrusive rocks of Tongling area and their magmatic dynamcs. Acta Petrologica et Mineralogica, 12(1): 20-31(in Chinese with English abstract)
Zhu CQ, Tian YT, Xu Metal. 2010a. The effect of Emeishan supper mantle plume to the thermal evolution of source rocks in the Sichuan basin. Chinese J. Geophys., 53(1): 119-127(in Chinese with English abstract)
Zhu CQ, Xu M, Yuan YSetal. 2010b. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan basin. Chinese Sci. Bull., 55(10): 949-956
附中文參考文獻(xiàn)
陳衍景, Pirajno F, 賴勇等. 2004. 膠東礦集區(qū)大規(guī)模成礦時(shí)間和構(gòu)造環(huán)境. 巖石學(xué)報(bào), 20(4): 907-922
從柏林. 1978. 巖漿活動(dòng)與火成巖組合. 北京: 地質(zhì)出版社
馮喬, 湯錫元. 1997. 巖漿活動(dòng)與油氣成藏地質(zhì)條件的關(guān)系. 西北地質(zhì)科學(xué), 18(1): 56-62
馮佐海. 2003. 廣西姑婆山-花山花崗巖體侵位過(guò)程及構(gòu)造解析. 博士學(xué)位論文.長(zhǎng)沙: 中南大學(xué)
高貴榮, 張勉斌. 1998. 江西省于都縣銀坑貴多金屬礦田礦化特征、成礦控制及找礦方向. 火山地質(zhì)與礦產(chǎn), 19(4): 347-356
郭進(jìn)京, 周安朝. 2008. 高溫巖體圈定的思路與方法探討. 能源工程, (6): 1-4
金旭東, 張德會(huì), 萬(wàn)天豐. 2010. 隱伏巖體頂上帶與深部成礦預(yù)測(cè). 地質(zhì)通報(bào), 29(2-3): 392-400
李德東, 羅照華, 周久龍, 楊宗鋒, 劉翠. 2011. 巖墻厚度對(duì)成礦作用的約束: 以石湖金礦為例. 地學(xué)前緣, 18(1): 166-178
劉勇勝, 高山. 1998. 地殼深熔(anatexis)與花崗巖對(duì)下地殼的示蹤作用. 地質(zhì)科技情報(bào), 17(3): 31-38
羅文積, 陳家清. 1997. 雙向匯聚熱液成礦. 甘肅地質(zhì)學(xué)報(bào), 6(增刊): 44-49
羅照華, 黃忠敏, 柯珊. 2007. 花崗質(zhì)巖石的基本問(wèn)題. 地質(zhì)論評(píng), 53(增刊): 180-226
羅照華, 盧欣祥, 陳必河. 2009. 透巖漿流體成礦作用導(dǎo)論. 北京: 地質(zhì)出版社, 1-168
羅照華, 劉嘉麒, 趙慈平, 郭正府, 程黎鹿, 李曉惠, 李大鵬. 2011. 深部流體與巖漿活動(dòng): 兼論騰沖火山群的深部過(guò)程. 巖石學(xué)報(bào), 27(10): 2855-2862
呂新彪, 姚書振, 周宗桂. 1997. 江西九瑞地區(qū)巖漿巖系統(tǒng)與成礦. 華南地質(zhì)與礦產(chǎn), (1): 27-36
馬昌前. 1986. 巖漿活動(dòng)中某些動(dòng)力學(xué)參數(shù)的估算方法: 流體動(dòng)力學(xué)原理的應(yīng)用. 地質(zhì)科技情報(bào), 5(3): 47-54
馬昌前, 楊坤光, 唐仲華等. 1994. 花崗巖類巖漿動(dòng)力學(xué)——理論方法及鄂東花崗巖類例析. 武漢: 中國(guó)地質(zhì)大學(xué)出版社
馬東升. 1998. 地殼中流體的大規(guī)模流動(dòng)系統(tǒng)及其成礦意義. 高校地質(zhì)學(xué)報(bào), 4(3): 250-261
毛景文, 謝桂青, 張作衡等. 2005. 中國(guó)北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 21: 169-188
毛景文, 謝桂青, 郭春麗等. 2007. 南嶺地區(qū)大規(guī)模鎢錫多金屬成礦作用: 成礦時(shí)限及地球動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 23(10): 2329-2338
切列緬斯基ГА. 1977. 實(shí)用地?zé)釋W(xué).見(jiàn):趙羿,陳明譯. 1982.北京: 地質(zhì)出版社
饒超. 2007. 熱液成礦過(guò)程中熱及流體傳輸?shù)挠?jì)算機(jī)數(shù)值模擬. 碩士學(xué)位論文, 成都: 成都理工大學(xué)
