劉龍 李新華 李強(qiáng)
[摘要] 盡管了解ARDS的發(fā)病機(jī)制及其各種影響患者預(yù)后的演變因素,機(jī)械通氣支持仍然是治療ARDS的基礎(chǔ),但是機(jī)械通氣本身可以通過多種機(jī)制共同加重或引起肺部損傷,統(tǒng)稱為呼吸機(jī)相關(guān)性肺損傷(VILI)。隨著對(duì)ARDS更深入的了解,VILI在設(shè)計(jì)肺保護(hù)性通氣策略過程中已經(jīng)受到重視,目的是減輕VILI和改善預(yù)后。本文旨在闡述VILI的病理生理機(jī)制,討論NAVA、體外生命支持、抗細(xì)胞因子療法等新的減輕和治療VILI的方法,并通過一些實(shí)驗(yàn)研究來證實(shí)這些觀念。
[關(guān)鍵詞] 機(jī)械通氣;呼吸機(jī)相關(guān)性肺損傷;神經(jīng)調(diào)節(jié)輔助通氣
[中圖分類號(hào)] R563.8 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2014)04-0157-04
急性呼吸窘迫綜合征(acute respiratory distress syndrome, ARDS)是指急性發(fā)作的低氧性呼吸衰竭,由非心源性肺水腫引起的雙側(cè)彌漫性肺泡浸潤(rùn)[1]。超過四十年的深入研究并沒有發(fā)現(xiàn)治療ARDS有效的藥物存在,機(jī)械通氣(mechanical ventilation, MV)支持仍然是治療的基礎(chǔ)[2],但是機(jī)械通氣本身可以通過多種機(jī)制共同加重或引起肺部損傷,統(tǒng)稱為呼吸機(jī)相關(guān)性肺損傷(ventilator-induced lung injury, VILI)[3]。這些機(jī)制包括暴露于高通脹的跨肺壓力(氣壓傷)、肺泡過度膨脹(容積傷)、或重復(fù)開啟和關(guān)閉肺泡。除了直接的結(jié)構(gòu)破壞,這些機(jī)械力可以觸發(fā)一系列復(fù)雜的炎癥介質(zhì),使局部和全身性炎癥反應(yīng)傳播到非肺器官[4],導(dǎo)致多個(gè)系統(tǒng)器官功能障礙,并最終死亡。
隨著對(duì)ARDS更深入的了解,VILI在設(shè)計(jì)肺保護(hù)性通氣策略過程中已經(jīng)受到重視,目的是減輕VILI和提高生存率。事實(shí)上,只有使用小潮氣量(VT)(≤6 mL/kg)通氣、足夠的呼氣末正壓(PEEP)、限制氣道平臺(tái)壓≤30 cmH2O可以提高ARDS患者生存率[5]。通過提高對(duì)VILI機(jī)制的認(rèn)識(shí)并制定新的通氣策略和治療干預(yù)措施,防止和減輕VILI以改善ARDS患者的預(yù)后已經(jīng)取得了相當(dāng)大的成果。在此,我們將簡(jiǎn)要回顧VILI的病理生理機(jī)制,并討論一些新的生理和非生理學(xué)的方法,以最大限度地減輕VILI。
1 VILI的病理生理
VILI是指MV引起肺泡過度擴(kuò)張而發(fā)生炎癥誘導(dǎo)肺泡通透性增加、肺水腫、肺不張的損傷[3]。VILI的主要力學(xué)因素是由于高跨肺壓區(qū)域肺過度膨脹引起的肺體積變形超過它本身的容積[6]。肺的靜息容積越小,對(duì)于一個(gè)給定的肺體積的張力變化越大。在機(jī)械通氣過程中,由于塌陷的肺泡擴(kuò)張力增加,加之肺泡反復(fù)的開放和塌陷,因此MV在低肺容積也可能是有害的[7,8]。
VILI是一個(gè)動(dòng)態(tài)的過程,研究發(fā)現(xiàn),在VILI中主要是有害刺激對(duì)肺泡上皮細(xì)胞和毛細(xì)血管內(nèi)皮細(xì)胞的損傷,其次是炎癥介質(zhì),肺泡過度充氣可以促進(jìn)細(xì)胞的增殖和炎癥反應(yīng)。肺泡細(xì)胞在機(jī)械力作用下的變形是肺泡細(xì)胞膜內(nèi)分子構(gòu)象的直接變化,導(dǎo)致下游信使系統(tǒng)激活。MV可以觸發(fā)一系列復(fù)雜的促炎和抗炎介質(zhì),可能會(huì)導(dǎo)致肺的損傷加重或加快肺功能的恢復(fù)[9]。MV誘導(dǎo)的炎癥反應(yīng)認(rèn)為有兩種機(jī)制:第一種是直接創(chuàng)傷細(xì)胞破壞細(xì)胞壁,從而導(dǎo)致細(xì)胞因子釋放到肺泡腔和全身循環(huán)中[10];第二種機(jī)制是力的傳導(dǎo)。體外研究表明,大多數(shù)肺泡細(xì)胞在環(huán)狀拉伸作用下可產(chǎn)生細(xì)胞因子[11]。然而,這些物理作用力的感應(yīng)機(jī)制和其如何轉(zhuǎn)換成細(xì)胞內(nèi)信號(hào)在很大程度上都是未知的。Slutsky和Tremblay[12]首先提出應(yīng)用機(jī)械通氣的ARDS患者可能通過啟動(dòng)和介導(dǎo)全身炎癥反應(yīng)加速多系統(tǒng)器官功能障礙的發(fā)展。ARDS的實(shí)驗(yàn)研究和臨床試驗(yàn)已經(jīng)表明,保護(hù)性通氣策略的應(yīng)用與血清細(xì)胞因子水平的下降[13,14],減少肺外器官功能障礙[15],和降低死亡率[5]有關(guān)。
