裴華偉綜述,常謙審校
間充質(zhì)干細(xì)胞在腹主動(dòng)脈瘤治療應(yīng)用中作用機(jī)制的研究進(jìn)展
裴華偉綜述,常謙審校
腹主動(dòng)脈瘤是腹主動(dòng)脈局部永久性擴(kuò)張,常見(jiàn)于65歲左右老年患者,發(fā)病時(shí)多無(wú)癥狀,直至破裂死亡,有效的早期干預(yù)是改善腹主動(dòng)脈瘤患者預(yù)后的主要措施。間充質(zhì)干細(xì)胞是一種能多向分化的祖細(xì)胞,能夠促進(jìn)病變血管的重構(gòu),改善血管功能。目前研究發(fā)現(xiàn)間充質(zhì)干細(xì)胞注射能夠抑制腹主動(dòng)脈瘤壁中的病理改變,延緩腹主動(dòng)脈瘤的進(jìn)展。本文將對(duì)近年來(lái)間充質(zhì)干細(xì)胞在腹主動(dòng)脈瘤重構(gòu)過(guò)程中的作用機(jī)制進(jìn)行綜述。
腹主動(dòng)脈瘤;間充質(zhì)干細(xì)胞
腹主動(dòng)脈瘤是腹主動(dòng)脈局部擴(kuò)張性病變,多發(fā)生于腎下腹主動(dòng)脈,直徑大于正常主動(dòng)脈50%或> 3 cm[1],腹主動(dòng)脈瘤雖表現(xiàn)在局部病變,但研究發(fā)現(xiàn)腹主動(dòng)脈瘤患者整個(gè)降主動(dòng)脈壁都發(fā)生了異常病理改變[2],分子生物學(xué)研究表明遠(yuǎn)離動(dòng)脈瘤的腹主動(dòng)脈壁與動(dòng)脈瘤壁中的病理改變相似[3],因此有效全面的治療是抑制腹主動(dòng)脈瘤進(jìn)一步發(fā)展的有利措施,目前手術(shù)及腔內(nèi)支架治療腹主動(dòng)脈瘤已獲得良好的手術(shù)結(jié)果,但均屬于預(yù)防性治療,術(shù)后腹主動(dòng)脈瘤慢性擴(kuò)張或破裂風(fēng)險(xiǎn)依然存在[4,5]。間充質(zhì)干細(xì)胞是一種多潛能分化細(xì)胞,能促進(jìn)血管壁平滑肌及成纖維細(xì)胞再生,抑制炎癥反應(yīng),改善血管壁功能[6],促進(jìn)腹主動(dòng)脈瘤壁功能重構(gòu),成為未來(lái)腹主動(dòng)脈瘤輔助治療研究的新方向。
腹主動(dòng)脈瘤的形成是一種復(fù)雜的動(dòng)態(tài)變化過(guò)程,主動(dòng)脈壁病理表現(xiàn)為彈力纖維的斷裂、平滑肌細(xì)胞的丟失和繼發(fā)的膠原纖維沉積[7],誘導(dǎo)這些病理改變的原因主要為:蛋白降解過(guò)程亢進(jìn)、炎癥反應(yīng)和平滑肌細(xì)胞的過(guò)度凋亡[8],其中炎癥反應(yīng)和蛋白降解是腹主動(dòng)脈壁發(fā)病的關(guān)鍵原因,伴隨的炎癥細(xì)胞入侵通過(guò)分泌Fas等細(xì)胞毒性因子導(dǎo)致平滑肌細(xì)胞的凋亡[9]。有效的抑制炎癥反應(yīng)和蛋白降解是改善腹主動(dòng)脈病理改變的基礎(chǔ)。
間充質(zhì)干細(xì)胞是一種多潛能分化細(xì)胞,它不同于胚胎干細(xì)胞,是一種具有限制分化功能的成年干細(xì)胞,多存在于骨髓組織[10],具有自我復(fù)制和多向分化潛能,在特定環(huán)境下能分化為多種間質(zhì)細(xì)胞[11],在成體組織受損后能夠快速匯聚于損傷區(qū)域,促進(jìn)組織的再生與修復(fù)[12,13],近年來(lái)研究間充質(zhì)干細(xì)胞對(duì)組織損傷區(qū)域功能效應(yīng)時(shí)發(fā)現(xiàn):間充質(zhì)干細(xì)胞能夠抑制局部炎癥反應(yīng),抑制過(guò)度的纖維化和細(xì)胞凋亡,并且誘導(dǎo)自體祖細(xì)胞系的有絲分裂[14]。因此應(yīng)用體外間充質(zhì)干細(xì)胞干預(yù)促進(jìn)病變組織的恢復(fù)與再生成為研究的熱點(diǎn)。
