李巨軍+莫煥榕
《小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》把合作學(xué)習(xí)置于非常突出的位置,并把“學(xué)會與他人合作解決問題,嘗試解釋自己的思考過程”作為目標(biāo)之一。合作學(xué)習(xí)在新的教育形勢下被廣大小學(xué)數(shù)學(xué)教師接受并用于教學(xué)實踐。筆者執(zhí)教二十多年以來,多次在講聽公開課、觀摩課后,與諸多同行進(jìn)行了深入探討,發(fā)現(xiàn)不少教師對合作學(xué)習(xí)理解不夠準(zhǔn)確,有形無神。筆者認(rèn)為,只有學(xué)生在學(xué)習(xí)過程中分工協(xié)作、交流討論、互幫互助,共同完成學(xué)習(xí)任務(wù),才是形神兼?zhèn)涞暮献鲗W(xué)習(xí)活動,如以下兩個案例。
[案例一]
一、復(fù)習(xí)舊知,導(dǎo)入新課
1.長方形、正方形各自有什么特點?怎樣計算周長?
2.什么是周長?(封閉圖形一周的長度)
3.師:“同學(xué)們,我們已經(jīng)能夠求出長方形、正方形的周長,理解了周長的一般概念并且初步認(rèn)識了圓,那么如何求圓的周長呢?”
引入課題:出示教材中的情境圖(圖略)讓學(xué)生觀察,圖中的圖形形狀是什么?(圓形)
師:“今天我們一起來研究圓的周長?!保ò鍟n題)
二、探索新知
1.圓的周長的概念
出示一個圓,然后提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.周長的測量(自主發(fā)現(xiàn)、動手操作)
(1)師:“現(xiàn)在我們一起來看這樣一個問題,你能用什么方法求出一個圓的周長?”
(2)師:例如求水桶的周長時,細(xì)繩繞桶一圈可近似看成水桶的周長;車輪在路上滾動一圈所行的路長,就是車輪的周長。
(3)教師引導(dǎo)學(xué)生思考圓的周長與自身的什么因素存在著一定的關(guān)系。(可以先回顧長方形、正方形的周長和長、寬的關(guān)系)
(4)出示準(zhǔn)備好的學(xué)具:大小不一樣的四個圓形紙片,讓學(xué)生用滾動的方法測量它們的周長并完成下表。
■
學(xué)生花了很長時間才得出周長與直徑的比近似等于3.14。(由于學(xué)生在做圓片滾動時,操作上不夠小心,讓誤差偏大,要反復(fù)多次才能得出周長與直徑的比值)
3.導(dǎo)出公式(學(xué)生自行討論總結(jié))
師:“現(xiàn)在你能說說怎樣計算圓的周長了嗎?”“誰能用字母來表示?”
部分學(xué)生回答:用字母表示為:C=πd。
[案例二]
一、情境導(dǎo)入,引出課題
出示圓桌圖片讓學(xué)生觀察。
■
師:在花壇的周圍徹上磚將花壇圍起來,那么圍圓形花壇的磚長是多少米?即求什么?
生:圓形花壇的周長。
師:今天我們就來學(xué)習(xí)圓的周長 。(板書課題:圓的周長)
二、例題變式,探究新知
1.圓的周長的概念
出示一個圓,提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.教師學(xué)法引導(dǎo)
想一想,討論一下怎樣才能使例題中容易求得它的周長呢?根據(jù)以下方法試試看:①舊知遷移新知;②陌生變熟悉;③大數(shù)變小數(shù);④以曲變直。
3.組織學(xué)生分工合作探求解決問題的方法
第1組分給剪刀和尺子;第2組分給剪刀、紙片和尺子;第3組分給鐵絲和尺子;第4組分給繩子和尺子。經(jīng)過學(xué)生動手操作和討論后由小組長發(fā)言。
組長1“舊知遷移新知”:把花壇割拼成長方形來計算也可以得到花壇的周長,不過有點難,并且會把花壇弄壞。
組長2“陌生變熟悉”:做一個像花壇一樣大的圓紙片,再把圓紙片剪拼成長方形來計算。
組長3“以曲變直”:做一個像花壇一樣大的小鐵絲圈,再將小鐵絲圈拉成直線,再測這根鐵絲的長度。
教師組織其他同學(xué)討論、比較以上的方法,在討論問題過程中,學(xué)生能夠初步辨別結(jié)論的共同點和不同點。最后大家一致認(rèn)為組長3“以曲變直”的方法最好。因此,將例題變式如下。
變式題:圓形花壇直徑是20m,它的周長是多少?花壇變成同樣大的直徑是20m的鐵絲圈,這個鐵絲圈的周長是多少?
