曲淼 沈聰聰 侯亦康 許佑榮 柴崗 高曉燕
軟骨細(xì)胞生物打印后細(xì)胞活力分析
曲淼 沈聰聰 侯亦康 許佑榮 柴崗 高曉燕
目的初步確立軟骨細(xì)胞的二維生物打印方法,實(shí)現(xiàn)對(duì)細(xì)胞噴射過程的控制并保持打印后的細(xì)胞活力。方法取原代軟骨細(xì)胞,常規(guī)培養(yǎng)至第2代。實(shí)驗(yàn)分2組:打印組,快速成型組織打印機(jī)進(jìn)行二維細(xì)胞打印,X軸間隔300 μm,Y軸間隔1 500 μm,激光共聚焦顯微鏡觀察,經(jīng)生物打印后培養(yǎng)2 h,Live/Dead viability Kit測(cè)定細(xì)胞活力,激光共聚焦顯微鏡觀察細(xì)胞熒光染色情況;對(duì)照組除細(xì)胞懸液不行打印,其余操作同打印組。結(jié)果打印組細(xì)胞激光共聚焦顯微鏡觀察,“細(xì)胞墨滴”在二維組織中均勻分布,滿足二維設(shè)計(jì)細(xì)胞打印的要求,每個(gè)“細(xì)胞墨滴”含細(xì)胞15~35個(gè)。細(xì)胞活力測(cè)試顯示,打印組細(xì)胞活力與對(duì)照組無明顯區(qū)別。結(jié)論通過生物打印技術(shù)可實(shí)現(xiàn)軟骨細(xì)胞在二維平面上的定向、定量規(guī)則分布,為進(jìn)一步的細(xì)胞三維打印乃至器官打印體系奠定基礎(chǔ)。
軟骨細(xì)胞細(xì)胞打印組織工程
軟骨缺損或損傷一直是臨床治療的難題,組織工程技術(shù)為軟骨缺損的修復(fù)提供了新方法[1-2]。但是,組織工程技術(shù)無法同時(shí)、精確地將不同的細(xì)胞和細(xì)胞外基質(zhì)直接定位在三維支架內(nèi),尚無法實(shí)現(xiàn)工程化生產(chǎn)人造組織和器官。細(xì)胞打印技術(shù)的出現(xiàn),為生產(chǎn)人造組織和器官提供了一種全新的方法,被認(rèn)為是可應(yīng)用于組織工程的最具潛力的技術(shù)之一。細(xì)胞打印技術(shù)的基本原理,是將活細(xì)胞/基質(zhì)作為堆積對(duì)象,經(jīng)過計(jì)算機(jī)輔助層層堆積,精確定位,形成三維活性多細(xì)胞體系。避免打印細(xì)胞受損是該技術(shù)工程化亟待解決的關(guān)鍵問題之一。本實(shí)驗(yàn)即以軟骨細(xì)胞為研究對(duì)象,探討軟骨細(xì)胞經(jīng)細(xì)胞打印后的存活率以及細(xì)胞活性。
1.1 主要試劑及儀器
8周齡雜交豬(上海川沙養(yǎng)殖場(chǎng)),雌雄不限。
胎牛血清(FBS)、DMEM培養(yǎng)液(GIBCO公司,美國(guó));0.25%胰蛋白酶(Amresco公司,美國(guó));0.2%Ⅱ型膠原酶(Serva公司,德國(guó));Live/Dead viability Kit(Invitrogen公司,美國(guó)),Kit包含兩種試劑:鈣黃綠素AM(10 μmol/L,激發(fā)頻率/發(fā)射頻率為495 nm/ 515 nm)和溴乙非啶同型二聚體1(10 μmol/L,激發(fā)頻率/發(fā)射頻率為495 nm/635 nm),前者進(jìn)行活細(xì)胞測(cè)試,后者進(jìn)行細(xì)胞膜排除測(cè)試。
快速成型組織打印機(jī)由本實(shí)驗(yàn)室自行組裝,對(duì)其進(jìn)行打印系統(tǒng)消毒和改裝,將彩色噴頭改造為細(xì)胞噴頭(直徑50 μm);激光共聚焦顯微鏡(Leica公司,德國(guó));倒置顯微鏡(Olympus公司,日本)。
1.2 軟骨細(xì)胞的分離和培養(yǎng)
取豬耳軟骨,去除軟骨膜,剪成0.3 cm×0.3 cm大小,0.25%胰蛋白酶預(yù)消化30 min,0.2%Ⅱ型膠原酶消化8~12 h,過濾、離心、洗滌、計(jì)數(shù)。以含10%FBS的DMEM重懸后,按2.0×104cells/cm2的密度接種于10 cm培養(yǎng)皿,于37℃、5%CO2、100%飽和濕度下培養(yǎng)。待細(xì)胞生長(zhǎng)近80%~90%融合時(shí),常規(guī)消化傳代培養(yǎng),收集第2代細(xì)胞備用。
