張恩圓 李廣平
.綜述.
鈣-鈣調(diào)蛋白依賴性蛋白激酶Ⅱ在心力衰竭發(fā)生發(fā)展中的作用
張恩圓 李廣平
鈣-鈣調(diào)蛋白依賴性蛋白激酶類; 心肌肥厚;心力衰竭
近來(lái)發(fā)現(xiàn),鈣-鈣調(diào)蛋白依賴性蛋白激酶Ⅱ(Calcium-Calmodulin-dependent protein kinaseⅡ,CaMKⅡ)在諸多心血管疾病的發(fā)生發(fā)展中起到重要作用。越來(lái)越多的證據(jù)表明,CaMKⅡ通路的激活會(huì)加速某些心血管疾病的發(fā)展進(jìn)程,尤其在心力衰竭中,我們將就兩者關(guān)系做一綜述。
CaMKⅡ是一個(gè)在心臟和腦組織廣泛表達(dá)的復(fù)合受體絲氨酸-蘇氨酸激酶,通過(guò)結(jié)合Ca2+或CaM導(dǎo)致其調(diào)節(jié)結(jié)構(gòu)域的Thr-287自身磷酸化或Met-281/282的部分可逆性氧化兩條途徑達(dá)到持續(xù)激活狀態(tài),影響下游受體如受磷蛋白(phospholamban,PLB)、蘭尼堿受體(ryanodine receptor,RyR2)的表達(dá),破壞細(xì)胞內(nèi)鈣離子穩(wěn)態(tài)。
CaMKⅡ家族中,CaMKⅡδC可以直接調(diào)節(jié)胞漿內(nèi)鈣轉(zhuǎn)運(yùn)過(guò)程,CaMKⅡδB定位于細(xì)胞核,與CaMKⅡδC共同調(diào)節(jié)肌細(xì)胞增強(qiáng)因子2基因的表達(dá),導(dǎo)致心肌肥厚,并誘導(dǎo)核組蛋白去乙?;?(histone deacetylase-4,HDAC4)磷酸化,使其由胞核易位至胞漿[1]。心力衰竭時(shí),CaMKⅡδA也會(huì)相應(yīng)上調(diào),而且伴隨著心房利鈉因子(atrial natriuretic factor,ANF)、β肌球蛋白重鏈(myosin heavy chain,β-MHC)等致心肌肥厚基因再活化,若對(duì)CaMKⅡδA進(jìn)行基因沉默或者選擇性干擾HDAC4-MEF2信號(hào)通路可緩解心力衰竭時(shí)的機(jī)械重構(gòu)[2]。
壓力負(fù)荷、氧化應(yīng)激、血管緊張素Ⅱ、去甲腎上腺素或電場(chǎng)刺激都可以降低肌漿網(wǎng)鈣負(fù)荷和鈣瞬變幅度,誘導(dǎo)舒張期肌漿網(wǎng)鈣漏,釋放的鈣離子使心肌細(xì)胞ANF、β-MHC及CaMKⅡδC過(guò)表達(dá),并以CaMKⅡ?yàn)榈诙攀沽姿峄幌盗锈}轉(zhuǎn)運(yùn)蛋白,從而使心肌細(xì)胞體積增大,肌節(jié)重裝配,逐漸影響正常的電-機(jī)械狀態(tài)。
2.1 鈉通道及交換體
Ashpole等[3]和Wagner等[4]均發(fā)現(xiàn),心力衰竭時(shí)過(guò)表達(dá)的CaMKⅡ可以作用于Thr-594和Ser-516等多個(gè)磷酸化位點(diǎn),引起心肌鈉通道持續(xù)開放,形成晚鈉電流,QRS間期和QT間期延長(zhǎng),心室有效不應(yīng)期縮短,室性心動(dòng)過(guò)速風(fēng)險(xiǎn)增加。鈉鈣交換體(Na+/Ca2+exchanger,NCX)為泵出過(guò)多的鈉離子造成鈣離子持續(xù)內(nèi)流,強(qiáng)迫心肌細(xì)胞超負(fù)荷工作,使心功能惡化,抑制晚鈉電流可以逆轉(zhuǎn)由CaMKⅡδC過(guò)表達(dá)引起的舒張功能障礙和心律失常[5]。Nakamura等[6]發(fā)現(xiàn),單純激活鈉氫交換體也可以活化CaMKⅡ/HDAC通路,PLB磷酸化,肌漿網(wǎng)內(nèi)鈣超載,引起心肌肥厚甚至心力衰竭。