以曲變直法:把這個鐵絲圈剪開拉直,然后量一量,得到它的周長是62.8米。
討論猜想:是不是直徑越長,周長越長?周長與直徑有什么關(guān)系?
組長4“以大數(shù)變小數(shù)”:直徑是20m的鐵絲圈太大了,不方便研究周長與直徑的關(guān)系,最好改成直徑是1.5cm、3cm、4cm或 5cm的鐵絲圈,然后根據(jù)以曲變直的方法測出對應(yīng)的圓周長再進(jìn)行比較。
用鐵絲分別做直徑為1.5厘米、3厘米、4厘米、5厘米的四個不同的圓A、B、C、D,并讓學(xué)生采用“以曲變直”的方法分工合作完成下表。
■
經(jīng)過分工合作,四個小組的同學(xué)很快算出了各自的周長,并算出周長與直徑的比值。四個小組的計算結(jié)果一出,學(xué)生不由自主地議論開來:“周長與直徑的比值怎么都是一樣的?”這時學(xué)生發(fā)現(xiàn)了圓的周長約是直徑的3.14倍的規(guī)律,即圓的周長=3.14×直徑。教師趁機(jī)又引導(dǎo):哪個是變量?(不同的直徑和不同的周長)哪個是不變量?(固定的值3.14)請同學(xué)議一議,不變量用哪字母表示?變量又用什么字母表示?請看書。最后學(xué)生知道這兩者之間的關(guān)系可用字母表示為:C=πd。
教師這樣做,引起了學(xué)生的注意。以后只要知道變量C和d其中的一個,就可以求出另一個。
師:請同學(xué)們利用得出的公式,看誰最快算出這個圓形花壇的周長。
[案例反思]
合作學(xué)習(xí)是新課程標(biāo)準(zhǔn)提倡的學(xué)習(xí)形式,但是當(dāng)“形神”不能統(tǒng)一時,我們就無法將這種形式發(fā)揮出來,這兩節(jié)課中,都運用了合作學(xué)習(xí)活動的形式,但效果卻有天壤之別,這值得我們反思。
案例一中成員分工不明,要么個個用繩子量度,要么個個用滾動的方法,這樣就耽誤了不少時間,學(xué)生間關(guān)系松散,沒有共同的凝聚力、向心力、競爭力、責(zé)任心,沒有組織協(xié)調(diào)者,誰想發(fā)言就發(fā)言,你一言我一言語各抒己見,討論也有些亂,沒有條理,不清楚,只是有形,沒有神。這樣導(dǎo)致課堂教學(xué)的流于形式,有形無神。
案例二中較好地把握了課標(biāo)中的合作交流的能力教學(xué)目標(biāo)要求,通過群體多邊活動共同完成學(xué)習(xí)任務(wù),每個成員都有明確的職責(zé),從而使合作交流有的放矢、有條不紊,是既省時又高效的“形神兼?zhèn)洹钡暮献鲗W(xué)習(xí)活動。
(責(zé)編 黃春香)endprint
《小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》把合作學(xué)習(xí)置于非常突出的位置,并把“學(xué)會與他人合作解決問題,嘗試解釋自己的思考過程”作為目標(biāo)之一。合作學(xué)習(xí)在新的教育形勢下被廣大小學(xué)數(shù)學(xué)教師接受并用于教學(xué)實踐。筆者執(zhí)教二十多年以來,多次在講聽公開課、觀摩課后,與諸多同行進(jìn)行了深入探討,發(fā)現(xiàn)不少教師對合作學(xué)習(xí)理解不夠準(zhǔn)確,有形無神。筆者認(rèn)為,只有學(xué)生在學(xué)習(xí)過程中分工協(xié)作、交流討論、互幫互助,共同完成學(xué)習(xí)任務(wù),才是形神兼?zhèn)涞暮献鲗W(xué)習(xí)活動,如以下兩個案例。
[案例一]
一、復(fù)習(xí)舊知,導(dǎo)入新課
1.長方形、正方形各自有什么特點?怎樣計算周長?
2.什么是周長?(封閉圖形一周的長度)
3.師:“同學(xué)們,我們已經(jīng)能夠求出長方形、正方形的周長,理解了周長的一般概念并且初步認(rèn)識了圓,那么如何求圓的周長呢?”
引入課題:出示教材中的情境圖(圖略)讓學(xué)生觀察,圖中的圖形形狀是什么?(圓形)
師:“今天我們一起來研究圓的周長?!保ò鍟n題)
二、探索新知
1.圓的周長的概念
出示一個圓,然后提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.周長的測量(自主發(fā)現(xiàn)、動手操作)
(1)師:“現(xiàn)在我們一起來看這樣一個問題,你能用什么方法求出一個圓的周長?”