1.3 實(shí)驗(yàn)方法
1.3.1 細(xì)胞打印參數(shù)的優(yōu)化
取第2代軟骨細(xì)胞,DMEM(含10%FBS)重懸細(xì)胞,調(diào)整為1×106cells/mL單細(xì)胞懸液。將單細(xì)胞懸液通過快速成型組織打印機(jī)進(jìn)行二維細(xì)胞打印,X軸間隔為300 μm,Y軸間隔為1 500 μm,打印速度為20 mm/s,頻率50 Hz,打印后用10 cm培養(yǎng)皿收集細(xì)胞,作為打印組。
1.3.2 打印后細(xì)胞活力檢測(cè)
將打印后的軟骨細(xì)胞培養(yǎng)2 h,以Live/Dead viability Kit測(cè)定細(xì)胞活力,以鈣黃綠素AM、溴乙非啶同型二聚體室溫下孵育細(xì)胞30~45 min,進(jìn)行免疫熒光檢測(cè),激光共聚焦顯微鏡觀察,作為打印組。對(duì)照組:除不行打印細(xì)胞懸液外,其余操作均同打印組。
2.1 細(xì)胞打印參數(shù)的優(yōu)化
打印組的細(xì)胞激光共聚焦顯微鏡觀察顯示,“細(xì)胞墨滴”在二維組織中規(guī)則且均勻分布,滿足二維設(shè)計(jì)細(xì)胞打印要求?!凹?xì)胞墨滴”排列基本達(dá)到實(shí)驗(yàn)設(shè)計(jì)的X軸間隔300 μm,Y軸間隔1 500 μm,每個(gè)“細(xì)胞墨滴”含細(xì)胞15~35個(gè)(圖1)。
圖1 軟骨細(xì)胞經(jīng)二維生物打印后的分布(激光共聚焦顯微鏡,100×)Fig.1Distribution observation of chondrocytes after biological two-dimensional printing (Laser scanning confocal microscope,100×)
2.2 打印后細(xì)胞活力檢測(cè)
打印組細(xì)胞經(jīng)免疫熒光處理,室溫下孵育30 min,激光共聚焦顯微鏡觀察顯示細(xì)胞熒光染色情況,紅色熒光示細(xì)胞失活,綠色熒光示細(xì)胞有活力。打印組細(xì)胞活力與對(duì)照組無明顯區(qū)別(圖2)。
圖2 打印后2 h細(xì)胞活力檢測(cè)(激光共聚焦顯微鏡,40×)(綠色熒光示細(xì)胞活力正常,紅色熒光示細(xì)胞死亡)Fig.2Cell viability test 2 hours after printing(Laser scanning confocal microscope,40×)(green fluorescence:cells with normal viability;red fluorescence:dead cells)
組織工程的基本原理,是將組織細(xì)胞或干細(xì)胞貼附于生物相容性良好的生物材料上,形成細(xì)胞—生物材料復(fù)合物,植入到體內(nèi)特定部位,或置于體外特定環(huán)境下,在生物材料逐步降解的同時(shí),細(xì)胞產(chǎn)生基質(zhì),形成新的具有特定形態(tài)、結(jié)構(gòu)及功能的相應(yīng)組織[3]。但是傳統(tǒng)的組織工程技術(shù)存在著不可忽視的缺陷:①工程化的組織和器官在形態(tài)、力學(xué)、生物化學(xué)和功能上的分化需要幾周時(shí)間,成為產(chǎn)業(yè)化亟待解決的關(guān)鍵問題之一;②人體器官和組織的構(gòu)成極其復(fù)雜,通常是由多種細(xì)胞和細(xì)胞外基質(zhì)構(gòu)成,現(xiàn)有技術(shù)難以將不同物質(zhì)同時(shí)放置在三維支架中[4],同時(shí)也難以精確地將不同細(xì)胞和細(xì)胞外基質(zhì)直接定位于三維支架內(nèi);③構(gòu)造的組織或器官內(nèi)缺少血管,無法供應(yīng)氧氣和養(yǎng)料,易導(dǎo)致組織或器官壞死[5];④受支架技術(shù)空間分辨率的限制,細(xì)胞滲透至支架材料內(nèi)部的速度很慢[6]。因此,傳統(tǒng)的組織工程技術(shù)尚無法實(shí)現(xiàn)工程化生產(chǎn)人造的組織和器官。