炎癥反應(yīng)、彈力纖維斷裂、纖維化和細(xì)胞凋亡是腹主動(dòng)脈瘤主要的病理改變。而研究發(fā)現(xiàn)間充質(zhì)干細(xì)胞可調(diào)節(jié)上述病理變化,提示間充質(zhì)干細(xì)胞可對(duì)腹主動(dòng)脈瘤壁的病理變化產(chǎn)生影響,并且目前研究發(fā)現(xiàn)在鼠科動(dòng)物及人腹主動(dòng)脈瘤壁組織中檢測(cè)到CD34+陽(yáng)性標(biāo)記的內(nèi)皮祖細(xì)胞的流通[15]。因此研究間充質(zhì)干細(xì)胞對(duì)腹主動(dòng)脈瘤病理變化的影響,將為未來(lái)應(yīng)用間充質(zhì)干細(xì)胞治療腹主動(dòng)脈瘤提供依據(jù)。
3.1 間充質(zhì)干細(xì)胞對(duì)腹主動(dòng)脈瘤壁中炎癥反應(yīng)的調(diào)控作用。
炎癥反應(yīng)是不同原因引起的腹主動(dòng)脈瘤發(fā)生的共有機(jī)制,是機(jī)體對(duì)不同抗原誘發(fā)的免疫反應(yīng),包括lNF-β、AP-1信號(hào)通路的激活,白細(xì)胞介素(IL)-1β、腫瘤壞死因子(TNF)、IL-6、IL-8、IL-17、IL-23等炎癥因子的激活和過(guò)度表達(dá),以及中性粒細(xì)胞、單核巨噬細(xì)胞的聚集[16,17],其中IL-1β、TNF能夠誘導(dǎo)基質(zhì)金屬蛋白酶(MMP)的產(chǎn)生、減少蛋白酶組織抑制因子(TIMP)的表達(dá),IL-6可促進(jìn)免疫球蛋白在主動(dòng)脈瘤壁的聚集,這些炎癥因子的濃度異常增加加劇了主動(dòng)脈壁細(xì)胞外基質(zhì)的降解,導(dǎo)致了主動(dòng)脈壁結(jié)構(gòu)的紊亂,促進(jìn)了腹主動(dòng)脈瘤的形成[18],研究發(fā)現(xiàn)抑制炎癥因子的過(guò)度表達(dá),可減少小鼠腹主動(dòng)脈瘤的形成[17],因此有效的抑制炎癥反應(yīng)的發(fā)生是改善腹主動(dòng)脈瘤病變的有效途徑。
目前研究發(fā)現(xiàn),組織受損后,干祖細(xì)胞向受損組織聚集,通過(guò)降低T、B淋巴細(xì)胞的功能,抑制免疫反應(yīng)的發(fā)生,減少炎癥因子的釋放,改善局部組織的損傷[19], Schneider等[20]通過(guò)對(duì)小鼠腹主動(dòng)脈瘤模型的研究,發(fā)現(xiàn)間充質(zhì)干細(xì)胞治療組明顯減少了單核/巨噬細(xì)胞在腹主動(dòng)脈瘤壁中的入侵,并且減少了腹主動(dòng)脈瘤中MMP-2、MMP-9的表達(dá)、增加了TIMP-1的合成,抑制了主動(dòng)脈壁細(xì)胞外基質(zhì)的降解,延緩了腹主動(dòng)脈瘤徑的擴(kuò)增, Sharma等[17]研究發(fā)現(xiàn):IL-17、IL-23在人和動(dòng)物腹主動(dòng)脈瘤中高表達(dá),CD4+T細(xì)胞通過(guò)產(chǎn)生IL-17促進(jìn)腹主動(dòng)脈瘤的形成,應(yīng)用間充質(zhì)干細(xì)胞干預(yù)可明顯抑制單核細(xì)胞的激活、再生,同時(shí)減少I(mǎi)L-17的產(chǎn)生,減少了腹主動(dòng)脈瘤的形成。研究結(jié)果均表明間充質(zhì)干細(xì)胞可抑制腹主動(dòng)脈瘤壁中炎癥反應(yīng)的發(fā)展。