(2)師:例如求水桶的周長時,細(xì)繩繞桶一圈可近似看成水桶的周長;車輪在路上滾動一圈所行的路長,就是車輪的周長。
(3)教師引導(dǎo)學(xué)生思考圓的周長與自身的什么因素存在著一定的關(guān)系。(可以先回顧長方形、正方形的周長和長、寬的關(guān)系)
(4)出示準(zhǔn)備好的學(xué)具:大小不一樣的四個圓形紙片,讓學(xué)生用滾動的方法測量它們的周長并完成下表。
■
學(xué)生花了很長時間才得出周長與直徑的比近似等于3.14。(由于學(xué)生在做圓片滾動時,操作上不夠小心,讓誤差偏大,要反復(fù)多次才能得出周長與直徑的比值)
3.導(dǎo)出公式(學(xué)生自行討論總結(jié))
師:“現(xiàn)在你能說說怎樣計算圓的周長了嗎?”“誰能用字母來表示?”
部分學(xué)生回答:用字母表示為:C=πd。
[案例二]
一、情境導(dǎo)入,引出課題
出示圓桌圖片讓學(xué)生觀察。
■
師:在花壇的周圍徹上磚將花壇圍起來,那么圍圓形花壇的磚長是多少米?即求什么?
生:圓形花壇的周長。
師:今天我們就來學(xué)習(xí)圓的周長 。(板書課題:圓的周長)
二、例題變式,探究新知
1.圓的周長的概念
出示一個圓,提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.教師學(xué)法引導(dǎo)
想一想,討論一下怎樣才能使例題中容易求得它的周長呢?根據(jù)以下方法試試看:①舊知遷移新知;②陌生變熟悉;③大數(shù)變小數(shù);④以曲變直。
3.組織學(xué)生分工合作探求解決問題的方法
第1組分給剪刀和尺子;第2組分給剪刀、紙片和尺子;第3組分給鐵絲和尺子;第4組分給繩子和尺子。經(jīng)過學(xué)生動手操作和討論后由小組長發(fā)言。
組長1“舊知遷移新知”:把花壇割拼成長方形來計算也可以得到花壇的周長,不過有點難,并且會把花壇弄壞。
組長2“陌生變熟悉”:做一個像花壇一樣大的圓紙片,再把圓紙片剪拼成長方形來計算。
組長3“以曲變直”:做一個像花壇一樣大的小鐵絲圈,再將小鐵絲圈拉成直線,再測這根鐵絲的長度。
教師組織其他同學(xué)討論、比較以上的方法,在討論問題過程中,學(xué)生能夠初步辨別結(jié)論的共同點和不同點。最后大家一致認(rèn)為組長3“以曲變直”的方法最好。因此,將例題變式如下。
變式題:圓形花壇直徑是20m,它的周長是多少?花壇變成同樣大的直徑是20m的鐵絲圈,這個鐵絲圈的周長是多少?
以曲變直法:把這個鐵絲圈剪開拉直,然后量一量,得到它的周長是62.8米。
討論猜想:是不是直徑越長,周長越長?周長與直徑有什么關(guān)系?