2 減輕VILI的新方法
2.1 神經(jīng)調(diào)節(jié)輔助通氣模式減輕VILI
神經(jīng)調(diào)節(jié)輔助通氣(neurally adjusted ventilatory assist, NAVA)是通過一個(gè)專門設(shè)計(jì)的鼻胃管記錄膈肌電活動(dòng)(EADI)來控制機(jī)械通氣,呼吸機(jī)上比例系數(shù)由臨床醫(yī)生來設(shè)置[16]。如果VT低于病人的呼吸需求EADI會(huì)本能上調(diào),大于病人的需求則會(huì)下調(diào),當(dāng)輔助水平滿足患者的呼吸需求時(shí),即使上調(diào)呼吸機(jī)的比例系數(shù),VT也將保持相對(duì)恒定[17-19]。NAVA按照患者的呼吸需求提供同步呼吸輔助,這可能在增加患者呼吸功能或呼吸肌無力時(shí)是特別有效的。在一定程度上,病人的防御機(jī)制是有效限制不適宜的肺牽張,NAVA可以通過定制MV方案來改善患者的預(yù)后[20,21]。
臨床研究已經(jīng)證明,NAVA可以防止過度肺通氣,高效減輕呼吸肌負(fù)擔(dān),并能改善患者與呼吸機(jī)同步性[16, 22]。在NAVA模式下,當(dāng)肺通氣不足時(shí)可以反射性地限制VT從而自己調(diào)整VT及最大程度的限制VILI,并且這個(gè)假設(shè)在動(dòng)物研究中已經(jīng)進(jìn)行了測(cè)試[19],證明NAVA與傳統(tǒng)低VT肺保護(hù)和肺器官功能障礙的方案在肺損傷動(dòng)物中的作用相似[23,24]。
2.2 測(cè)定肺壓與個(gè)體化的呼氣末正壓通氣
有些人認(rèn)為肺壓是VILI的主要決定因素[25]。肺泡內(nèi)壓靜態(tài)條件下在吸氣末和呼氣末近似氣道壓力。由于胸腔壓力的測(cè)量是侵入性的,因此常用食管壓力(PES)[26]。不相稱的機(jī)械應(yīng)力(也就是吸氣末高肺壓)作用于損傷肺是觸發(fā)機(jī)械傳導(dǎo)和VILI的一個(gè)關(guān)鍵。應(yīng)用適當(dāng)水平的呼氣末正壓(PEEP)可以減輕不張傷,以防止肺泡在呼氣末完全塌陷。Loring及其同事[27]研究在ARDS動(dòng)物模型中不同程度PEEP對(duì)胸壁收縮的影響。第一個(gè)實(shí)驗(yàn)組,在動(dòng)物胸壁應(yīng)用收縮彈性粘結(jié)劑,恒定的PEEP(LC組);另一組應(yīng)用同樣的收縮劑,但PEEP提高保持在呼氣末肺壓(LCP組)的水平。兩實(shí)驗(yàn)組均采用相同的通氣策略1.5 h后生理鹽水肺灌洗,用食管氣球測(cè)量肺壓,在MV中,LC組肺損傷、低氧血癥、肺水腫程度比LCP對(duì)照組更嚴(yán)重,LC組血液和肺灌洗液炎性細(xì)胞因子明顯升高,因此,額外PEEP維持肺壓可以減輕胸壁緊縮的有害影響。endprint
ARDS患者的一項(xiàng)隨機(jī)臨床試驗(yàn),設(shè)定PEEP保持積極的肺壓,食管氣球測(cè)定(干預(yù)組)與設(shè)定PEEP根據(jù)氧合(對(duì)照組)相比,干預(yù)組在改善呼吸系統(tǒng)力學(xué)、氧合、提高生存率上沒有顯著優(yōu)勢(shì)。這項(xiàng)研究還表明,根據(jù)肺壓確定一個(gè)適當(dāng)?shù)腜EEP水平是可行的。
2.3 體外氣體交換
體外生命支持(extracorporeal life support, ECLS)技術(shù),比如體外膜肺氧合(extracorporeal membrane oxygenation, ECMO)或體外CO2去除(extracorporeal CO2 removal, ECCO2R)均可為ARDS的患者提供足夠的氣體交換[28]。因ECLS技術(shù)創(chuàng)傷小,生物相容性強(qiáng),而且使用更容易、更安全,ECLS的設(shè)備在過去十年中有了很大的改進(jìn)[29,30]。此外,應(yīng)用ECLS可以方便使用最具保護(hù)性的MV(例如,采用VT<6 mL/kg和更低的氣道壓力),使VILI的風(fēng)險(xiǎn)盡量降到最低。更根本的是,ECLS支持的患者可能不需要插管或侵入性的MV[31]。