3.2 間充質(zhì)干細(xì)胞改善動(dòng)脈壁瘤中細(xì)胞外基質(zhì)的紊亂
主動(dòng)脈壁細(xì)胞外基質(zhì)主要包括彈力纖維和膠原纖維,彈力纖維是主動(dòng)脈壁順應(yīng)性發(fā)揮的關(guān)鍵,彈力纖維的斷裂增加導(dǎo)致主動(dòng)脈壁順應(yīng)性降低,對(duì)血流沖擊的彈力回縮抗性減低,是腹主動(dòng)脈瘤發(fā)生的關(guān)鍵因素。膠原纖維能夠增加主動(dòng)脈壁韌性,在動(dòng)脈瘤形成的早期,由于MMP-1和MMP-8的表達(dá)增加,膠原纖維降解增加,隨著合成型平滑肌細(xì)胞的表達(dá)增加及其產(chǎn)生膠原蛋白能力的激活,導(dǎo)致主動(dòng)脈壁中膠原纖維合成增加以彌補(bǔ)膠原蛋白酶的降解,但過(guò)量的膠原纖維增加將導(dǎo)致主動(dòng)脈壁硬度增加[21,22]。
目前研究表明間充質(zhì)干細(xì)胞治療在改善腹主動(dòng)脈壁細(xì)胞外基質(zhì)紊亂過(guò)程中發(fā)揮重要作用,間充質(zhì)干細(xì)胞的治療能夠抑制MMP的異常表達(dá)增加,進(jìn)而抑制彈力纖維和原膠原纖維的降解,但功能性的主動(dòng)脈壁細(xì)胞外基質(zhì)需要彈力纖維和膠原纖維以合適的比例存在,主動(dòng)脈壁彈力纖維合成于人體發(fā)育的早期,成年后表達(dá)量甚微,因此有效改善彈力纖維的再合成是促進(jìn)主動(dòng)脈壁細(xì)胞外基質(zhì)功能恢復(fù)的關(guān)鍵。目前研究發(fā)現(xiàn)間充質(zhì)干細(xì)胞能夠增加轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)的表達(dá),而TGF-β能夠改善彈力蛋白的合成、促進(jìn)彈性基質(zhì)的沉積,從而促進(jìn)主動(dòng)脈平滑肌細(xì)胞對(duì)彈力纖維的合成[23,24],此外Hashizume等[25]通過(guò)腹主動(dòng)脈瘤動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn):間充質(zhì)干細(xì)胞在有效抑制炎癥反應(yīng)的同時(shí),還可以促進(jìn)彈力蛋白的合成。但是,由于彈力纖維的合成還需后期彈力蛋白的聚集、沉積等過(guò)程,因此間充質(zhì)干細(xì)胞對(duì)腹主動(dòng)脈瘤壁中功能性彈力纖維合成的促進(jìn)作用仍有待于進(jìn)一步的驗(yàn)證分析。
3.3 間充質(zhì)干細(xì)胞對(duì)腹主動(dòng)脈瘤壁平滑肌細(xì)胞的保護(hù)作用
平滑肌細(xì)胞是主動(dòng)脈壁中層的主要細(xì)胞,能夠分泌多種蛋白酶和蛋白酶抑制劑,參與維持主動(dòng)脈中層結(jié)構(gòu)正常功能代謝,并且平滑肌細(xì)胞能夠保護(hù)主動(dòng)脈壁對(duì)抗炎癥反應(yīng)及蛋白酶裂解造成的損害[26]。此外,平滑肌細(xì)胞是主動(dòng)脈中層細(xì)胞外基質(zhì)蛋白合成的來(lái)源,平滑肌細(xì)胞通過(guò)與中層細(xì)胞外基質(zhì)蛋白交互作用共同維持主動(dòng)脈壁結(jié)構(gòu)和功能的完整性[27],而收縮型平滑肌細(xì)胞參與維持主動(dòng)脈壁的收縮順應(yīng)性。在腹主動(dòng)脈瘤壁中平滑肌細(xì)胞丟失,打破了正常的合成降解代謝過(guò)程,使主動(dòng)脈壁功能受損。