組長4“以大數(shù)變小數(shù)”:直徑是20m的鐵絲圈太大了,不方便研究周長與直徑的關(guān)系,最好改成直徑是1.5cm、3cm、4cm或 5cm的鐵絲圈,然后根據(jù)以曲變直的方法測出對應(yīng)的圓周長再進(jìn)行比較。
用鐵絲分別做直徑為1.5厘米、3厘米、4厘米、5厘米的四個不同的圓A、B、C、D,并讓學(xué)生采用“以曲變直”的方法分工合作完成下表。
■
經(jīng)過分工合作,四個小組的同學(xué)很快算出了各自的周長,并算出周長與直徑的比值。四個小組的計算結(jié)果一出,學(xué)生不由自主地議論開來:“周長與直徑的比值怎么都是一樣的?”這時學(xué)生發(fā)現(xiàn)了圓的周長約是直徑的3.14倍的規(guī)律,即圓的周長=3.14×直徑。教師趁機(jī)又引導(dǎo):哪個是變量?(不同的直徑和不同的周長)哪個是不變量?(固定的值3.14)請同學(xué)議一議,不變量用哪字母表示?變量又用什么字母表示?請看書。最后學(xué)生知道這兩者之間的關(guān)系可用字母表示為:C=πd。
教師這樣做,引起了學(xué)生的注意。以后只要知道變量C和d其中的一個,就可以求出另一個。
師:請同學(xué)們利用得出的公式,看誰最快算出這個圓形花壇的周長。
[案例反思]
合作學(xué)習(xí)是新課程標(biāo)準(zhǔn)提倡的學(xué)習(xí)形式,但是當(dāng)“形神”不能統(tǒng)一時,我們就無法將這種形式發(fā)揮出來,這兩節(jié)課中,都運用了合作學(xué)習(xí)活動的形式,但效果卻有天壤之別,這值得我們反思。
案例一中成員分工不明,要么個個用繩子量度,要么個個用滾動的方法,這樣就耽誤了不少時間,學(xué)生間關(guān)系松散,沒有共同的凝聚力、向心力、競爭力、責(zé)任心,沒有組織協(xié)調(diào)者,誰想發(fā)言就發(fā)言,你一言我一言語各抒己見,討論也有些亂,沒有條理,不清楚,只是有形,沒有神。這樣導(dǎo)致課堂教學(xué)的流于形式,有形無神。
案例二中較好地把握了課標(biāo)中的合作交流的能力教學(xué)目標(biāo)要求,通過群體多邊活動共同完成學(xué)習(xí)任務(wù),每個成員都有明確的職責(zé),從而使合作交流有的放矢、有條不紊,是既省時又高效的“形神兼?zhèn)洹钡暮献鲗W(xué)習(xí)活動。
(責(zé)編 黃春香)endprint
《小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》把合作學(xué)習(xí)置于非常突出的位置,并把“學(xué)會與他人合作解決問題,嘗試解釋自己的思考過程”作為目標(biāo)之一。合作學(xué)習(xí)在新的教育形勢下被廣大小學(xué)數(shù)學(xué)教師接受并用于教學(xué)實踐。筆者執(zhí)教二十多年以來,多次在講聽公開課、觀摩課后,與諸多同行進(jìn)行了深入探討,發(fā)現(xiàn)不少教師對合作學(xué)習(xí)理解不夠準(zhǔn)確,有形無神。筆者認(rèn)為,只有學(xué)生在學(xué)習(xí)過程中分工協(xié)作、交流討論、互幫互助,共同完成學(xué)習(xí)任務(wù),才是形神兼?zhèn)涞暮献鲗W(xué)習(xí)活動,如以下兩個案例。
[案例一]
一、復(fù)習(xí)舊知,導(dǎo)入新課
1.長方形、正方形各自有什么特點?怎樣計算周長?
2.什么是周長?(封閉圖形一周的長度)
3.師:“同學(xué)們,我們已經(jīng)能夠求出長方形、正方形的周長,理解了周長的一般概念并且初步認(rèn)識了圓,那么如何求圓的周長呢?”
引入課題:出示教材中的情境圖(圖略)讓學(xué)生觀察,圖中的圖形形狀是什么?(圓形)
師:“今天我們一起來研究圓的周長。”(板書課題)
二、探索新知
1.圓的周長的概念
出示一個圓,然后提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.周長的測量(自主發(fā)現(xiàn)、動手操作)
(1)師:“現(xiàn)在我們一起來看這樣一個問題,你能用什么方法求出一個圓的周長?”
(2)師:例如求水桶的周長時,細(xì)繩繞桶一圈可近似看成水桶的周長;車輪在路上滾動一圈所行的路長,就是車輪的周長。
(3)教師引導(dǎo)學(xué)生思考圓的周長與自身的什么因素存在著一定的關(guān)系。(可以先回顧長方形、正方形的周長和長、寬的關(guān)系)
(4)出示準(zhǔn)備好的學(xué)具:大小不一樣的四個圓形紙片,讓學(xué)生用滾動的方法測量它們的周長并完成下表。
■
學(xué)生花了很長時間才得出周長與直徑的比近似等于3.14。(由于學(xué)生在做圓片滾動時,操作上不夠小心,讓誤差偏大,要反復(fù)多次才能得出周長與直徑的比值)
3.導(dǎo)出公式(學(xué)生自行討論總結(jié))
師:“現(xiàn)在你能說說怎樣計算圓的周長了嗎?”“誰能用字母來表示?”
部分學(xué)生回答:用字母表示為:C=πd。
[案例二]
一、情境導(dǎo)入,引出課題
出示圓桌圖片讓學(xué)生觀察。
■
師:在花壇的周圍徹上磚將花壇圍起來,那么圍圓形花壇的磚長是多少米?即求什么?