Terragni和他的同事[32]評(píng)估了當(dāng)VT<6 mL/kg是否可提高肺保護(hù)。VT為6 mL/kg的32例急性呼吸窘迫綜合征的患者,肺泡內(nèi)高壓從28~30 cm H2O減少到25~28 cm H2O,至少在72 h內(nèi)應(yīng)用ECCO2R管理呼吸性酸中毒(pH值≤7.25),肺泡高壓為25~28 cm H2O的患者繼續(xù)接受MV(VT=6 mL/kg)。以ECCO2R組(10例)為標(biāo)準(zhǔn),二氧化碳分壓(平均50 mm Hg),pH值(均值為7.32),VT從6減少到4 mL/kg,肺泡高壓從29下降到25 cm H2O(P <0.01)。此外,在ECCO2R組機(jī)械通氣72 h后,VT低于6 mL/kg,有形態(tài)標(biāo)記的肺損傷和肺細(xì)胞因子顯著降低(P<0.01)。值得注意的是,患者接受ECCO2R沒有相關(guān)并發(fā)癥發(fā)生[28, 33]。
2.4 抗細(xì)胞因子療法
MV可以增加肺內(nèi)炎癥介質(zhì)的水平,應(yīng)用炎癥介質(zhì)拮抗劑可以減輕VILI[3],這在臨床前研究中許多潛在作用已經(jīng)確定,在體外和體內(nèi)大鼠模型進(jìn)行損害機(jī)械通氣后,一些炎癥介質(zhì)(包括TNF-α、IL-6和IL-10)水平增加[13, 34]。
ARDS應(yīng)用MV模型中,生理鹽水肺灌洗后在肺泡中促炎性細(xì)胞因子TNF-α顯著增加[8],Imai和他的同事[35]研究用氣道抗TNF-α抗體預(yù)處理后是否會(huì)減輕VILI的程度,灌輸?shù)蛣┝浚?.2 mg/kg,6例)和高劑量(1 mg/kg,6例)的多克隆抗TNF-α抗體兩個(gè)治療組,與血清IgG抗體對(duì)照組(n =6)、生理鹽水對(duì)照組(n=7)相比較。經(jīng)過4 h的MV,肺灌洗液TNF-α水平明顯高于基線。此外,應(yīng)用抗TNF-α抗體預(yù)處理可以改善氣體交換和呼吸系統(tǒng)順應(yīng)性,減少白細(xì)胞浸潤(rùn),改善病理結(jié)果。但是這些實(shí)驗(yàn)結(jié)果是通過利用VILI動(dòng)物模型得出的,迄今為止,抗細(xì)胞因子治療危重病人的臨床試驗(yàn)仍舊沒有實(shí)質(zhì)性的進(jìn)展[36,37]。
2.5 熱休克反應(yīng)
體外實(shí)驗(yàn)表明,誘導(dǎo)熱休克反應(yīng)預(yù)防內(nèi)毒素介導(dǎo)的細(xì)胞凋亡,而在體內(nèi)它保護(hù)動(dòng)物避免膿毒癥、急性呼吸窘迫綜合征和缺血再灌注損傷[38]。
熱休克反應(yīng)的一個(gè)可能機(jī)制是通過熱休克蛋白因子結(jié)合,防止其從炎癥細(xì)胞釋放[39]。Ribeiro及其同事進(jìn)行的隨機(jī)實(shí)驗(yàn)對(duì)大鼠接受熱暴露或假手術(shù)治療機(jī)械通氣2 h后通過灌洗的細(xì)胞因子沖洗后分析,在促炎細(xì)胞因子水平MV假治療較預(yù)通氣狀態(tài)下低水平的細(xì)胞因子的肺順應(yīng)性下降了47%。相反,在假治療組導(dǎo)致了較小的炎性細(xì)胞因子的減少(17%)。核因子κB是一個(gè)重要的轉(zhuǎn)錄因子,許多炎性細(xì)胞因子可使其激活,與膿毒癥患者的死亡率相關(guān)。最近的研究表明,誘導(dǎo)熱休克反應(yīng)抑制體外培養(yǎng)含有核因子κB的呼吸道上皮細(xì)胞[40],在ARDS患者中熱休克蛋白和誘導(dǎo)熱休克反應(yīng)有助于減輕或防止VILI[41]。
3 未來的發(fā)展方向與結(jié)論
40年來仍然沒有具體有效的ARDS藥物治療方案。MV仍然是支持治療的基礎(chǔ),盡管它本身可能導(dǎo)致進(jìn)一步的肺損傷。治療VILI的一個(gè)重要的模式轉(zhuǎn)變包括新的療法,其目的不僅是降低肺內(nèi)壓力或容積,而是防止炎癥反應(yīng)的啟動(dòng)和/或傳播(相關(guān)作用)的干預(yù)措施,NAVA、體外生命支持、抗細(xì)胞因子療法代表著VILI輔助療法的新方向,以現(xiàn)有的和新的肺保護(hù)性通氣策略,避免VILI的發(fā)展。但在臨床前研究許多減輕VILI和改善預(yù)后新的治療方法在隨后的人體臨床試驗(yàn)尚未成功??傊?,正在進(jìn)行的臨床前和臨床研究仍在繼續(xù),希望能解決產(chǎn)生這一差異的原因,進(jìn)一步了解MV、肺損傷、危重患者之間的關(guān)系,并且這些研究將有助于開發(fā)新的方法以改善或減輕VILI的發(fā)展。