邵飛. 2007. 水-巖相互作用及其與鈾礦成礦關(guān)系研究——以相山鈾礦田為例. 博學(xué)位論文, 武漢: 中國(guó)地質(zhì)大學(xué)
唐曉音, 張功成, 梁建設(shè)等. 2013. 瓊東南盆地長(zhǎng)昌凹陷火成巖侵入體對(duì)溫度場(chǎng)及烴源巖成熟度的影響. 地球物理學(xué)報(bào), 56(1): 159-169
萬(wàn)天豐, Teyssier C, 曾華霖等. 2000. 山東玲瓏花崗質(zhì)巖體侵位機(jī)制. 中國(guó)科學(xué)(D輯), 30(4): 337-340
萬(wàn)志軍, 趙陽(yáng)升, 康建榮. 2005. 高溫巖體地?zé)豳Y源模擬與預(yù)測(cè)方法. 巖石力學(xué)與工程學(xué)報(bào), 24(6): 945-949
王大勇, 陸現(xiàn)彩, 徐士進(jìn)等. 2011. 沉積盆地內(nèi)侵入巖席對(duì)富含有機(jī)質(zhì)圍巖熱影響的熱傳輸模型研究. 南京大學(xué)學(xué)報(bào)(自然科學(xué)版), 47(1): 45-50
王滿, 王英偉, 薛林福. 2012. 巖漿侵入對(duì)圍巖中有機(jī)質(zhì)成熟度影響的有限元模擬. 斷塊油氣田, 19(2): 172-176
王濤, 王曉霞, 李伍平. 1999a. 試論花崗質(zhì)深成巖體的復(fù)合定位機(jī)制及定位空間問(wèn)題. 地質(zhì)論評(píng), 45(2): 142-150
王濤, 張國(guó)偉, 王曉霞等. 1999b. 花崗巖體生長(zhǎng)方式及構(gòu)造運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)意義. 地質(zhì)科學(xué), 34(3): 326-335
魏洲齡. 1994. 過(guò)渡際油氣藏及其形成條件分析. 大地構(gòu)造與成礦學(xué), 18(1): 26-32
吳傳榮. 1992. 煤的巖漿熱變質(zhì)作用. 煤田地質(zhì)與勘探, 20(4): 24-29
楊坤光, 楊巍然. 1997. 碰撞后的造山過(guò)程及造山帶巨量花崗巖的成因. 地質(zhì)科技情報(bào), 16(4): 16-22
楊興科, 劉池洋, 楊永恒等. 2005. 熱力構(gòu)造的概念分類特征及其研究進(jìn)展. 地學(xué)前緣, 12(4): 385-396
章邦桐, 吳俊奇, 凌洪飛等. 2007. U-Th-K放射成因熱對(duì)花崗巖冷卻-結(jié)晶過(guò)程影響的計(jì)算及地質(zhì)意義. 中國(guó)科學(xué)(D輯), 37(2): 155-159
張健, 石耀霖. 1997. 沉積盆地巖漿侵入的熱模擬. 地球物理學(xué)進(jìn)展, 12(3): 55-64
張旗. 2012. 花崗巖與成礦關(guān)系的討論之一: 評(píng)流行的巖漿熱液成礦理論. 甘肅地質(zhì), 21(4): 1-14
張旗, 李承東. 2012. 花崗巖: 地球動(dòng)力學(xué)意義. 北京: 海洋出版社, 1-276
張旗, 金惟俊, 李承東, 焦守濤. 2013. 地?zé)釄?chǎng)中“巖漿熱場(chǎng)”的識(shí)別及其意義. 地球物理學(xué)進(jìn)展, 28(5): 2495-2507
張映紅, 顧家裕. 2003. 熱液環(huán)流: 侵入巖-外變質(zhì)帶儲(chǔ)層發(fā)育的重要影響因素. 特種油氣藏, 10(1): 86-89
趙慈平, 冉華, 王云. 2012. 騰沖火山區(qū)的現(xiàn)代幔源氦釋放: 構(gòu)造和巖漿活動(dòng)意義. 巖石學(xué)報(bào), 28(4): 1189-1204
周安朝, 趙陽(yáng)升, 郭進(jìn)京等. 2010. 西藏羊八井地區(qū)高溫巖體地?zé)衢_采方案研究. 巖石力學(xué)與工程學(xué)報(bào), 29(增刊2): 89-95
周江羽, 吳沖龍, 莊新國(guó). 1997. 浙閩粵東部地?zé)釄?chǎng)研究及其意義. 地質(zhì)科技情報(bào), 16(2): 7-12
周濤發(fā), 岳書倉(cāng), 蘭天佑. 1995. 安徽月山地區(qū)閃長(zhǎng)巖類巖漿動(dòng)力學(xué)及其與成礦作用的聯(lián)系. 礦床地質(zhì), 14(4): 303-313
周珣若, 吳才來(lái), 黃許陳等. 1993. 銅陵中酸性侵入巖同源包體特征及巖漿動(dòng)力學(xué). 巖石礦物學(xué)雜志, 12(1): 20-31
朱傳慶, 田云濤, 徐明等. 2010a. 峨眉山超級(jí)地幔柱對(duì)四川盆地?zé)N源巖熱演化的影響. 地球物理學(xué)報(bào), 53(1): 119-127
朱傳慶, 徐明, 袁玉松等. 2010b. 峨眉山玄武巖噴發(fā)在四川盆地的地?zé)釋W(xué)響應(yīng). 科學(xué)通報(bào), 55(6): 474-482