2.2 鉀通道
生理狀態(tài)下,CaMKⅡ與瞬時(shí)外向鉀離子通道的Kv4.3亞基結(jié)合在一起,通過(guò)占據(jù)其與鈣調(diào)蛋白的結(jié)合位點(diǎn)抑制CaMKⅡ的活化,而當(dāng)瞬時(shí)外向鉀離子通道受到影響,與CaMKⅡ分離,即造成CaMKⅡ磷酸化,動(dòng)作電位時(shí)程延長(zhǎng),從而引發(fā)一系列電-機(jī)械活動(dòng)異常,甚至發(fā)展成心力衰竭[7]。短期內(nèi)CaMKⅡ過(guò)表達(dá)動(dòng)作電位時(shí)程的延長(zhǎng)也被證明與鉀離子通道的下調(diào)密切相關(guān)[8]。
2.3 鈣通道及交換體
心力衰竭時(shí)CaMKⅡ活性顯著增強(qiáng)并且伴隨著NCX1表達(dá)上調(diào)[9],β腎上腺素受體激動(dòng)的NCX1上調(diào)是由CaMKⅡ/ AP-1信號(hào)通路介導(dǎo)完成的[10]。實(shí)驗(yàn)證明,轉(zhuǎn)染了活性CaMKⅡδB后的小鼠NCX1表達(dá)提高,抑制CaMKⅡδB可以一定程度上緩解鈉鈣交換體/肌漿網(wǎng)鈣離子ATP酶(sarcoplasmic reticulum Ca2+-ATPase,SERCA)失衡,改善心功能[11]。然而,急性CaMKⅡ過(guò)表達(dá)時(shí)細(xì)胞內(nèi)鈣離子異常分布主要由肌漿網(wǎng)鈣漏引起,NCX所起的作用則非常?。?]。另外,心力衰竭時(shí)特異性鈣通道Ca(V)1.2的β2a亞基數(shù)目增加,其上Leu493被認(rèn)為是CaMKⅡ的結(jié)合位點(diǎn),而Thr498則對(duì)CaMKⅡ的磷酸化至關(guān)重要,CaMKⅡ的激活造成了細(xì)胞內(nèi)鈣超載,細(xì)胞膜電位波動(dòng),進(jìn)而發(fā)生各種心律失常并加重心力衰竭[12]。
L型鈣通道(L type calcium channel,Ca-L)是鈣離子進(jìn)入心肌細(xì)胞的主要途徑,細(xì)胞膜去極化時(shí)通道蛋白開放,整個(gè)平臺(tái)期鈣離子流入細(xì)胞內(nèi),直至下次收縮,而衰竭心肌CaMKⅡ?qū)a-L調(diào)節(jié)失控,QT間期延長(zhǎng),極易誘發(fā)心律失常。Chen等[13]通過(guò)體內(nèi)基因轉(zhuǎn)染和體外細(xì)胞培養(yǎng)技術(shù)分別在器官、組織、細(xì)胞和分子水平證明了Ca-L的上調(diào)可通過(guò)鈣神經(jīng)素/核因子活性T細(xì)胞和CaMKⅡ/HDAC通路誘導(dǎo)心肌細(xì)胞肥大和心力衰竭的發(fā)生,這個(gè)過(guò)程是由胞質(zhì)、內(nèi)質(zhì)網(wǎng)-細(xì)胞核鈣池共同參與的。Hashambhoy等[14]通過(guò)建立生物-數(shù)學(xué)模型發(fā)現(xiàn),在降低舒張期鈣漏、維持正常的興奮-收縮耦聯(lián)和動(dòng)作電位時(shí)程方面,抑制Ca-L磷酸化的獲益可能要多于單純保護(hù)RyR2的磷酸化位點(diǎn)。