生:圓形花壇的周長。
師:今天我們就來學(xué)習(xí)圓的周長 。(板書課題:圓的周長)
二、例題變式,探究新知
1.圓的周長的概念
出示一個圓,提問:這個圓的周長是什么?(圍成圓的曲線的長度就是圓的周長)
2.教師學(xué)法引導(dǎo)
想一想,討論一下怎樣才能使例題中容易求得它的周長呢?根據(jù)以下方法試試看:①舊知遷移新知;②陌生變熟悉;③大數(shù)變小數(shù);④以曲變直。
3.組織學(xué)生分工合作探求解決問題的方法
第1組分給剪刀和尺子;第2組分給剪刀、紙片和尺子;第3組分給鐵絲和尺子;第4組分給繩子和尺子。經(jīng)過學(xué)生動手操作和討論后由小組長發(fā)言。
組長1“舊知遷移新知”:把花壇割拼成長方形來計算也可以得到花壇的周長,不過有點難,并且會把花壇弄壞。
組長2“陌生變熟悉”:做一個像花壇一樣大的圓紙片,再把圓紙片剪拼成長方形來計算。
組長3“以曲變直”:做一個像花壇一樣大的小鐵絲圈,再將小鐵絲圈拉成直線,再測這根鐵絲的長度。
教師組織其他同學(xué)討論、比較以上的方法,在討論問題過程中,學(xué)生能夠初步辨別結(jié)論的共同點和不同點。最后大家一致認(rèn)為組長3“以曲變直”的方法最好。因此,將例題變式如下。
變式題:圓形花壇直徑是20m,它的周長是多少?花壇變成同樣大的直徑是20m的鐵絲圈,這個鐵絲圈的周長是多少?
以曲變直法:把這個鐵絲圈剪開拉直,然后量一量,得到它的周長是62.8米。
討論猜想:是不是直徑越長,周長越長?周長與直徑有什么關(guān)系?
組長4“以大數(shù)變小數(shù)”:直徑是20m的鐵絲圈太大了,不方便研究周長與直徑的關(guān)系,最好改成直徑是1.5cm、3cm、4cm或 5cm的鐵絲圈,然后根據(jù)以曲變直的方法測出對應(yīng)的圓周長再進(jìn)行比較。
用鐵絲分別做直徑為1.5厘米、3厘米、4厘米、5厘米的四個不同的圓A、B、C、D,并讓學(xué)生采用“以曲變直”的方法分工合作完成下表。
■
經(jīng)過分工合作,四個小組的同學(xué)很快算出了各自的周長,并算出周長與直徑的比值。四個小組的計算結(jié)果一出,學(xué)生不由自主地議論開來:“周長與直徑的比值怎么都是一樣的?”這時學(xué)生發(fā)現(xiàn)了圓的周長約是直徑的3.14倍的規(guī)律,即圓的周長=3.14×直徑。教師趁機(jī)又引導(dǎo):哪個是變量?(不同的直徑和不同的周長)哪個是不變量?(固定的值3.14)請同學(xué)議一議,不變量用哪字母表示?變量又用什么字母表示?請看書。最后學(xué)生知道這兩者之間的關(guān)系可用字母表示為:C=πd。
教師這樣做,引起了學(xué)生的注意。以后只要知道變量C和d其中的一個,就可以求出另一個。
師:請同學(xué)們利用得出的公式,看誰最快算出這個圓形花壇的周長。
[案例反思]
合作學(xué)習(xí)是新課程標(biāo)準(zhǔn)提倡的學(xué)習(xí)形式,但是當(dāng)“形神”不能統(tǒng)一時,我們就無法將這種形式發(fā)揮出來,這兩節(jié)課中,都運用了合作學(xué)習(xí)活動的形式,但效果卻有天壤之別,這值得我們反思。
案例一中成員分工不明,要么個個用繩子量度,要么個個用滾動的方法,這樣就耽誤了不少時間,學(xué)生間關(guān)系松散,沒有共同的凝聚力、向心力、競爭力、責(zé)任心,沒有組織協(xié)調(diào)者,誰想發(fā)言就發(fā)言,你一言我一言語各抒己見,討論也有些亂,沒有條理,不清楚,只是有形,沒有神。這樣導(dǎo)致課堂教學(xué)的流于形式,有形無神。
案例二中較好地把握了課標(biāo)中的合作交流的能力教學(xué)目標(biāo)要求,通過群體多邊活動共同完成學(xué)習(xí)任務(wù),每個成員都有明確的職責(zé),從而使合作交流有的放矢、有條不紊,是既省時又高效的“形神兼?zhèn)洹钡暮献鲗W(xué)習(xí)活動。
(責(zé)編 黃春香)endprint