間充質(zhì)干細(xì)胞作為一種多潛能細(xì)胞,能夠分化為多種細(xì)胞系,并能夠抑制細(xì)胞的凋亡。研究發(fā)現(xiàn)間充質(zhì)干細(xì)胞通過(guò)抑制炎癥反應(yīng)誘導(dǎo)的腹主動(dòng)脈瘤壁中平滑肌細(xì)胞凋亡過(guò)程的同時(shí),還能夠分化為主動(dòng)脈壁平滑肌細(xì)胞,并促進(jìn)平滑肌細(xì)胞的合成,以彌補(bǔ)腹主動(dòng)脈瘤壁中平滑肌細(xì)胞的凋亡[17]。
目前腔內(nèi)覆膜支架治療已成為腹主動(dòng)脈瘤治療的主要手段,并獲得了良好的效果,但是腔內(nèi)支架雖隔離了血流對(duì)擴(kuò)張主動(dòng)脈壁的沖擊,延緩了腹主動(dòng)脈瘤的發(fā)生,但是不能阻止腹主動(dòng)脈瘤壁的進(jìn)一步擴(kuò)張[28]。 Turnbull等[10]已成功將間充質(zhì)干細(xì)胞植入動(dòng)物腹主動(dòng)脈壁中。 Kajimoto等[28]通過(guò)動(dòng)物實(shí)驗(yàn)開(kāi)啟了一種聯(lián)合腔內(nèi)治療和細(xì)胞植入治療胸主動(dòng)脈瘤的方法,為未來(lái)間充質(zhì)干細(xì)胞在腹主動(dòng)脈瘤臨床治療提供了良好基礎(chǔ)。
綜上所述,間充質(zhì)干細(xì)胞作為一種多潛能干細(xì)胞,不但能夠分化為特定細(xì)胞系,還能夠抑制炎癥反應(yīng)和炎癥細(xì)胞的聚集,能夠改善腹主動(dòng)脈瘤壁的病理改變,延緩腹主動(dòng)脈瘤進(jìn)一步擴(kuò)張的同時(shí),促進(jìn)主動(dòng)脈壁中層細(xì)胞外基質(zhì)和平滑肌細(xì)胞的再生和修復(fù),成為未來(lái)腹主動(dòng)脈瘤治療的新方向。尤其在當(dāng)前,可通過(guò)聯(lián)合間充質(zhì)干細(xì)胞及腔內(nèi)支架治療,將會(huì)有效隔絕動(dòng)脈瘤壁免受血流沖擊的同時(shí),促進(jìn)病變主動(dòng)脈壁的功能恢復(fù),明顯改善腹主動(dòng)脈瘤術(shù)后再擴(kuò)張,降低術(shù)后遠(yuǎn)期腹主動(dòng)脈瘤破裂的風(fēng)險(xiǎn)。
[1] Johnston KW, Rotherford RB, Tilson MD, et al. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg, 1991, 13: 452-458.
[2] Ward AS. Aortic aneurysmal disease. A generalized dilating diathesis. Arch surg 1992, 127: 990-991.
[3] Goodall S, Crowther M, Bell PR, et al. The association between venous structural alterations and biomechanical weakness in patients with abdominal aortic aneurysms . J Vasc Surg, 2002, 35: 937-942.