蛋白激酶A(proteinkinase A,PKA)與CaMKⅡ兩條通路聯(lián)系甚多,可以交叉激活,但是CaMKⅡ介導(dǎo)的RyR2的磷酸化位點(diǎn)在S2814,而PKA多在S2808。但是關(guān)于RyR2的磷酸化失活,目前存在著不盡相同的結(jié)論,有些人認(rèn)為RyR2磷酸化,靜息狀態(tài)鈣漏增加是依賴CaMKⅡ的,而非由PKA介導(dǎo)完成[15];而Morimoto等[16]發(fā)現(xiàn),刺激β受體導(dǎo)致的RyR2磷酸化以及隨之發(fā)生的肌漿網(wǎng)鈣漏是單純依賴PKA的,隨后PLB的磷酸化位點(diǎn)也從PKA的Ser16遷移到CaMKⅡ的Thr17,激活了CaMKⅡ,卻降低了cAMP/PKA信號(hào)通路的敏感性,此時(shí),心肌對(duì)交感神經(jīng)刺激的收縮應(yīng)答降低,呈現(xiàn)心力衰竭的早期失代償狀態(tài)[17]。
心力衰竭發(fā)展伴隨著慢性的β受體刺激,傳統(tǒng)治療中選擇性β受體阻滯劑的作用已被廣為接受,可以抑制交感神經(jīng)興奮誘導(dǎo)的CaMKⅡ活化并可以緩解RyR2過(guò)磷酸化,從而以一個(gè)新的角度解釋了β受體阻滯劑在心力衰竭治療中的作用[18]。選擇性阻滯PKA,可以通過(guò)阻礙cAMP/EPAC/ Rap1/Rac/ERK通路防止CaMKⅡ的激活以及胞漿和肌漿網(wǎng)鈣超載,減緩心肌肥厚、纖維化以及細(xì)胞凋亡的進(jìn)程,維持心肌功能。雖然心力衰竭時(shí)CaMKⅡ水平也有所提高,并且被證實(shí)與心力衰竭的發(fā)展相關(guān),但是針對(duì)CaMKⅡ抑制的治療效果卻不如經(jīng)典治療效果明顯,這仍需進(jìn)一步探明發(fā)生機(jī)制以及確切的關(guān)聯(lián)性。
近些年來(lái)有許多研究試圖在分子水平闡明CaMKⅡ在心力衰竭發(fā)展中所起到的作用。Respress等[19]給實(shí)驗(yàn)鼠RyR2植入一個(gè)滅活的S2814磷酸化位點(diǎn),發(fā)現(xiàn)心力衰竭模型鼠舒張期鈣漏減少,心力衰竭也相對(duì)改善,從而證實(shí)了CaMKⅡ?qū)е碌腞yR2磷酸化在心力衰竭發(fā)展中起重要作用。此外,CaMKⅡ可以磷酸化肌聯(lián)蛋白的絲氨酸/蘇氨酸保守位點(diǎn),改變EVK/N2Bus結(jié)構(gòu)域,降低被動(dòng)收縮力,最終導(dǎo)致心力衰竭[20]。而心力衰竭時(shí),富含組氨酸的鈣結(jié)合蛋白部分解體,鈣漏增加,胞質(zhì)局部鈣離子濃度上升,激活CaM/ CaMKⅡ通路,CaMKⅡ、RyR2、PLB及p38 MAPK磷酸化增加,加上大量氧自由基的產(chǎn)生,線粒體凋亡通路也隨之開啟,位于線粒體膜蛋白上的CaM去極化,線粒體內(nèi)膜鈣離子單輸送體電流增加,促進(jìn)線粒體通透性轉(zhuǎn)換孔開放,鈣離子大量進(jìn)入以致鈣超載,心肌發(fā)生不可逆損傷[21-22]。CaMKⅡ的激活同樣促進(jìn)右心衰竭,Meoli和White[23]肯定了CaMKⅡ在凝血酶誘導(dǎo)的肺毛細(xì)血管內(nèi)皮細(xì)胞遷移過(guò)程中發(fā)揮的重要作用,這一過(guò)程使得損傷的內(nèi)皮增生,血管過(guò)度收縮,阻力增加,逐漸形成肺動(dòng)脈高壓并最終發(fā)展為右心室心力衰竭。