[參考文獻(xiàn)]
[1] Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the berlin definition[J]. JAMA,2012,307(23):2526-2533.
[2] Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome[J]. JAMA,2005, 294(22):2889-2896.
[3] Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside[J]. Intensive Care Med,2006,32(1):24-33.endprint
[4] Tremblay LN, Slutsky AS.Ventilator-induced injury: from barotrauma to biotrauma[J]. Proc Assoc Am Physicians,1998,110(6):482-488.
[5] Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network[J]. N Engl J Med,2000,342(18):1301-1308.
[6] Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome[J].Am J Respir Crit Care Med,2008,178(4):346-355.
[7] Smith BJ, Grant KA, Bates JH. Linking the development of ventilator-induced injury to mechanical function in the lung[J]. Ann Biomed Eng,2013,41(3):527-536.
[8] Wilson MR, Takata M. Inflammatory mechanisms of ventilator-induced lung injury: A time to stop and think[J]. Anaesthesia,2013,68(2):175-178.
[9] Crosby LM, Waters CM. Epithelial repair mechanisms in the lung[J].Am J Physiol Lung Cell Mol Physiol,2010,298(6):L715-731.
[10] Plotz FB, Slutsky AS, Van Vught AJ, et al. Ventilator-induced lung injury and multiple system organ failure:a critical review of facts and hypotheses[J]. Intensive Care Med,2004,30(10):1865-1872.
[11] Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch induces cytokine release by alveolar epithelial cells in vitro[J]. Am J Physiol,1999,77(1 Pt 1):167-173.
[12] Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor[J]. Am J Respir Crit Care Med,1998,157(6 Pt 1):1721-1725.
[13] Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model[J]. J Clin Invest,1997,99(5):944-952.
[14] Villar J, Cabrera NE, Casula M, et al. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model[J]. Respir Res,2010,11:27.