[4] Park BD, Azefor NM, Huang CC, et al. Elective endovascular aneurysm repair in the elderly: Trends and outcomes from the nationwide inpatient sample. Ann Vasc Surg, 2014, 28: 798-807.
[5] Prinssen M, Buskens E, Blankensteijn JD. Quality of life endovascular and open AAA repair. Results of a randomised trial. Eur J Vasc Endovasc Surg, 2004, 27: 121-127.
[6] Shen YH, Hu X, Zou S, et al. Stem cells in thoracic aortic aneurysms and dissections: potential contributors to aortic repair. Ann Thorac Surg, 2012, 93: 1524-1533.
[7] Aillawadi G, Eliason JL, Upchurch GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg, 2003, 38: 584-588.
[8] Nordon IM, Hinchliffe RJ, Loftus IM, et al. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol, 2011, 8: 92-102.
[9] He R, Guo DC, Estrera AL, et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections . The Journal of thoracic and cardiovascular surgery, 2006, 131: 671-678.
[10] Turnbull IC, Hadri L, Rapti K, et al. Aortic implantation of mesenchymal stem cells after aneurysm injury in a porcine model. J Surg Res, 2011, 170: e179-188.
[11] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells . Science, 1999, 284: 143-147.
[12] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276: 71-74.
[13] Dezawa M, Ishikawa H, Itokazu Y, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 2005, 309: 314-317.
[14] Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators . J Cell Biochem, 2006, 98: 1076-1084.
[15] Sho E, Sho M, Nnajo H, et al. Hemodynamic regulation of CD34+ cell localization and differentiation in experimental aneurysms. Arterios cler Thromb Vasc Biol, 2004, 24: 1916-1921.
[16] Riera DEL, Moral L, Aramburu CL, et al. Experimental model for coadjuvant treatment with mesenchymal stem cells for aortic aneurysm. Am J Stem Cells, 2012, 1: 174-181.
[17] Sharma AK, Lu G, Jester A, et al. Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment . Circulation, 2012, 126: S38-45.
[18] Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterios cler Thromb Vasc Biol, 1997, 17: 2843-2847.
[19] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy, 2006, 8: 315-317.
[20] Schenider F, Saucy F, De Bllc R, et al. Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model. Eur J Vasc and Endovasc Surg, 2013, 45: 666-672.
[21] Huffman MD, Curci JA, Moore G, et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery, 2000, 128: 429-438.
[22] Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg, 2002, 39: 110-230.
[23] Salazar KD, Lankford SM, Brody AR. Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J physiol Lung Cell mol Physiol, 2009, 297: L1002-1011.
[24] Wada N, Wang B, Lin NH, et al. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res, 2011, 46: 438-447.
[25] Hashizume R, Yamawaky-Ogata A, Ueda Y, et al. Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice. J Vasc Surg, 2011, 54: 1743-1752.
[26] Sakalihasan N, Litet R, Defawe OD. Abdominal aortic aneurysm. The Lancet, 2005, 365: 1577-1589.
[27] Wang L, Zhang J, Fu W, et al. Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. J Vasc Surg, 2012, 56: 1698-1709.
[28] Kajimoto M, Shimono T, Hirano K, et al. Development of a new method for endovascular aortic repair: combination therapy of cell transplantation and stent grafts with a drug delivery system. Circulation, 2006, 114: 1378-1383.
2013-12-09)
(編輯:常文靜)
100037 北京市,北京協(xié)和醫(yī)學(xué)院 中國(guó)醫(yī)學(xué)科學(xué)院 國(guó)家心血管病中心 阜外心血管病醫(yī)院 心血管疾病國(guó)家重點(diǎn)實(shí)驗(yàn)室
血管外科中心
裴華偉 博士研究生 主要從事主動(dòng)脈外科疾病發(fā)病機(jī)制的研究 Email: pumcphw@126.com 通訊作者:常謙 Email: cqfuwai@126.com
R54
A
1000-3614(2014)08-0653-03
10.3969/j.issn.1000-3614.2014.08.024