細(xì)胞打印是目前生物制造技術(shù)中最具有生命力的技術(shù)之一,具有廣闊的應(yīng)用前景。細(xì)胞打印目前處于初步研究階段,但是也取得了一定成果,可以用來打印不同種類的細(xì)胞,經(jīng)合理培養(yǎng)可自行融合,形成復(fù)雜的三維組織,具有巨大的應(yīng)用潛能。Barron等[7]將多層的人類骨肉瘤細(xì)胞成功打印到了人工基底膜上,形成了三維的細(xì)胞結(jié)構(gòu),并且經(jīng)過存活測(cè)試,打印后細(xì)胞的存活率高于95%。Xu等[8]分別將老鼠胚胎主運(yùn)動(dòng)元細(xì)胞、老鼠胚胎大腦皮質(zhì)神經(jīng)元和海馬神經(jīng)元成功打印出來,而且實(shí)驗(yàn)驗(yàn)證了打印后的細(xì)胞可以形成具有一定形態(tài)的簡(jiǎn)單結(jié)構(gòu)[9]。Ringeisen等[10]繼而成功打印了成纖維細(xì)胞等普通細(xì)胞,并能形成特定的三維結(jié)構(gòu)。
然而,目前細(xì)胞打印系統(tǒng)也存在缺陷:①噴頭易堵塞;②墨水的頻繁回填易造成生物材料的污染;③不能進(jìn)行高黏度液體打?。虎艽蛴『蠹?xì)胞的活性下降。另外,打印后的細(xì)胞仍需要細(xì)胞外基質(zhì)以實(shí)現(xiàn)其長(zhǎng)期培養(yǎng)。如何減少打印過程中的細(xì)胞受損是目前細(xì)胞打印技術(shù)存在的嚴(yán)峻挑戰(zhàn)之一。細(xì)胞的存活率與細(xì)胞的種類、涂層材料特性及其厚度,以及外部環(huán)境的變化有關(guān),在細(xì)胞液滴的形成和噴射過程中也會(huì)使打印細(xì)胞受力,細(xì)胞可能受到機(jī)械損傷和熱損傷。細(xì)胞在打印過程中液滴的加速度高達(dá)109 g[11],細(xì)胞在如此高的加速度作用下有可能會(huì)影響其活性。此外,在細(xì)胞著落過程中,涂層的厚度與噴射速度也是兩個(gè)典型的影響細(xì)胞活力的打印因素。
但目前為止,大部分細(xì)胞打印實(shí)驗(yàn)設(shè)計(jì)針對(duì)的是打印細(xì)胞的活性,而對(duì)細(xì)胞打印方式缺乏深入研究。打印時(shí)間間隔和打印驅(qū)動(dòng)脈寬等打印控制參數(shù)對(duì)細(xì)胞損傷的影響,以及單細(xì)胞懸液的密度對(duì)打印效果的影響等缺乏詳實(shí)的分析,也缺乏細(xì)胞打印過程中細(xì)胞受損的理論依據(jù),不但限制其應(yīng)用,而且也嚴(yán)重阻礙了專用細(xì)胞噴射裝置的研制,無法實(shí)現(xiàn)工程化細(xì)胞打印。所以,在細(xì)胞打印過程中細(xì)胞或細(xì)胞/基質(zhì)噴射過程的控制,使打印后細(xì)胞快速、精確地定位于目標(biāo)區(qū)域,并保持打印后的細(xì)胞活力、維持正常細(xì)胞形態(tài)且繼續(xù)生長(zhǎng),是十分重要的問題。
我們的研究旨在解決這兩個(gè)問題,通過二維設(shè)計(jì)決定細(xì)胞打印間隔,包括平面X、Y軸二維細(xì)胞分布,調(diào)整細(xì)胞打印參數(shù),實(shí)現(xiàn)“細(xì)胞墨滴”在打印組織中的二維定向分布;通過打印細(xì)胞懸液中的濃度來決定“細(xì)胞墨滴”的濃度,調(diào)整“細(xì)胞墨滴”中細(xì)胞數(shù)量,實(shí)現(xiàn)細(xì)胞在三維組織結(jié)構(gòu)中的定量和定點(diǎn)分布,使打印后的細(xì)胞能夠快速、精確地定位于目標(biāo)區(qū)域。打印后細(xì)胞的活力測(cè)試表明能使細(xì)胞所受損傷降至最低甚至零損傷,提示軟骨細(xì)胞的生物打印完全可行,并為進(jìn)一步的三維組織打印乃至器官打印體系研究奠定了基礎(chǔ)。
[1]Langer R,Vacanti JP.Tissue engineering[J].Science,1993,260 (5110):920-926.