[15] Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome:a randomized controlled trial[J]. Jama,1999,282(1):54-61.
[16] Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure[J]. Nat Med,1999,5(12):1433-1436.
[17] Chiew YS, Chase JG, Lambermont B, et al. Effects of Neurally Adjusted Ventilatory Assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching[J]. Biomed Eng Online,2013,12:61.endprint
[18] Roze H, Repusseau B, Perrier V, et al. Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist[J]. Br J Anaesth,2013,111(6):955-960.
[19] Brander L, Sinderby C, Lecomte F, et al. Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury[J]. Intensive Care Med,2009,35(11):1979-1989.
[20] Gama de Abreu M, Belda FJ. Neurally adjusted ventilatory assist: letting the respiratory center take over control of ventilation[J]. Intensive Care Med,2013,39(8):1481-1483.
[21] Mauri T, Bellani G, Grasselli G, et al.Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: A novel approach based on diaphragm electrical activity[J]. Intensive Care Med,2013,39(2):282-291.
[22] Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction[J]. Intensive Care Med,2011,37(2):263-271.
[23] Allo JC, Beck JC, Brander L,et al. Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury[J]. Crit Care Med,2006,34(12):2997-3004.
[24] Moss KS. Neurally adjusted ventilatory assist: insufficient evidence of broad clinical outcomes[J]. Respir Care 2013,58(5):884-885.
[25] Sarge T, Talmor D. Targeting transpulmonary pressure to prevent ventilator induced lung injury[J]. Minerva Anestesiol 2009,75(5):293-299.
[26] Talmor D, Sarge T, O'Donnell CR,et al. Esophageal and transpulmonary pressures in acute respiratory failure[J]. Crit Care Med,2006, 34(5):1389-1394.
[27] Loring SH, Pecchiari M, Della Valle P, et al. Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats[J]. Crit Care Med,2010, 38(12):2358-2364.
[28] Alves C, Chen JT, Patel N, et al. Extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome in severe malaria[J]. Malar J,2013,12(1):306.
[29] Haushofer M, Abusabha Y, Amerini AL, et al. Oxygenated shunting from right to left: A feasibility study of minimized atrio-atrial extracorporeal membrane oxygenation for mid-term lung assistance in an acute ovine model[J]. Interact Cardiovasc Thorac Surg,2013,17(1):44-48.
[30] Kredel M, Bischof L, Wurmb T, et al. Combination of positioning therapy and venovenous extracorporeal membrane oxygenation in ARDS patients[J]. Perfusion,2013 Aug 28.endprint
[31] Ried M, Bein T, Philipp A, et al. Extracorporeal lung support in trauma patients with severe chest injury and acute lung failure: a 10-year institutional experience[J]. Crit Care,2013,17(3):R110.
[32] Pipeling MR,F(xiàn)an E.Therapies for refractory hypoxemia in acute respiratory distress syndrome[J]. JAMA,2010,304(22):2521-2527.
[33] Boulate D, Luyt CE, Pozzi M, et al. Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: An unrecognized problem[J]. Eur J Cardiothorac Surg,2013,44(3):544-549.
[34] Herrera MT, Toledo C, Valladares F, et al. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model[J]. Intensive Care Med,2003,29(8):1345-1353.
[35] Imai Y, Kawano T, Iwamoto S, et al.Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits[J]. J Appl Physiol (1985) ,1999,87(2):510-515.
[36] Exley AR, Cohen J, Buurman W, et al. Monoclonal antibody to TNF in severe septic shock[J]. Lancet,1990,335(8700):1275-1277.
[37] Opal SM, Fisher CJ, Jr., Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group[J]. Crit Care Med,1997,25(7):1115-1124.
[38] Wheeler DS, Wong HR. Heat shock response and acute lung injury[J]. Free Radic Biol Med, 2007,42(1):1-14.
[39] Ribeiro SP, Villar J, Downey GP, et al. Effects of the stress response in septic rats and LPS-stimulated alveolar macrophages: evidence for TNF-alpha posttranslational regulation[J]. Am J Respir Crit Care Med,1996,154(6 Pt 1):1843-1850.
[40] Wong HR, Ryan M, Wispe JR. Stress response decreases NF-kappaB nuclear translocation and increases I-kappaB alpha expression in A549 cells[J]. J Clin Invest ,1997,99(10):2423-2428.
[41] Villar J, Ribeiro SP, Mullen JB, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model[J]. Crit Care Med,1994,22(6):914-921.
(收稿日期:2013-11-15)endprint