左心室功能障礙者死因大多為心力衰竭或者突發(fā)的惡性心律失常,在這樣的失代償作用中CaMKⅡ的激活起著關(guān)鍵的作用。
針對(duì)擴(kuò)張型心肌病和缺血性心肌病患者終末期衰竭心肌中胞質(zhì)CaMKⅡδC和細(xì)胞核CaMKⅡδB的表達(dá)上調(diào),CaMKⅡ抑制治療可以通過(guò)糾正異常鈣轉(zhuǎn)運(yùn)狀態(tài),在不影響正常心肌細(xì)胞的情況下,改善衰竭心肌的收縮力,減少心律失常的發(fā)生,從而在心力衰竭治療方面為我們提供了一個(gè)新的選擇[24]。Ferreira等[25]發(fā)現(xiàn),在交感興奮誘導(dǎo)的心力衰竭模型中,ARB類藥物可以降低CaMKⅡ的Thr-286磷酸化水平,改善細(xì)胞內(nèi)異常的鈣調(diào)狀態(tài)和已經(jīng)缺陷的左心室功能。
眾所周知,毒毛花苷在心力衰竭治療中充當(dāng)非常重要的角色,但其中毒劑量可以誘導(dǎo)心肌細(xì)胞凋亡。Sapia等[26]發(fā)現(xiàn),低于中毒劑量的毒毛花苷也會(huì)導(dǎo)致一定程度的細(xì)胞活性下降,不過(guò)這個(gè)不良反應(yīng)可以被CaMKⅡ抑制劑(KN93,AIP)消除,這不僅提示了細(xì)胞活性的下降可能通過(guò)CaMKⅡ發(fā)揮作用,也為CaMKⅡ抑制劑在心力衰竭治療中的應(yīng)用找到了新的依據(jù)。然而Huke等[27]對(duì)此持相反的觀點(diǎn),他們發(fā)現(xiàn)AIP可以通過(guò)修飾PLB跨膜結(jié)構(gòu)域選擇性抑制肌漿網(wǎng)CaMKⅡ,減少鈣漏和鈣火花的釋放,然而卻加速了心肌細(xì)胞的重構(gòu),可能因?yàn)榧せ盍思{網(wǎng)以外的CaMKⅡ,促使心肌肥大和心力衰竭的發(fā)展。Ather等[28]發(fā)現(xiàn),阻滯CaMKⅡ或者使RyR2的S2814基因片段突變導(dǎo)致磷酸化受到抑制確實(shí)會(huì)減少肌漿網(wǎng)自發(fā)性鈣漏的發(fā)生,抑制鈣火花,有效控制室性心動(dòng)過(guò)速的發(fā)生,但是這樣的結(jié)果卻限于沒(méi)有發(fā)生心力衰竭的情況下,并且當(dāng)牽拉刺激激活鈣離子流,動(dòng)作電位時(shí)程延長(zhǎng),此時(shí)的心律失常不能被CaMKⅡ抑制劑很好的控制[29]。敲除CaMKⅡ基因后,心力衰竭相關(guān)的血流動(dòng)力學(xué)并未得到改善,反而對(duì)β-腎上腺能刺激的心力儲(chǔ)備下降了,并且呈現(xiàn)出舒張功能的惡化和左心室心肌細(xì)胞凋亡[30]。由此可見(jiàn)在預(yù)防心力衰竭及惡性心律失常進(jìn)展方面,對(duì)CaMKⅡ的干預(yù)在今后一段時(shí)間內(nèi)仍將會(huì)是一個(gè)研究熱點(diǎn),藥物研發(fā)將著眼于更加具有針對(duì)性的CaMKⅡ抑制劑,所以,我們有必要進(jìn)一步了解CaMKⅡ各個(gè)亞型在心力衰竭發(fā)展中發(fā)揮的確切作用。
[1]Zhang T,Kohlhaas M,Backs J,et al.CaMKⅡδ isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses[J].J Biol Chem,2007,282:35078-35087.