[2]Rahfoth B,Weisser J,Sternkopf F,et al.Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits[J].Osteoarthritis Cartilage,1998,6(1):50-65.
[3]Burg KJ,Boland T.Minimally invasive tissue engineering composites and cell printing[J].IEEE Eng Med Biol Mag,2003,22(5):84-91.
[4]Nakamura M,Kobayashi A,Takagi F,et al.Biocompatible inkjet printing technique for designed seeding of individual living cells [J].Tissue Eng,2005,11(11-12):1658-1666.
[5]Mironov V,Visconti RP,Kasyanov V,et al.Organ printing:tissue spheroids as building blocks[J].Biomaterials,2009,30(12):2164-2174.
[6]Mironov V,Visconti RP,Kasyanov V,et al.Bioprinting:directed tissue self-assembly[J].Chem Eng Prog,2007,103(12):12-17.
[7]Barron JA,Spargo BJ,Ringeisen BR.Biological laser printing of threedimensional cellular structures[J].Appl Phys A,2004,79(4-6):1027-1030.
[8]Xu T,Jin J,Gregory C,et al.Inkjet printing of viable mammalian cells[J].Biomaterials,2005,26(1):93-99.
[9]Xu T,Gregory CA,Molnar P,et al.Viability and electrophysiology of neural cell structures generated by the inkjet printing method [J].Biomaterials,2006,27(19):3580-3588.
[10]Ringeisen BR,Kim H,Barron JA,et al.Laser printing of pluripotent embryonal carcinoma cells[J].Tissue Eng,2004,10(3-4):483-491.
[11]Hopp B,Smausz T,Barna N,et al.Time-resolved study of absorbing film assistedlaser induced forward transfer of Trichodermalongibrachiatum conidia[J].J Phys D Appl Phys,2005,38(6):833-837.
Viability Assay on Biological Printing of Chondrocytes
ObjectiveTo establish a two-dimensional biological printing technique of chondrocytes so as to control the cell transfer process and keep cell viability after printing.MethodsPrimary chondrocytes were obtained from auricles of 8-week-old piglets and then were regularly sub-cultured to passage 2(P2).The experiment was divided into 2 groups:printing group and control group.In printing group,P2 chondrocytes were transferred by rapid prototype biological printer(interval in x-axis 300 μm,interval in y-axis 1 500 μm),and were then cultured for 2 hours,afterwards cell viability was detected by Live/Dead viability Kit and cell fluorescence was observed by laser scanning confocal microscope;In control group,all steps were the same as printing group except that cell suspension received no printing.ResultsLaser scanning confocal microscope observation on the cells in printing group revealed the“cell ink droplets”.They were distributed regularly and evenly in the two-dimensional layer and each contained 15-35 cells,meeting the requirement of designing two-dimensional cell printing.The cells in printing group went through cell viability test,laser scanning confocal microscope observation showed that it was no significant difference between the control group and the printing groups in terms of cell viability. Conclusion Biological printing technique can realize the oriented,quantificational and regular distribution of chondrocytes in the two-dimensional plane and lays the foundation for the construction of three-dimensional cell printing or even organ printing system.
Chondrocytes;Cell printing;Tissue engineering
R319
A
1673-0364(2014)01-0011-03
QU Miao1,SHEN Congcong1,HOU Yikang1,XU Yourong1, CHAI Gang1,GAO Xiaoyan2.
1 Department of Plastic and Reconstructive Surgery,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine,Shanghai Key Laboratory of Tissue Engineering,Shanghai 200011,China;2 Shanghai Zhoupu Hospital,Shanghai 201318,China.Corresponding author:CHAI Gang(E-mail:13918218178@163.com); GAO Xiaoyan(E-mail:gxyhelen@126.com).
2013年11月19日;
2013年12月26日)
10.3969/j.issn.1673-0364.2014.01.004
國(guó)家自然科學(xué)基金項(xiàng)目(30600650);上海市自然基金資助項(xiàng)目(13ZR1437500);2012年浦東新區(qū)衛(wèi)生系統(tǒng)優(yōu)秀青年醫(yī)學(xué)人才培養(yǎng)基金資助項(xiàng)目(PWRq2012-14)。
200011上海市上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院整復(fù)外科,上海市組織工程研究重點(diǎn)實(shí)驗(yàn)室(曲淼,沈聰聰,侯亦康,許佑榮,柴崗);201318上海市上海市周浦醫(yī)院(高曉燕)。
柴崗(E-mail:13918218178@163.com);高曉燕(E-mail:gxyhelen@126.com)。