[2]Li C,Cai X,Sun H,et al.The δA isoform of calmodulin kinaseⅡmediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway[J].Biochem Biophys Res Commun,2011,409:125-130.
[3]Ashpole NM,Herren AW,Ginsburg KS,et al.Ca2+/ calmodulin-dependent protein kinaseⅡ(CaMKⅡ)regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites[J].J Biol Chem,2012,287:19856-19869.
[4]Wagner S,Dybkova N,Rasenack EC,et al.Ca2+/calmodulindependent protein kinaseⅡregulates cardiac Na+channels[J].J Clin Invest,2006,116:3127-3138.
[5]Hashambhoy YL,Winslow RL,Greenstein JL.CaMKⅡ-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte[J].Conf Proc IEEE Eng Med Biol Soc,2011:4665-4668.
[6]Nakamura TY,Iwata Y,Arai Y,et al.Activation of Na+/H+exchanger 1 is sufficient to generate Ca2+signals that induce cardiac hypertrophy and heart failure[J].Circ Res,2008,103: 891-899.
[7]Keskanokwong T,Lim HJ,Zhang P,et al.Dynamic Kv4.3-CaMKⅡunit in heart:an intrinsic negative regulator for CaMKⅡactivation[J].Eur Heart J,2011,32:305-315.
[8]Zang Y,Dai L,Zhan H,et al.Theoretical investigation of the mechanism of heart failure using a canine ventricular cell model: especially the role of up-regulated CaMKⅡand SR Ca2+leak[J].J Mol Cell Cardiol,2012,56:34-43.
[9]Curran J,Brown KH,Santiago DJ,et al.Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca2+-calmodulin-dependent protein kinaseⅡ[J].J Mol Cell Cardiol,2010,49:25-32.
[10]Mani SK,Egan EA,Addy BK,et al.β-Adrenergic receptor stimulated Ncx1 up-regulation is mediated via a CaMKⅡ/AP-1 signaling pathway in adult cardiomyocytes[J].J Mol Cell Cardiol,2010,48:342-351.
[11]Lu YM,Huang J,Shioda N,et al.CaMKⅡδB mediates aberrant NCX1 expression and the imbalance of NCX1/SERCA in transverse aortic constriction-induce failing heart[J].PLoS One,2011,6:e24724.
[12]Koval OM,Guan X,Wu Y,et al.CaV1.2 β-subunit coordinates CaMKⅡ-triggered cardiomyocyte death and after depolarizations[J].Proc Natl Acad Sci USA,2010,107:4996-5000.
[13]Chen X,Nakayama H,Zhang X,et al.Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy[J].J Mol Cell Cardiol,2011,50:460-470.
[14]Hashambhoy YL,Greenstein JL,Winslow RL.Role of CaMKⅡin RyR leak,EC coupling and action potential duration:a computational model[J].J Mol Cell Cardiol,2010,49:617-624.
[15]Guo T,Zhang T,Mestril R,et al.Ca2+/Calmodulin-dependent protein kinaseⅡphosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes[J].Circ Res,2006,99:398-406.
[16]Morimoto S,O-Uchi J,Kawai M,et al.Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca2+leak in mouse heart[J].Biochem Biophys Res Commun,2009,390:87-92.
[17]Mills GD,Kubo H,Harris DM,et al.Phosphorylation of phospholamban at threonine-17 reduces cardiac adrenergic contractile responsiveness in chronic pressure overload-induced hypertrophy[J].Am J Physiol Heart Circ Physiol,2006,291: H61-70.
[18]Zhang SJ,Liu ZH,Zou C,et al.Effect of metoprolol on sarcoplasmic reticulum Ca2+leak in a rabbit model of heart failure[J].Chin Med J(Engl),2012,125:815-822.
[19]Respress JL,van Oort RJ,Li N,et al.Role of RyR2 phosphorylation at S2814 during heart failure progression[J]. Circ Res,2012,10:1474-1483.
[20]Hamdani N,Krysiak J,Kreusser MM,et al.Crucial Role for Ca2+/Calmodulin-Dependent Protein Kinase-Ⅱin Regulating Diastolic Stress of Normal and Failing Hearts via Titin Phosphorylation[J].Circ Res,2013;112:664-674.
[21]Joiner ML,Koval OM,Li J,et al.CaMKⅡdetermines mitochondrial stress responses in heart[J].Nature,2012,491: 269-273.
[22]Park CS,Cha H,Kwon EJ,et al.AAV-mediated knock-down of HRC exacerbates transverse aorta constriction-induced heart failure[J].PLoS One,2012,7:e43282.
[23]Meoli DF,White RJ.Thrombin induces fibronectin-specific migration of pulmonary microvascular endothelial cells: requirement of calcium/calmodulin-dependent protein kinaseⅡ[J].Am J Physiol Lung Cell Mol Physiol,2009,297:L706-714.
[24]Yang LZ,Kocksk?mper J,Khan S,et al.cAMP-and Ca2+/ calmodulin-dependent protein kinases mediate inotropic,lusitropic and arrhythmogenic effects of urocortin 2 in mouse ventricular myocytes[J].Br J Pharmacol,2011,162:544-556.
[25]Ferreira JC,Moreira JB,Campos JC,et al.Angiotensin receptor blockade improve the net balance of cardiac Ca2+handlingrelated proteins in sympathetic hyper-activity-induced heart failure[J].Life Sci,2011,88:578-585.
[26]Sapia L,Palomeque J,Mattiazzi A,et al.Na+/K+-ATPase inhibition by ouabain induces CaMKⅡ-dependent apoptosis in adult rat cardiac myocytes[J].J Mol Cell Cardiol,2010,49: 459-468.
[27]Huke S,Desantiago J,Kaetzel MA,et al.SR-targeted CaMKⅡinhibition improve SR Ca2+handling,but accelerates cardiac remodeling in mice overexpressing CaMKⅡδC[J].J Mol Cell Cardiol,2011,50:230-238.
[28]Ather S,Wang W,Wang Q,et al.Inhibition of CaMKⅡPhosphorylation of RyR2 Prevents Inducible Ventricular Arrhythmiasin Mice with Duchenne Muscular Dystrophy[J]. Heart Rhythm,2012,10:592-599.
[29]Lai D,Xu L,Cheng J,et al.Stretch Current-Induced Abnormal Impulses in CaMKⅡδ Knockout Mouse Ventricular Myocytes[J].J Cardiovasc Electrophysiol,2012,24:457-463.
[30]Cheng J,Xu L,Lai D,et al.CaMKⅡinhibition in heart failure,beneficial,harmful,or both[J].Am J Physiol Heart Circ Physiol,2012,302:H1454-1465.
Function of CaMKⅡin the genesis and development of heart failure
Zhang Enyuan1,Li Guangping2.
1 Tianjin Medical University,Tianjin 300070,China;2 Department of Cardiology,Tianjin Institute of Cardiology,the Second Hospital of Tianjin Medical University
Calcium-Calmodulin-dependent protein kinases; Hypertrophy; Heart failure
Li Guangping,Email:tjcardiol@ tijmu.edu.cn
2013-05-02)
(本文編輯:譚瀟)
10.3969/j.issn.1007-5410.2014.02.019
300070天津醫(yī)科大學(xué)(張恩圓);天津醫(yī)科大學(xué)第二醫(yī)院心臟科天津心臟病學(xué)研究所(李廣平)
李廣平,電子信箱:tjcardiol@tijmu.edu.cn